
A LEARNING VECTOR QUANTIZATION ALGORITHM

FOR PROBABILISTIC MODELS

Jaakko Hollmén †, Volker Tresp ‡ and Olli Simula †
† Helsinki University of Technology, Laboratory of Computer and Information Science

P.O. Box 5400, 02015 HUT, Finland, e:mail: [Jaakko.Hollmen,Olli.Simula]@hut.fi

‡ Siemens AG, Corporate Technology, Information and Communications
81730 Munich, Germany, e-mail: Volker.Tresp@mchp.siemens.de

ABSTRACT

In classification problems, it is preferred to attack the
discrimination problem directly rather than indirectly
by first estimating the class densities and by then es-
timating the discrimination function from the genera-
tive models through Bayes’s rule. Sometimes, however,
it is convenient to express the models as probabilistic
models, since they are generative in nature and can
handle the representation of high-dimensional data like
time-series. In this paper, we derive a discriminative
training procedure based on Learning Vector Quantiza-
tion (LVQ) where the codebook is expressed in terms
of probabilistic models. The likelihood-based distance
measure is justified using the Kullback-Leibler distance.
In updating the winner unit, a gradient learning step
is taken with regard to the parameters of the proba-
bilistic model. The method essentially departs from a
prototypical representation and incorporates learning in
the parameter space of generative models. As an illus-
tration, we present experiments in the fraud detection
domain, where models of calling behavior are used to
classify mobile phone subscribers to normal and fraud-
ulent users. This is an extension of our earlier work in
clustering probabilistic models with the Self-Organizing
Map (SOM) algorithm to the classification domain.

1 INTRODUCTION

Classification is inherently a discrimination problem.
Contrary to the real nature of the problem, the clas-
sical approach to classification solves the problem by
first estimating the class specific densities and by then
calculating the posterior probabilities of classes, which
in turn define the discrimination function [3, 5]. Re-
cent research [8] shows that for problems where dis-
crimination is the main concern, attacking discrimina-
tion problems by density estimation may be inferior to
more direct approaches. Still, it may be desirable to
formulate the models in terms of generative, probabilis-
tic models, while the learning procedure aims at being
able to discriminate well. In this paper, we consider
learning codebook-based classifiers, where the codebook
is expressed in terms of probabilistic models, but where

the training procedure is discriminative in nature. The
training algorithm is derived from the LVQ algorithm
[10], which learns to classify data samples by nearest
neighbor (in the Euclidean distance sense) classification
with regard to labeled codebook vectors. We depart
from the prototype representation and express the code-
book in terms of generative probabilistic models. These
models are associated with the input data through like-
lihood, which measures the generative probability of
data. The use of likelihood-based distance measure is
derived from the Kullback-Leibler distance between un-
known probability density of a data sample and a model
stored in the codebook. The iterative update is based
on the gradients of the model with regard to the pa-
rameters. The classifier may be used as a maximum
likelihood classifier, and the resulting codebook may be
used as a fixed kernel base used for further training as
suggested in [8]. We also derive the form of the gra-
dient update for models with hidden variables, which
enables us to use finite mixture models [6, 1] as the
models in the codebook. The work is an extension of
our earlier work to the classification domain. In [7], we
introduced a Self-Organizing Map algorithm for cluster-
ing probabilistic models. This work was motivated with
a general user profiling problem, where a large body
of data must be clustered, but where it is desirable to
formulate the cluster models with probabilistic models
rather than with prototypes of data, as is usually done
with the Self-Organizing Map algorithm. In the exper-
iments, we present a time-series classification problem.
Behavior of mobile phone users is collectively described
by call data. Data is labeled to belong to classes fraud
and normal and is represented as a binary time series
indicating air time of mobile phone users. Calling ac-
tivity of mobile phone users is modeled using dynamic,
probabilistic models, which express the transition prob-
abilities in time between states no-calling and calling. In
all, this work presents a promising approach to learning
unsupervised models for discrimination based on super-
vised learning.

Jaakko Hollmen
Hollmén,J., V.Tresp, and O.Simula (2000). A learning vector quantization algorithm for probabilistic models. In Proceedings of EUSIPCO 2000 - X European Signal Processing Conference ,Volume II,pp.721 –724.

