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Abstract. Data mining algorithms such as the Apriori method for find-
ing frequent sets in sparse binary data can be used for efficient computa-
tion of a large number of summaries from huge data sets. The collection
of frequent sets gives a collection of marginal frequencies about the un-
derlying data set. Sometimes, we would like to use a collection of such
marginal frequencies instead of the entire data set (e.g. when the original
data is inaccessible for confidentiality reasons) to compute other inter-
esting summaries. Using combinatorial arguments, we may obtain tight
upper and lower bounds on the values of inferred summaries. In this pa-
per, we consider a class of summaries wider than frequent sets, namely
that of frequencies of arbitrary Boolean formulae. Given frequencies of
a number of any different Boolean formulae, we consider the problem of
finding tight bounds on the frequency of another arbitrary formula. We
give a general formulation of the problem of bounding formula frequen-
cies given some background information, and show how the bounds can
be obtained by solving a linear programming problem. We illustrate the
accuracy of the bounds by giving empirical results on real data sets.

1 Introduction

Database management systems allow querying extensional data and intentional
data. From the user’s point of view, extensional data are the data explicitly input
by the user into the system. Intentional data are not put in by the user—that
information is derived from extensional data.

In inductive database management systems the intentional data are usually
quite complex from various points of view and require a high computational ef-
fort to obtain. In case of typical patterns (frequent sets, association rules), the
common problem is that the domain of patterns is prohibitively large and the
inductive database management system cannot compute them all. The typical
approach is to let the user guide the system to the interesting patterns interac-
tively, e.g., through queries, limiting the search space to be considered.

Then, the question is if the result of one query could be reused at least partly
for obtaining the next result as an alternative to re-computing the whole answer
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from extensional data. The following, more difficult question is whether there
might be some summaries that the inductive database management system can
gather off-line before the data mining process, to improve the on-line behavior of
most mining processes. Typically, one would be interested in sufficient statistics,
i.e., summaries that can be substituted for the whole extensional data to avoid
repetitive probing of the selection predicate for all candidate patterns. On the
other hand, we prefer gathering summaries that are known to be efficient to
obtain.

In this paper we pinpoint how to take advantage in a particular context of a
collection of summary queries that have been evaluated against the extensional
data to bound the value of the evaluation functions of other queries. Providing
bounds may be interesting when we have thresholds on the evaluation function,
and a tight bound can enable us to make a correct decision about accepting
or rejecting a pattern in the query answer. We focus on the context of reusing
previous queries (without pre-selecting) and leave open the question of choosing
beforehand which summaries should be used.

Several data mining algorithms can be used for efficient computation of a
large number of summaries from data. Such methods include Apriori-type al-
gorithms for finding frequent sets [AMS+96] or episodes [MTV97] in binary or
sequential data and methods for clustering large data sets [ZRL97]. The summary
information given by such algorithms can then be used as an efficient condensed
representation of the data set. When the available summaries are orders of mag-
nitude smaller than the data set itself (typical in case of huge data sets in a data
mining context), it could be worth using them instead of the entire data set to
compute other interesting summaries. Typically, the information contained in a
collection of summaries will not be sufficient to compute the precise value of all
other summaries, but at least bounds could be inferred. If the accuracy of the es-
timated result is not enough, the partial quantitative information (bounds) can
be used to better optimize the query execution plan (of a query to the original
data set).

An interesting fundamental question is: how much information about the
underlying data set does a collection of summaries give? In this paper we con-
sider this question in the setting of frequent sets for binary data. Information
of frequencies of different itemsets can have strong implications for the frequen-
cies of other itemsets. For example, if we know that1 f(AB) = f(A), then we
know that f(XA) = f(XAB) for any set X, a result that has been shown to
be surprisingly useful in the context of so-called closures [PBTL99] and free
sets [BBR00,BR01]. Also, we know that the frequency f(X) of an itemset X is
bounded from above by the minimum support f(Y ) of a subset Y of X.

More generally, if we possess the information about the frequencies of some
Boolean formulae (frequent itemsets being a particular case), the frequency of
any other Boolean formula can be inferred, to some extent. The main question we
pose in this paper is how we could efficiently construct upper and lower bounds

1 Here we denote by f(AB) the frequency of the itemset {A, B }.
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for the frequencies of any Boolean formula, given the existing information. We
show that this formula bounding problem can in fact be solved by transforming
the question into a linear program and solving that problem. In the worst case
the transformation leads to a program of exponential size, but we also give
empirical results showing that the transformation in many cases is an efficient
one.

