
Model-independent bounding of the supports of

Boolean formulae in binary data

Artur Bykowski1, Jouni K. Seppänen2, and Jaakko Hollmén2

1 LISI, INSA-Lyon, Bât. Blaise Pascal, 20, ave A. Einstein,
F-69621 Villeurbanne Cedex, France, Artur.Bykowski@insa-lyon.fr

2 Helsinki University of Technology, Laboratory of Computer and
Information Science, P.O. Box 5400, 02015 HUT, Finland

Jouni.Seppanen@hut.fi, Jaakko.Hollmen@hut.fi

Abstract. Data mining algorithms such as the Apriori method for find-
ing frequent sets in sparse binary data can be used for efficient computa-
tion of a large number of summaries from huge data sets. The collection
of frequent sets gives a collection of marginal frequencies about the un-
derlying data set. Sometimes, we would like to use a collection of such
marginal frequencies instead of the entire data set (e.g. when the orig-
inal data is inaccessible for confidentiality reasons) to compute other
interesting summaries. Using combinatorial arguments, we may obtain
tight upper and lower bounds on the values of inferred summaries. In
this paper, we consider a class of summaries wider than frequent sets,
namely frequencies of arbitrary Boolean formulae. Given frequencies of
a number of any different Boolean formulae, we consider the problem of
finding tight bounds on the frequency of another arbitrary formula. We
give a general formulation of the problem of bounding formula frequen-
cies given some background information, and show how the bounds can
be obtained by solving a linear programming problem. We illustrate the
accuracy of the bounds by giving empirical results on real data sets.

1 Introduction

Database management systems allow querying extensional data and intentional
data. From the user’s point of view, extensional data are the data explicitly input
by the user into the system. Intentional data are not put in by the user—that
information is derived from extensional data.

In inductive database management systems the intentional data are usually
quite complex from various points of view and require a high computational
effort to get them. In case of typical patterns (frequent sets, association rules),
the common problem is that the domain of patterns is prohibitively large and
the inductive database management system cannot compute them all. The typ-
ical approach is to let the user guide the system to the interesting patterns
interactively, e.g., through queries, limiting the search space to be considered.

Then, the question is if the result of one query could be reused at least partly
for obtaining the next result in an alternative way to re-computing the whole

answer from extensional data. The following, more difficult question is whether
there might be some summaries that the inductive database management system
can gather off-line before the mining process, to improve the on-line behavior of
most mining processes. Typically, one would be interested in sufficient statistics,
i.e., summaries that can be substituted for the whole extensional data to avoid
repetitive probing of the selection predicate for all candidate patterns. On the
other hand, we prefer gathering summaries that are known to be efficient to
obtain.

In this paper we pinpoint how to take advantage in a particular context of a
collection of summary queries that have been evaluated against the extensional
data to bound the value of the evaluation functions of other queries. Providing
bounds may be interesting when we have thresholds on the evaluation function,
and a tight bound can enable us to make a correct decision about accepting
or rejecting a pattern in the query answer. We focus on the context of reusing
previous queries (without pre-selecting) and leave open the question of choice of
which summaries could be used beforehand.

Several data mining algorithms can be used for efficient computation of a
large number of summaries from data. Such methods include Apriori-type al-
gorithms for finding frequent sets [AMS+96] or episodes [MTV97] in binary or
sequential data and methods for clustering large data sets [ZRL97]. The summary
information given by such algorithms can then be used as an efficient condensed
representation of the data set. When the available summaries are orders of mag-
nitude smaller than the data set itself (typical in case of huge data sets in data
mining contexts), it could be worth using them instead of the entire data set to
compute other interesting summaries. Typically, the information contained in a
collection of summaries will not be sufficient to compute the precise value of all
other summaries, but at least bounds could be inferred. If the accuracy of the es-
timated result is not enough, the partial quantitative information (bounds) can
be used to better optimize the query execution plan (of a query to the original
data set).

