

PETER SPIJKER

 $V_{\rm E}(r) = -$

 $V_{\rm LJ}(r) = 4\epsilon$

UNDERSTANDING COMPLEX SOLID-LIQUID INTERFACES AT THE ATOMIC SCALE

MOLECULAR DYNAMICS SIMULATIONS

Κιςιον νοιταιονσκη

At its core molecular dynamics (MD) simulations solve Newton's equations of motion for each individual atom in the system under consideration, where the interactions between the individual atoms are determined by a potential energy function given by a specific (empirical) force field.

KEI KOBAYASHI

MUSCOVITE MICA AND IONS

Recent AM-AFM experiments on muscovite mica with either Na⁺, K⁺ or Rb⁺ ions in solution show them adsorbing at the surface, preferably in regular patterns (e.g., rows or hexagons). Using MD simulations this structuring is shown to be water-induced [3].

ANGELIKA KÜHNLE

Topography

HIROSHI ONISHI

Energies contributions per ion

ADAM FOSTER

CALCITE – WATER AND ALCOHOLS

AFM experiments and the MD simulations agree very well, and detailed analysis of the MD data and comparison with the experiments, suggests the presence of a different surface structure (compared to the bulk), which has an increased hydration energy [1].

ONIC CRYSTALS

unit cell size: 1.5 nm

x (A)

MD simulations reveal a similar hydration structure as in the experiments, and at least 3 distinctive hydration layers are observed [4]. Ions (Na⁺/Ca²⁺) rarely pass the final hydration layer [5]. In alcohol solvents strong structuring is also observed, leading to a bilayer-like interface [6].

FURTHER READING

[1] P. Spijker, et al., J. Phys. Chem. C, 118:2058 (2014) [2] K. Kobayashi, P. Spijker, *et al.*, in preparation (2014) [3] M. Ricci, P. Spijker, et al., Nature Communications, in press (2014) [4] B. Reischl, et al., J. Chem. Theory Comput., 9:600 (2013) [5] M. Ricci, P. Spijker, *et al.*, Langmuir, 29:2207 (2013) [6] P. Spijker, *et al.*, in preparation (2014)

Aalto University

Department of Applied Physics, Aalto University, Helsinki, Finland

Department of Physics, Durham University, Durham, United Kingdom

Department of Material Science and Engineering, EPFL, Lausanne, Switzerland KOBE

Department of Chemistry, Kobe University, Kobe, Japan Engineering, Kyoto University, Kyoto, Japan

Department of Electronic Science and

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JGU

> Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Germany