The paper is organized as follows. In Section 2 we define the basic notions and
the support bounding task. Section 3 gives the solution, and Section 4 describes
the empirical results. Finally, in Section 5, we summarize the paper and discuss
open problems.

2 Problem: Support Queries in Databases

The problem we want to solve involves Boolean queries on binary relational
databases. In order to present the problem in an exact way, we first make some
formal definitions.

Definition 1. A relation r over the finite attribute set X is a finite multiset of
tuples, subsets of X. The degree of r is the cardinality of X, and the size of r
is the (multiset) cardinality |r| of r. The set X is called the schema of r.

In contrast to ordinary relational databases, we deal with binary data only.
This allows a convenient notational shortcut: for example, instead of the tu-
ple (0, 1, 1, 0, 1) over the attributes A,B,C,D,E, we can talk about the tu-
ple {B,C,E }. Also, a Boolean query such as “(A = 1 and B = 1) or (C = 1
and D = 0)” can be written as “(A and B) or (C and not D)”, or, in the alge-
braic notation, AB + CD. The syntax and semantics of such queries are defined
next.

Definition 2. A Boolean formula over the attribute set X is one of:

1. � (the true constant),
2. A for some attribute A ∈ X (an atom),
3. (¬φ) for some Boolean formula φ over X (a negation),
4. (φψ) for some Boolean formulae φ, ψ over X (a conjunction),
5. (φ + ψ) for some Boolean formulae φ, ψ over X (a disjunction).

We omit parentheses when there is no danger of ambiguity. Furthermore,
the negation operator ¬ always binds to the shortest following subformula, and
conjunction binds tighter than disjunction. In the case of negated atoms, we
also write A for ¬A. Thus, ABC + A(B + C) means ((((¬A)B)C) + (A(B +
(¬C)))). These conventions leave it ambiguous in which direction conjunction
and disjunction associate, but in fact all readings of an ambiguous formula have
equivalent semantics by the following definition.

Definition 3. Given a tuple t ∈ r, we define the truth value of all Boolean
formulae over the schema of r as follows.
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1. [�]t = 1,
2. [A]t = 1 if A ∈ t, [A]t = 0 if A /∈ t,
3. [¬φ]t = 1 − [φ]t,
4. [(φψ)]t = [φ]t [ψ]t,
5. [(φ + ψ)]t = [φ]t + [ψ]t − [φ]t [ψ]t.

Two formulae φ and ψ are equivalent, if they always have the same truth
value on the same tuple. That all readings of an ambiguous formula such as φψθ
are equivalent is a standard result in propositional logic. Different in our problem
is that we extend the semantics to whole relations.

Definition 4. Let r be a relation and φ a Boolean formula over a common
schema. Then the support of φ in r is the proportion of tuples in r for which φ
is true,

[φ]r = |r|−1
∑

t∈r

[φ]t.

We write [φ] when the relation is clear from the context.

The data mining literature contains a wealth of material on itemsets, sets of
attributes. After Boolean formulae have been defined, it is easy to give semantics
to itemsets as simple conjunctions.

Definition 5. Let X be a relation schema. A subset of X is an itemset, and it
is identified with the conjunction of all its elements.

The name “itemset” originated in association rule mining, whose traditional
application is market-basket data: the attributes are items offered for sale at
a supermarket, and the tuples are customer transactions. It turns out that to
find association rules that are in a certain sense interesting, it suffices to com-
pute all itemsets whose support exceeds a threshold. This is usually done by a
breadth-first search algorithm called Apriori [AMS+96], but several variations
have been proposed. For example, depth-first search can be performed using FP-
trees [HPY00], and a sampling approach can avoid database scans [Toi96]. An
active area of research is mining not all frequent itemsets but only an interesting
subfamily; see e.g. [GZ01,CG02,PBTL99,BBR00,BR01].

As an example, Table 1 shows a small binary database. We have e.g. [A]t =
[A]u = [AB]t = [AC]u = 1 and [A]v = [B]u = [AB]u = [AC]v = 0, and over the
whole database [A]r = 2/3, [B]r = 1/3, [C]r = 1, [AC]r = 2/3, and [ABC]r =
1/3. If the frequency threshold is 1/2, the frequent itemsets are A, C, AC, and
trivially the empty set, which corresponds to �.