An interesting fundamental question is: how much information about the
underlying data set does a collection of summaries give? In this paper we con-
sider this question in the setting of frequent sets for binary data. Information
of frequencies of different itemsets can have strong implications for the frequen-
cies of other itemsets. For example, if we know that f(AB) = f(A), then we
know that f(XA) = f(XAB) for any set X, a result that has been shown to
be surprisingly useful in the context of so-called closures [PBTL99] and free
sets [BBR00,BR01]. Also, we know that the frequency f(X) of an itemset X is
bounded from above by the minimum support f(Y) of a subset Y of X.

More generally, if we possess the information about the frequencies of some
Boolean formulae (frequent itemsets being a particular case), the frequency of
any other Boolean formula can be inferred, to some extent. The main question we
pose in this paper is how we could efficiently construct upper and lower bounds
for the frequencies of any Boolean formula, given the existing information? We
show that this formula bounding problem can in fact be solved by transforming

the question into a linear program and solving that problem. In the worst case the
transformation leads to a program of exponential size, but we also give empirical
results showing that the transformation in many cases is an efficient one.

The paper is organized as follows. In Section 2 we define the basic notions and
the support bounding task. Section 3 gives the solution, and Section 4 describes
the empirical results. Finally, in Section 5, we summarize the paper and discuss
open problems.

2 Problem: support queries in databases

Given a relation schema X, a family Φ of Boolean formulae over X and one more
formula ψ over X, the task is to say as much as possible about the support of ψ
in a relation r over X, when all we know about r are the supports of the formulae
in Φ. We denote the support of a Boolean formula ψ in relation r by [ψ]r, or
simply [ψ] when r is clear from context. The support is a number from 0 to 1.

In practice, we may also have information in the form of lower and upper
bounds of some supports. For example, when mining frequent itemsets, we know
that the support of any infrequent set lies beneath the frequency threshold.

We denote by IntQ(0, 1) the set of all closed intervals in [0, 1] ∩ Q, where
Q is the set of rational numbers. Hereafter, we write [a, b] for closed intervals
of rational numbers to avoid the cumbersome notation [a, b] ∩ Q. For example,
[0.1, 0.5] ∈ IntQ(0, 1). Singletons are special cases of intervals; if we know that
the support of a formula θ is exactly 0.3, we denote this by [θ] ∈ [0.3, 0.3]. The
reason to limit the support bounds to rational numbers is that the support of
any Boolean formula is always rational, since it is a multiple of 1/|r|.

Definition 1. The formula bounding task Bound(X,Φ, f, ψ) has the following
components: a relation schema X, a set Φ of Boolean formulae over X, a func-
tion f from Φ to IntQ(0, 1), and a Boolean formula ψ over X. The solution of
the task is the smallest set I ⊆ [0, 1] such that [ψ]r ∈ I for all relations r over X
fulfilling the constraint [φ]r ∈ f(φ) for all φ ∈ Φ.

In other words, we want a sound and complete inference procedure for the
support bounds of Boolean formulae. We call a procedure sound if it doesn’t
rule out any possible solutions: for q /∈ I, there should be no relation r fulfilling
the constraints defined by f such that [ψ]r = q. Conversely, the set I returned
by a complete procedure is such that every solution q ∈ I is realizable in some
relation fulfilling the constraints. (A trivially complete but non-sound procedure
returns I = ∅ for all inputs; the similar sound but non-complete procedure
always returns I = [0, 1].) The problem is NP-hard, since it requires solving the
satisfiability of ψ.

The reason for the name Bound is that finding tight upper and lower bounds
for the numbers in I solves the problem.

Lemma 1. If the solution I of Bound(X,Φ, f, ψ) is nonempty, then I is an
interval of rational numbers.

Proof outline. Given two relations with different supports for a formula, we can
take a suitable number of copies of each to form a larger relation where the
formula has any given rational support between the two supports.

3 Solving the bounding task by linear programming

In this section, we describe a solution to the Bound task of Definition 1. The
solution is based on linear programming, and it is both sound and complete.

3.1 Change of variables

Several kinds of equalities and inequalities hold in all relations. For example,
[A + B] = [A] + [B] − [AB] by the combinatorial inclusion-exclusion principle,
and 0 ≤ [AB] ≤ [A] ≤ 1 by the anti-monotonicity of support. A procedure for
the Bound task has to incorporate all results of this type.