2 LVQ ALGORITHM

The Learning Vector Quantization (LVQ) is an algo-
rithm for learning classifiers from labeled data samples.
Instead of modeling the class densities, it models the dis-
crimination function defined by the set of labeled code-
book vectors and the nearest neighborhood search be-
tween the codebook and data. In classification, a data
point xi is assigned to a class according to the class label
of the closest codebook vector. The training algorithm
involves an iterative gradient update of the winner unit.
The winner unit mc is defined by

c = argmin
k

‖xi − mk‖. (1)

The direction of the gradient update depends on the
the correctness of the classification using a nearest-
neighborhood rule in Euclidean space. If a data sample
is correctly classified (the labels of the winner unit and
the data sample are the same), the model vector clos-
est to the data sample is attracted towards the sample;
if incorrectly classified, the data sample has a repulsive
effect on the model vector. The update equation for the
winner unit mc defined by the nearest-neighbor rule and
a data sample x(t) are

mc(t+ 1) := mc(t)± α(t)[x(t) − mc(t)] (2)

where the sign depends on whether the data sample
is correctly classified (+) or misclassified (−). The
learning rate α(t) ∈]0, 1[must decrease monotonically
in time. For different picks of data samples from
our training set, this procedure is repeated iteratively
until convergence. Kohonen also presents optimized
learning-rate LVQ, where the learning-rate is optimized
for each codebook individually. For further variations,
see [10, 11].

3 LVQ FOR PROBABILISTIC MODELS

Our new classifier consists of a labeled codebook of prob-
abilistic models. The conceptual difference to standard
LVQ is that the codebook models are no longer in the
space of input data, but rather in the space defined by
the parameters of models.

3.1 Justification for the Distance Measure
In order to associate data with models, we need to de-
fine a distance measure between models and data. In
the following, a likelihood-based distance metric is jus-
tified by a derivation from the Kullback-Leibler distance
[1], which relates two probability densities. Thinking of
data as samples originating from an unknown distribu-
tion p(x) and having a model q(x; θ) with parameter-
ization θ, the distance relating p(x) and q(x; θ) is the
Kullback-Leibler distance

KL(p ‖ q) = −
∫

p(x) log
q(x ; θk)

p(x)
dx. (3)

The true distribution p(x) is unknown but can be ap-
proximated by a Dirac unit impulse at the available data
sample by p(x) ≈ δ(x − xi), which after substitution to
Equation (3) gives us for the Kullback-Leibler distance
the negative log likelihood of our data with our empirical
model

= − log q(xi ; θk).

Thus, minimizing the Kullback-Leibler distance between
the unknown true distribution that generated the data
and our empirical model leads to minimizing the neg-
ative logarithm of the likelihood of the data with our
empirical model. This justifies the use of this probabil-
ity measure as a distance measure between models and
data. The justification is the same as used in our earlier
work [7].

3.2 Winner Search and Gradient Update
In contrast to the standard LVQ, where the winner unit
is defined with a nearest-neighbor rule in the Euclidean
space, we now have a winner unit which minimizes the
negative log likelihood of data. Equivalently, this is a
maximum likelihood unit mc defined by

c = argmax
k

q(xi ; θk). (4)

The update equation is defined as a gradient step in the
space of models. The gradient is taken with regard to
the model parameters θc of the winner unit. The update
equation is

θc(t+ 1) := θc(t)± α(t)
∂ log q(x(t); θc)

∂θc
. (5)

To contrast the new approach with the standard LVQ,
the winner search defined by Equation (1) is replaced
by Equation (4) and the update rule in Equation (2) is
replaced by Equation (5). Similar analogy applies to the
choice of the sign.

3.3 Derivatives of Hidden Variable Models
Although the form of Equation 5 is valid for all prob-
abilistic models, the expressions are particularly simple
to calculate for models where all variables are observed.
Models involving hidden variables such as finite mix-
ture models [6] or hidden Markov models [14] provide
an elegant framework for modeling many interesting do-
mains. Therefore, we consider the gradient update in
the case of hidden variable models, although they will
be not used in the experiments. Let us assume a model
with observed variables Y = {y1, . . . , yn} and hidden
variables S = {s1, . . . , sm}. The derivatives can readily
be expressed by considering the likelihood of observed
data which in turn can be expressed in terms of the
joint distribution of hidden variables and observed data,
marginalized over the hidden variables.