Table 1. An example database r

Tuple A B C

t 1 1 1
u 1 0 1
v 0 0 1
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We now come to the formula bounding problem. Given are a set Φ of Boolean
formulae over a schema X, and their supports in an unknown relation r. The
desired result is the support of another formula ψ. This support is sometimes
completely determined by the givens, but this is rare; in general we want the set
of all possible supports. As it turns out, the minimum and maximum support
determine this set completely, and we can allow minima and maxima also as in-
puts. We denote by IntQ(0, 1) the set of closed intervals [a, b] of rational numbers
where 0 ≤ a ≤ b ≤ 1.

Definition 6. The formula bounding task Bound(X,Φ, f, ψ) has the following
inputs: a relation schema X, a set Φ of Boolean formulae over X, a function f
from Φ to IntQ(0, 1), and a Boolean formula ψ over X. The solution of the task
is the smallest set I ⊆ [0, 1] such that [ψ]r ∈ I for all relations r over X fulfilling
the constraint [φ]r ∈ f(φ) for all φ ∈ Φ.

In other words, we want a sound and complete inference procedure for the
support bounds of Boolean formulae. We call a procedure sound if its result I
rules out no possible solutions: for q /∈ I, there should be no relation r fulfilling
the constraints defined by f such that [ψ]r = q. Conversely, the set I returned
by a complete procedure is such that every solution q ∈ I is realizable in some
relation fulfilling the constraints. (A trivially complete but non-sound procedure
returns I = ∅ for all inputs; the similar sound but non-complete procedure
always returns I = [0, 1].) The problem is NP-hard, since it requires solving the
satisfiability of ψ.

The following lemma shows that it suffices to find upper and lower bounds
for the numbers in I. Thus, the task has a closure property: the output is in the
same form as each element of the input.

Lemma 1. If the solution I of Bound(X,Φ, f, ψ) is nonempty, then I is an
interval of rational numbers.

Proof. We must prove that given any three rationals P,W,Q ∈ [0, 1] with P <
W < Q and P,Q ∈ I, also W ∈ I. Since W lies between P and Q, there is
a rational number Z ∈ (0, 1) such that W = ZP + (1 − Z)Q. Since P,Q ∈ I,
there exist relations p, q fulfilling the constraints of the bounding problem such
that [ψ]p = P and [ψ]q = Q. We will construct a relation w for which the support
of all formulae θ over X is [θ]w = Z [θ]p +(1−Z) [θ]q. Since [θ]w lies between the
numbers [θ]p and [θ]q, every inequality constraint [φ]w ∈ f(φ) will be satisfied.
Further, [ψ]w = W , as required.

To construct the relation w, we would like to take Z/|p| copies of all tuples
in p and (1 − Z)/|q| copies of all tuples in q. This is impossible in the general
case, but if we multiply the numbers Z/|p| and (1−Z)/|q| by the least common
multiple of their denominators, we can replace the numbers by integer multiples.
It is then easy to check that [θ]w = Z [θ]p +(1 − Z) [θ]q for all formulae θ.
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3 Solving the Bounding Task by Linear Programming

In this section, we describe a solution to the Bound task of Definition 6. The
solution is based on linear programming, and it is both sound and complete.

3.1 Change of Variables

Several kinds of equalities and inequalities hold in all relations. For example,
[A + B] = [A] + [B] − [AB] by the combinatorial inclusion-exclusion principle,
and 0 ≤ [AB] ≤ [A] ≤ 1 by the anti-monotonicity of support. A procedure for
the Bound task has to incorporate all results of this type.

Let us analyze how these results could be proved. The middle inequality
follows from the observation that [A] = [AB]+[AB] and that the support of [AB]
lies in the interval [0, 1]. A similar idea gives a proof of the inclusion-exclusion
formula:

[A + B] = [AB] + [AB] + [AB]

=
(
[AB] + [AB]

)
+

(
[AB] + [AB]

) − [AB] = [A] + [B] − [AB].

This suggests that a change of variables can make the needed results simpler to
prove. To that end, we make the following definitions.

Definition 7. Given an attribute A ∈ X, the positive literal based on A is the
Boolean formula A, and the negative literal based on A is the Boolean formula A.
A literal based on A is either the positive literal or the negative literal based on A.

