

V. Loukonen¹, S. Kawai^{2,3}, E. Meyer², B. D. Lindner⁴, K. Tahara^{3,4}, Y. Tobe⁴, A. S. Foster¹

¹Department of Applied Physics, Aalto University, Finland ³PRESTO, Japan Science and Technology Agency, Japan ²Department of Physics, University of Basel, Switzerland ⁴Graduate School of Engineering Science, Osaka University, Japan

Exploring on-surface structural transformation using DFT

Throw this molecule on Cu(111) surface...

...and interesting things happen

 it undergoes several on-surface reactions, changing its structure considerably
final and intermediate structures

show self-assembly!

Once deposited, the molecule reacts immediately with the copper surface...

...after annealing at 200°C, first stable transformation happens...

...further annealing at 400°C yields the final structure.

1 *H* or *no H*? Although the low-temperature AFM images reveal the molecular geometries with high precision, hydrogen atoms are difficult to identify. We used DFT calculations to investigate the problem:

...the structure with two "extra" hydrogen atoms (C₂₄H₁₄) matches the experiments!

the structures without...

...and with "extra" H atoms clearly differ in geometry...

0 Hor no H? – prequel Perhaps the "extra" hydrogen atoms are already present in the first reaction?

According to DFT calculations this is indeed plausible:

experimental details non-contact AFM with a CO tip measurements performed at T = 4.8 K oscillation frequency 24.768 × 10³ Hz oscillation amplitude 53 pm spring constant 1800 N/m

the geometry is stable enough to exist...

... it fits both to AFM and STM characteristics... ...and it suggest a realistic pathway leading to the first stable structure

2 H or no H? – sequel To obtain the final structure, two hydrogen atoms need to be removed.

Experimentally this is observed after annealing at 400°C, in accordance with DFT energetics.

These results demonstrate the potential of on-surface reactions as a route for chemical synthesis – and the necessity of computations.

ville.loukonen@aalto.fi

computational details PBE-D3/DZVP/500 Ry 17.8 × 17.7 × 25.0 Å³ (six layers of Cu) optimizations at T = 0 K www.CP2K.org

This work was supported by the Academy of Finland through its Centres of Excellence Project No. 251748. CSC – IT Center for Science is acknowledged for computing time and services.