∂ logP (Y ; θ)
∂θ

=
∂

∂θ
log

∑
S

P (Y, S; θ)

This can be further manipulated by taking the derivative
of a log of a function and interchanging the order of
the derivative and the sum. The multiplicative factor is
then the likelihood of observed data. The derivative of
the joint probability can then be expressed by applying
the rule ∂

∂xf(x) = f(x) ∂
∂x log f(x) derived from the rule

of derivation for the logarithm function which gives us

∂ logP (Y ; θ)
∂θ

=
1

P (Y ; θ)

∑
S

P (Y, S; θ)
∂

∂θ
logP (Y, S; θ)

and finally, by taking the likelihood of observed data
within the sum, we have the following expression for the
derivatives of the likelihood

∂ logP (Y ; θ)
∂θ

=
∑
S

P (S|Y ; θ) ∂

∂θ
logP (Y, S; θ). (6)

The first term is calculated through an inference pro-
cedure and the second term is easily calculated from
the usual definition of the probabilistic models. Note,
that the logarithm decomposes the product of proba-
bilities into a sum. In case of a large codebook, com-
plicated models and data, this calculation may become
prohibitive, since the it must be repeated for every iter-
ation in the algorithm.

4 EXPERIMENTS

The aim of fraud detection is to discriminate between
normal and fraudulent behavior. In telecommunica-
tions, the calling behavior is collectively described by
call data which is observed. From the call data, we
may learn models which can be used for detecting fraud.
Since detection is inherently a task of discrimination,
it is interesting to consider discriminative training pro-
cedures where the models are expressed as generative
models. Our data consists of a time-series of zeros and
ones, whether a mobile phone user is idle (xt = 0) or
calling (xt = 1) during a particular minute. The four
possibilities of adjacent measurements are 00 (ongoing
silence), 01 (start of a call), 11 (ongoing call), 10 (end
of a call). We model this behavior with a dynamic,
probabilistic model expressing the Markov transitions
P (xt = j|xt−1 = i) = θij . The time-series describing
the calling behavior are labeled and belong to classes
fraud and normal behavior. The likelihood of a time
series x0, . . . , xT becomes then

P (x0, . . . , xT) = P (x0)
T∏

i=1

P (xt = j|xt−1 = i; θ).

The winner search is based on the parameters θk
ij (k is

the codebook index) of the generative models and the
sufficient statistics calculated of the time-series p̂ij =
nij/T , where nij is the count of the joint occurrence
xt−1 = i, xt = j. The winner unit indexed by c is

c = argmin
k
[−

1∑
i,j=0

p̂ij log θk
ij]. (7)

Since the parameters are constrained (θij ∈ [0, 1] and∑
j θij = 1), we must enforce these constraints during

learning. As in our earlier work, we introduced a soft-
max layer [1] as oij = θk

ij = exp(wk
ij)/

∑
j exp(w

k
ij) to

map unconstrained parameters wij to the space of con-
strained parameters θij . In deriving the update rule for
the winner unit, we must use the chain rule of differen-
tiation. For a closer derivation, see [7]. The update rule
for the winner unit is then

θc
ij(t+ 1) := θc

ij(t)± α(t)(p̂ij(1− oij)− p̂i¬joij). (8)

We trained a classifier with calling data from 140 nor-
mal and 70 fraudulent mobile phone users. The calling
activity spanned a period of 49 days in the normal cases
and 92 days in the fraudulent cases. After initialization,
we classified correctly 87.6 % of the training set data
with the maximum likelihood classification rule. After
training, we classified correctly 97.1 % of the training
data, and 95.8 % of the testing data. Figure 1 shows
the codebook with 4 models for each class.

··· ·
·

·

·

··

· ·

·

·

·

·

·
··

·

· ·· ··

·
·

·
·
· · ·
·

·

· ·
·

·
· ·
· ··

·
· ·

··
··
··

·

· ··

·
·

·
·

·
· ·

·
·

·· ·
·

·
·

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o o

o

oo

o

o

o

o

o

F FF
F

N
N

N N

0.992 0.994 0.996 0.998 1
0.4

0.6

0.8

1

Figure 1: The resulting codebook after training. Param-
eter values of the codebook entries θk

00 (infrequency of
calls) are plotted on the horizontal axis, θk

11 (lengths of
the calls) on the vertical axis. The models correspond-
ing to normal calling behavior are marked with a letter
N and the ones corresponding to fraudulent behavior
with a letter F. The empirical estimates for the param-
eter values are shown with dots for the fraud data and
circles for the normal data.

As pointed out in [10, 11], careful initialization is
needed to avoid situations when the repulsion from the
wrong class pushes the codebook entries away from its
own class. Kohonen devises many ways to guarantee
a good initialization, that is, placement of class-specific
codebook vectors on the right side of the decision bound-
ary. In the new approach, the codebook is expressed in
terms of parameters of probabilistic models whereas the
classes are defined by the data samples. We store the
unconstrained parameters w in the codebook, the con-
strained θ are calculated with a softmax layer [1, 7]. To

initialize the codebook, we need to estimate θ from our
data x and map them back to w by fixing one of the w
and solving for the other. This procedure ensures that
the initialization is a reasonable one.