Definition 8. A clause over the attribute set X is a conjunction of zero or more
literals based on different attributes.

Our definition of a clause allows an attribute to appear at most once, in
either a negative or a positive literal. For example, BCE is a clause over the set
{A,B,C,D,E }, but BBE and BBE are not. The true constant � is a clause
as the degenerate case of zero literals.

Definition 9. A full clause over the attribute set X is a clause with exactly |X|
literals.

In a full clause each attribute appears exactly once, either as a negative or a
positive literal. For example, the conjunction ABCDE is a full clause over the
set {A,B,C,D,E}, whereas BCE is not. In the language of propositional logic,
a full clause fully describes a model over the given attribute set.

Full clauses are important for two reasons. First, there is a natural corre-
spondence between relations and assignments of supports to full clauses. Given
a relation r, any full clause θ over the schema of r is satisfied by some nonnega-
tive integral number of identical tuples in r. Conversely, given an assignment of
nonnegative rational supports for all full clauses summing up to 1, it is simple
to construct a relation giving rise to these supports.

The second reason is that all formulae can be decomposed into full clauses
(for formulae corresponding to typical queries it is easy). We record this in the
following two propositions.
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Proposition 1. Every Boolean formula over an attribute set X can be equiva-
lently written as a disjunction C1 + C2 + · · ·+ Cp of distinct full clauses Ci. We
call this the full disjunctive normal form.

Proposition 2. The support of any Boolean formula φ over an attribute set X
can be written as a sum of supports of distinct full clauses. That is, there is a
set of full clauses C1, C2, . . . , Cp such that [φ]r = [C1]r + [C2]r + · · · + [Cp]r for
any relation r over X.

These results enable us to untangle the complex interrelations of formulae.
The supports of distinct full clauses are independent of each other2, so any
distribution of nonnegative supports for full clauses corresponds to a possible
relation. Where the support of a Boolean formula appears in a constraint equality
or inequality, we can invoke Proposition 2 to replace it by a sum of the supports
of the corresponding full clauses. This amounts to a linear change of variables.

As an example, we consider an instance of Bound(X,Φ, f, ψ) with X =
{A,B }, Φ = {�, A,B,AB }, and ψ = AB. After the change of variables, we
have the system depicted in Table 2 which we should solve for [AB]. We have
the additional information that 0 ≤ [θi] ≤ 1 for all formulae θi, but we need not
worry about the inclusion-exclusion principle or similar rules. We continue this
example at the end of Section 3.2.

Table 2. Example bounding task with decomposition into full clauses

AB AB AB AB

[�] = 1.0 × × × ×
[A] = 0.6 × ×
[B] = 0.7 × ×

[AB]∈ [0, 0.5] ×

3.2 Linear Programming
We now turn to the classic optimization problem called linear programming.
We only describe it briefly; see, e.g., Chapter 21 in [Kre93] for a good intro-
duction to the subject, or the Linear Programming FAQ3 for a comprehen-
sive list of references. For the computational complexity of linear programming,
see e.g. [MSW96]; briefly, common algorithms such as Simplex tend to be use-
ful in practice although they have worst-case exponential complexity, but more
sophisticated algorithms such as Karmarkar’s algorithm [Kar84] achieve lower
complexity.

2 With the restriction that the supports of all full clauses sum up to 1; but this gives
only a scaling factor.

3 http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html.

http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html
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Definition 10. The linear programming problem LP(A,B, C) comprises an m×
n matrix A, an m-element column vector (m × 1 matrix) B, and an n-element
row vector (1 × n matrix) C. The solution of the problem is the vector x that
minimizes the scalar value Cx subject to the restrictions Ax ≤ B, x ≥ 0. We
also denote by LP′(A,B, C) the problem that is otherwise similar but where the
first restriction is replaced by Ax = B.

The matrix C is said to express the objective function, and A and B state
the constraints of the problem.

The problems LP(A,B, C) and LP′(A,B, C) are equivalent in expressive power
and computational complexity. We use the first formulation in the fully general
case of the formula bounding task Bound (Definition 6). For the kinds of inputs
we get from Apriori and similar procedures, we actually have equalities for all
input formulae, so we can use LP′(A,B, C). Note that equalities y = z can always
be converted to the inequalities y ≤ z and y ≥ z. We map the problem Bound
into an instance of a linear programming problem LP(A,B, C) or LP′(A,B, C)
(depending on the kind of input). We talk about LP and inequalities in the
following, but the case of LP′ and equalities is similar.