5 DISCUSSION

The methods described in this paper enable the learn-
ing of class specific codebooks expressed through proba-
bilistic models. Since the elementary models are proba-
bilistic in nature, it would be interesting to consider the
codebook as a mixture model with equal mixing weights.
It is worth noting that the training procedure circum-
vents the mixture training problem usually considered
in the framework of EM algorithm [4, 13] by considering
training only the winner unit. Another interesting possi-
bility is to use the codebook in a way to define a kernel
base as suggested by Jaakkola et al [8]. Contrary to
their approach, we could have a limited base to define
a base concentrated near the decision boundary, simi-
larly to support vector machines [2]. These approaches
would output continuous measures of the degree of class
membership which would further make the Receiver Op-
erating Characteristic (ROC) analysis possible.
We have recently become aware of the work on dis-

criminative learning in the context of tuning genera-
tive speech recognition systems reported in [9], which is
closely related to LVQ2. Similarly to their work we al-
low the likelihood to be used as a discriminant function.
Using LVQ in discriminative tuning of hidden Markov
models has also been reported by [12].

6 SUMMARY

We presented a Learning Vector Quantization (LVQ) al-
gorithm for learning a classifier defined by a codebook
of probabilistic models. The models implicitly define a
discrimination function in the input data space through
maximum likelihood search. The prototypical codebook
vectors were replaced by generative, probabilistic mod-
els and the LVQ learning rules were modified accord-
ingly. The likelihood-based distance was justified by a
derivation form the Kullback-Leibler distance. The con-
ceptual difference to conventional training of probabilis-
tic models is the use of supervised, gradient based learn-
ing instead of maximum likelihood estimation. This
specifically tunes the models for discrimination. The al-
gorithm may also be used in post-processing to enhance
the discriminative aspect of generative density models
earlier trained with the EM algorithm.

References

[1] Chris Bishop. Neural Networks in Pattern Recog-
nition. Oxford Press, 1996.

[2] Christopher J.C. Burges. A tutorial on support vec-
tor machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

[3] Vladimir Cherkassky and Filip Mulier. Learning
from data: Concepts, Theory and Methods. John
Wiley & Sons, 1998.

[4] A. P. Dempster, N.M. Laird, and D.B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
Series B, 39:1–38, 1977.

[5] Richard O. Duda and Peter E. Hart. Pattern Recog-
nition and Scene Analysis. John Wiley & Sons,
1973.

[6] B.S. Everitt and D.J. Hand. Finite Mixture Distri-
butions. Monographs on Applied Probability and
Statistics. Chapman and Hall, 1981.

[7] Jaakko Hollmén, Volker Tresp, and Olli Simula. A
self-organizing map algorithm for clustering proba-
bilistic models. In Proceedings of the Ninth Inter-
national Conference on Artificial Neural Networks
(ICANN’99), volume 2, pages 946–951. IEE, 1999.

[8] Tommi Jaakkola and David Haussler. Exploiting
generative models in discriminative classifiers. In
M. Kearns, S. Solla, and D.A. Cone, editors, Ad-
vances in Neural Information Processing Systems:
Proceedings of the 1998 Conference (NIPS’11),
pages 487–493. MIT Press, 1999.

[9] Biing-Hwang Juang and Shigeru Katagiri. Dis-
criminative learning for minimum error classifica-
tion. IEEE Transactions on Signal Processing,
40(12):3043–3054, 1992.

[10] Teuvo Kohonen. Self-Organizing Maps. Springer-
Verlag, 1995.

[11] Teuvo Kohonen, Jussi Hynninen, Jari Kangas,
Jorma Laaksonen, and Kari Torkkola. LVQ PAK:
The learning vector quantization package. Techni-
cal Report A30, Helsinki University of Technology,
Laboratory of Computer and Information Science,
1996.

[12] Mikko Kurimo. Using Self-Organizing Maps and
Learning Vector Quantization for Mixture Density
Hidden Markov Models. PhD thesis, Helsinki Uni-
versity of Technology, 1997.

[13] Geoffrey J. McLahlan. The EM Algorithm and Ex-
tensions. Wiley & Sons, 1996.

[14] Alan B. Poritz. Hidden markov models: A guided
tour. In Proceedings of the IEEE International con-
ference of Acoustics, Speech and Signal Processing
(ICASSP’88), pages 7–13, 1988.