Assume now that I is the solution of an instance of Bound(X,Φ, f, ψ). By
Lemma 1, we know that if the set I is nonempty, it is a subinterval of [0, 1]
(in rationals). Therefore, we proceed to compute its infimum; the case of the
supremum is symmetric. Denote n = |X|, and denote the 2n full clauses over X
by θ1, θ2, . . . , θ2n .

As input to Bound we have in effect a large set of inequalities that we will
convert into one big matrix inequality Ax ≤ B. The vector x will contain the
unknowns: let x = ([θ1] [θ2] . . . [θ2n ])T. Then, Proposition 2 yields for every
formula φ ∈ Φ a binary vector k = (k1 k2 . . . k2n) such that the support of φ
can be written as a matrix product, [φ] = kx. Using this fact, we encode the
constraint [φ] ∈ f(φ) by adding into A two rows, −k and k, and into C two
numbers, −a and b, where [a, b] = f(φ). Then any x satisfying Ax ≤ B must
satisfy a ≤ kx ≤ b. Finally, as a necessary consistency constraint corresponding
to the fact [�] = 1, we add the rows (−1−1 . . . −1) and (1 1 . . . 1), and the
numbers −1 and 1. All in all, the dimensions of A will be 2(|Φ|+1)×2n, and the
dimensions of x and B will be 2(|Φ| + 1) × 1. Ways to reduce these dimensions
will be discussed after Theorem 1.

Having encoded all the constraints of the problem in A and B, we now have
to select C so that the solutions to the LP problem correspond to the supports
of ψ. We once again invoke Proposition 2 to turn [ψ] into a sum of supports
of full clauses. Thus C will be a 0/1 vector with Cx = [ψ], and minimizing Cx
subject to the constraints gives the required infimum. When the bounds for the
supports of input formulae are rational numbers, linear programming yields a
rational value for the infimum, since for example the Simplex algorithm [Kre93,
§21.3] uses only sums, differences, products and ratios to solve LP. Thus, the
infimum corresponds to an assignment of nonnegative rational values to the
supports of the full clauses, summing to 1 and obeying all the constraints of the
original problem. Multiplying all the supports by the least common multiple of
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their denominators gives integer counts, whence a relation can be constructed.
Thus the infimum is actually a minimum.

We have now proved the following theorem.
Theorem 1. The formula bounding task Bound(X,Φ, f, ψ) can be reduced to
the linear programming task LP(A,B, C). The matrix A will have O(|Φ|) rows
and 2n columns, and the vectors B and C will respectively have O(|Φ|) and 2n

elements, where n = |X|.

The output from our reduction has size O(2n|Φ|), i.e., exponential in the num-
ber of attributes, where for the sake of simplicity we assume that all the numbers
are represented using a fixed number of bits. Thus, a linear programming algo-
rithm that requires polynomial time in the size of its input will take time that is
polynomial in Φ but exponential in n. It would, therefore, be useful to diminish
the exponential dependency on the number n of attributes.

First, if Φ consists of frequent itemsets, we can restrict X to only those
attributes that appear in the query ψ. To see this, consider two full clauses θ
and θ′ whose only difference is that θ has A and θ′ has A, where A is an attribute
that does not appear in ψ. The two coordinates in C corresponding to θ and θ′

will be equal, and thus only the sum [θ] + [θ′] will be relevant to the objective
function Cx. If a frequent set φ ∈ Φ has different coordinates at the positions
corresponding to the two full clauses, it must include A; then there is a frequent
set φ′ ∈ Φ that differs from φ only by excluding A. Thus in removing φ from Φ
we lose no information relevant to [ψ]. Once all such frequent sets are gone, we
can remove the attribute A from X.

Second, we discuss whether using the family of all 2n full clauses is necessary.
One of the reasons we used full clauses was that they can be used to answer any
support queries of Boolean formulae. However, many other families of formulae
have this property. For example, Proposition 1 of [MT96] implies that the family
of all conjunctions of atoms can be used to determine the supports of all Boolean
formulae. Let us define a representation Θ over X as a family of formulae such
that the counts of all Boolean formulae over X can be determined from the counts
of the formulae in Θ. In this context, we use integer counts countr(θ) =

∑
t∈r[θ]t

instead of supports [θ]r = countr(θ)/ countr(�).
Any representation that works for all r must have 2n formulae. Indeed, given

the counts corresponding to a representation, we can use Proposition 2 to form
a linear system of equations from which the counts of full clauses can be solved.
If there are fewer than 2n equations, the system is underdetermined, and since
all its factors are integers, it will have infinitely many integral solutions. It is
therefore relatively easy to construct two relations with the same counts of all
formulae of the supposed representation but different counts of some full clauses.

However, this does not rule out smaller representations that work for specific
relations. When storing the counts of the conjunctions-of-atoms representation,
we can leave out some counts that can be derived from others. If, e.g., there are
no tuples satisfying the conjunction AB, we can leave out the count of ABC,
and if the counts of D and DE are equal, we need store only one of the counts
of AD and ADE. Similar ideas have been studied in [ML98,BBR00,BR01].
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In our problem, we use fractional supports, not counts, which removes one
degree of freedom. Since the supports of full clauses must add up to 1, we can
leave out one number from the full-clauses representation.

Third, in the case of LP′, where A is a 0/1 matrix, we can often reduce
the problem. If some row ai of the matrix A is less than or equal to another
row aj , we can replace aj by aj −ai, while doing the corresponding replacement
in B. Sometimes this will result in a zero in B; we can then deduce that several
unknowns are zero and remove them. Even if this doesn’t occur, the matrix
becomes sparser, which helps some algorithms that solve linear programming
problems.

We now continue the example bounding task of Table 2. We reduce the system
depicted in the table to LP(A,B, C) with x = ([AB] [AB] [AB] [AB])T. For exam-
ple, the second equation is translated from [AB]+[AB] = 0.6 to (1 1 0 0)x ≤ 0.6
and (−1 −1 0 0)x ≤ −0.6. These inequalities form the third and fourth lines of A
and B (see below). In this case, the first equation already forms the consistency
constraint

∑
[θ] = 1, so we need not add it now.

We obtain the values of x, A and B listed in Table 3, and C=(1 0 0 0)
(resp. C=(−1 0 0 0)) for finding the lower (resp. the upper) bound of [AB]. Solv-
ing these two LP problems gives the minimum 0.3 (with x = (0.3 0.3 0.4 0.0)T)
and the maximum 0.5 (with x = (0.5 0.1 0.2 0.2)T). We can obtain actual
relations by multiplying the values of x by 10.

Table 3. The example bounding task converted into a linear program

x =

⎛

⎜⎜⎝

[AB]

[AB]

[AB]

[AB]

⎞

⎟⎟⎠ , A =

⎛

⎜⎜⎝

1 1 1 1−1 −1 −1 −1
1 1 0 0−1 −1 0 0
1 0 1 0−1 0 −1 0
1 0 0 0−1 0 0 0

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

1−1
0.6−0.6
0.7−0.7
0.5

0

⎞

⎟⎟⎠ ,

4 Experiments

We investigated the properties of the bounding procedure on two data sets. The
first is connect-4 containing some game-state descriptions, the second is anpe, a
database about unemployed people, set up by the French unemployment agency.
We describe the specific properties of the data sets along with our results in
Sections 4.2 and 4.3.

We used as input to the bounding procedure different collections of frequent
itemsets along with their supports [AMS+96,MT96]. As explained previously, an
itemset is interpreted as the Boolean conjunction of items that it contains. Dif-
ferent collections of frequent itemsets correspond to different support thresholds,
denoted by minsupp .

In the implementation of the experiments, we used a less voluminous, al-
though totally equivalent, representation of frequent itemsets, first described
in [BR01]. Since this representation is smaller than all frequent itemsets, the re-
sulting Φ contains fewer queries. The equivalence of representations guarantees
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that the same information can be inferred from it as from all frequent itemsets
and their supports. We verified the equivalence by repeating some of the exper-
iments using the ordinary frequent itemsets, and got exactly the same results.

4.1 The Framework of the Experiments

We can compute the support of a Boolean formula over an itemset X exactly, if
we know the supports of all subsets of X. The procedure for this computation
in [MT96] is also applicable when we know the supports of frequent sets only,
but then it will yield approximate bounds—it is sound but not complete. Thus,
we test our new contribution using formulae over infrequent itemsets.

The protocol of the experiments can be simply put as following: we com-
pare the average size of intervals inferred by Bound for 100 formulae, for
which the combinatorial support-computing procedure of [MT96] is confronted
with infrequent (thus missing) terms. The infrequent terms are due to the fact
that the support threshold we use to mine frequent itemsets (considered fur-
ther in the experiments with their corresponding supports as formulae with
known supports) exceeds the support of some terms required by the procedure
of [MT96].

The detailed protocol is the following. For each of the two data sets, we
selected k = 100 random itemsets X1, ...,Xk that have 10 items each and whose
supports do not exceed a predefined σmax (10% for connect-4 and 0.1% for
anpe). To avoid selecting only itemsets with very low support, which typically
account for the clobbering majority of all itemsets, we weighted the probability
of selecting an itemset X proportionally to its support [X]. Even then, most of
the selected itemsets have low support compared to σmax (on average, 2.26% for
connect-4 and 0.010% for anpe).

Based on these itemsets, we randomly drew k Boolean formulae ψ1, ..., ψk, one
formula, ψi, over each Xi. To mimic formulae of interest in real life, for each Xi

we first selected a subset Yi ⊆ Xi of items, each item of Xi with probability 0.7.
Then we defined ψi as a disjunction of random full clauses over Yi. We included
each full clause θ in ψi with probability 0.5 − 0.04j, where j is the number
of negative literals in θ. Thus, we preferred clauses with more positive literals.
For example, a clause with 10 negative literals had the probability of 0.1 to
be included in ψi. Then we computed Bound(Xi, Φi, fi, ψi) where Φi consists
of the precomputed frequent sets among the subsets of Xi, and fi assigns to
each frequent set its known support. We report two scores, each an average over
the 100 computations. Denoting the resulting lower and upper bounds by Li

and Ui for each computation, the first score is the average of Ui −Li, the second
the average of (Ui − Li)/Ui, both averages over i ∈ {1, . . . , 100}.

4.2 Experiments with connect-4

The connect-4 data set is very dense. It contains relatively small number of items
(129) and rows (67 557).
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Fig. 1. Average interval size vs. input itemsets’ support threshold produced by
BOUND on the connect-4 and anpe data sets

In Figure 1 (top) we report the average size of the interval returned by the
bounding procedure for different values of minsupp . The right-hand scale (dia-
monds) reports the difference between the ends of the interval, and the left-hand
scale (squares) reports the ratio of this difference to the upper limit of the inter-
val. As we can see, a lower minsupp results in a better bounding precision. This
is due to the increasing number of input itemsets, therefore a richer collection of
information about the original data set. However, the cost associated with the
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computation and the use of these more voluminous collections of summaries also
increases.

The support computation of [MT96] potentially involves an exponential num-
ber of terms for a single Boolean formula. Typically the computation will involve
a significant part of the lattice of itemsets, subsets of the itemset on which we
base our random formula. Since our random formulae are based on infrequent
itemsets, many terms (often a majority) have unknown supports. However, the
interval size we observe is of the same order of magnitude as the support thresh-
old σ, which bounds the error of each unknown support. It seems that the un-
known supports tend to cancel out, which appears to be a promising result.

Let us take an example. Consider the support threshold of σ = 15% and that
the itemsets on which our random formulae are based have an average support
of 2.26%, and never have a support above σmax = 10%. Take a single itemset
and the corresponding formula; typically, a great number of the itemset’s subsets
are infrequent, each having support in the [0, σ) range. When we compute the
support of the formula as in [MT96], naturally most errors will cancel out, but
one would not exepct the overall error to be in the [0, σ) range; our method
yields an average uncertainty of less than 10%.

4.3 Experiments with anpe

The anpe data set is quite uncorrelated. With its 214 items and over 109 000 rows,
it is significantly larger than connect-4. Frequent set mining extracts relatively
small collections, unless we set a very small minsupp . We chose to extract itemsets
at these low thresholds. In Figure 1 (bottom) we report the average interval sizes.
As previously, we relate the scores to different minsupp .

The results look fairly similar to those of the previous experiment. In com-
paring the graphs it should be noted that the scaling of the axes is different: in
this experiment, both the relative and the absolute errors are below 0.1 for all
runs. In other words, this less dense data set allowed much greater precision in
the resulting intervals.

4.4 Observed Running Times

In our experiments, we first gather summary query answers, to simulate either
off-line or on-the-fly collecting of highly processed information. Then, we draw
random formulae, as described in Section 4.1. For each random formula, we
execute two steps: conversion into an LP′(A,B, C) problem and solving it.

During the experiments, we observed that frequent itemset mining is the
most expensive phase, despite the optimization of using an efficient condensed
representation of the itemset collection described in [BR01]. For example, for
the connect-4 data set and minsupp = 5% it took more than 3000 seconds.
Conversion to LP′(A,B, C) took 4.78 seconds per formula on average, and solv-
ing LP′(A,B, C) took only about 3.1 seconds per formula. Thus, the bounding
procedure can be quite efficient in practice, after the frequent itemset mining
has been performed.
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5 Discussion and Future Work

We have considered the problem of bounding the support of Boolean formulae
when some aggregate information is available. We showed that the bounding
problem can be reduced to a linear programming problem whose size can in
the worst case be exponential in the number of attributes. While our result
is foremost a theoretical one, we also gave empirical results showing that the
bounding method can be effectively used to obtain additional information from
frequent itemsets or other summaries.

We emphasize that our aim is to find exact bounds. Another approach would
be to approximate the frequency of the query and give some kind of tail bounds
for the error of the approximation. The most natural way would be to take a
sample from the database and compute all queries on the sample; thus, instead of
frequent sets, the sample would serve as the representation of the original data.
This kind of a method has been used for computing frequent sets (see [Toi96]).
A more sophisticated approximation can be based on frequent sets (or simi-
lar summaries) by building a probabilistic model over the variables occurring
in the formula. A method using the maximum entropy principle is described
in [PMS00]. Like our solution, it suffers from exponential complexity in the
number of variables occurring in the query.

Calders and Goethals [Cal02,CG02] have studied a similar problem. They
have derived deduction rules for bounding the support of an itemset given the
exact supports of all its proper subsets. While the rules are sound and complete
for that task, they don’t solve our more general problem. In particular, these
rules are not applicable when the supports of some subsets are unknown. Thus
they cannot derive directly the support of a derivable itemset, but must first
bound recursively the supports of all its proper subsets. They deal only with
itemsets, i.e., conjunctions of attributes, not arbitrary formulae. The full set of
rules is exponentially large, although Calders and Goethals give experimental
evidence that a small subset of the rules suffices to give a reasonably good
result.

Several open problems remain. One area is obtaining a faster method for the
inference problem. With large, redundant summaries such as frequent itemsets,
the solution by linear programming is quite slow, and it is in many cases outper-
formed by the simple “scan the database once and count” method. The method
could, however, be useful in cases where the data set is not available or where the
set of queries Φ (corresponding to known supports) carries a lot of information
condensed in well chosen summaries, orders of magnitude smaller than the data
set itself. Thus, the following fundamental issue is interesting.

Problem 1. Given a relation r, an amount Z of storage, and a class of queries Ψ
that we wish to perform on r, what should we store in Z (which presumably
cannot hold all of r) in order to most effectively answer the queries in Ψ?

Frequent sets are typically redundant collections, and thus are not optimal.
In fact, in our experiments we used the smaller collection of disjunction-free
sets [BR01], and further gains could be obtained using the Calders–Goethals
rules [CG02]. Another interesting representation is the AD-tree [ML98]. In gen-
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eral, if we store in Z the answers to some Boolean queries φ1, φ2, . . . , φN , the
linear programming approach shows the limits of what we can reconstruct. Per-
haps a suitable set of formulae would allow an analytical solution, possibly only
approximate, of the linear program. The problem of computing frequent sets
from data has been extensively studied, and they were used in [MT96], which
formed the starting point for our research. But the linear programming frame-
work does not depend on them—it can be used with supports of any formulae.

Another interesting issue is how to relax (if possible) the requirements of
Definition 6 if the complete procedure is too slow. We do not want to give un-
sound answers, but too wide intervals are not necessarily harmful. The simplest
incomplete and sound algorithm “return the interval [0, 1]” is not useful, but
we suspect there might be a reasonably fast compromise between it and the
complete linear programming approach.

Problem 2. How close to completeness can a polynomial-time (or linear-time,
or randomized polynomial-time) sound solution to Bound come?
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