Let us analyze how these results could be proved. The inequality follows from
the observation that [A] = [AB] + [AB] and that the support of [AB] lies in the
interval [0, 1]. A similar idea gives a proof of the inclusion-exclusion formula:

[A+B] = [AB] + [AB] + [AB]

=
(

[AB] + [AB]
)

+
(

[AB] + [AB]
)

− [AB] = [A] + [B]− [AB].

This suggests that a change of variables can make the needed results simpler to
prove. To that end, we make the following definitions.

Definition 2. Given an attribute A ∈ X, the positive literal based on A is the
Boolean formula A, and the negative literal based on A is the Boolean formula A.
A literal based on A is either the positive literal or the negative literal based on A.

Definition 3. A clause over the attribute set X is a conjunction of zero or more
literals based on different attributes.

Our definition of a clause allows an attribute to appear at most once, in
either a negative or a positive literal. For example, BCE is a clause over the set
{A,B,C,D,E }, but BBE and BBE are not. The true constant > is a clause
as the degenerate case of zero literals.

Definition 4. A full clause over the attribute set X is a clause with exactly |X|
literals.

In a full clause each attribute appears exactly once, either as a negative or a
positive literal. For example, the conjunction ABCDE is a full clause over the
set {A,B,C,D,E}, whereas BCE is not. In the language of propositional logic,
a full clause fully describes a model over the given attribute set.

Full clauses are important for two reasons. First, there is a natural corre-
spondence between relations and assignments of supports to full clauses. Given

AB AB AB AB

[>] = 1.0 × × × ×

[A] = 0.6 × ×

[B] = 0.7 × ×

[AB]∈ [0, 0.5] ×

Table 1. Example bounding task with decomposition into full clauses

a relation r, any full clause θ over the schema of r is satisfied by some nonnega-
tive integral number of identical tuples in r. Conversely, given an assignment of
nonnegative rational supports for all full clauses summing up to 1, it is simple
to construct a relation giving rise to these supports.

The second reason is that all formulae can be decomposed into full clauses
(for formulae corresponding to typical queries it is easy). We record this in the
following two propositions.

Proposition 1. Every Boolean formula over an attribute set X can be equiva-
lently written as a disjunction C1 +C2 + · · ·+Cp of distinct full clauses Ci. We
call this the full disjunctive normal form.

Proposition 2. The support of any Boolean formula φ over an attribute set X
can be written as a sum of supports of distinct full clauses. That is, there is a
set of full clauses C1, C2, . . . , Cp such that [φ]r = [C1]r + [C2]r + · · · + [Cp]r for
any relation r over X.

These results enable us to untangle the complex interrelations of formulae.
The supports of distinct full clauses are independent of each other3, so any
distribution of nonnegative supports for full clauses corresponds to a possible
relation. Where the support of a Boolean formula appears in a constraint equality
or inequality, we can invoke Proposition 2 to replace it by a sum of the supports
of the corresponding full clauses. This amounts to a linear change of variables.

As an example, we consider an instance of Bound(X,Φ, f, ψ) with X =
{A,B }, Φ = {>, A,B,AB }, and ψ = AB. After the change of variables, we
have the system depicted in Table 1 which we should solve for [AB]. We have
the additional information that 0 ≤ [θi] ≤ 1 for all formulae θi, but we need not
worry about the inclusion-exclusion principle or similar rules. We continue this
example at the end of Section 3.2.

3.2 Linear programming

We now turn to the classic optimization problem called linear programming.
Our treatment is necessarily brief; see, e.g., Chapter 21 in [Kre93] for a good

3 With the restriction that the supports of all full clauses sum up to 1; but this gives
only a scaling factor.

introduction to the subject, or the Linear Programming FAQ4 for a comprehen-
sive list of references. For the computational complexity of linear programming,
see e.g. [MSW96]; briefly, common algorithms such as Simplex tend to be use-
ful in practice although they have worst-case exponential complexity, but more
sophisticated algorithms achieve lower complexity.

Definition 5. The linear programming problem LP(A,B, C) comprises an m×n
matrix A, an m-element column vector (m × 1 matrix) B, and an n-element
row vector (1 × n matrix) C. The solution of the problem is the vector x that
minimizes the scalar value Cx subject to the restrictions Ax ≤ B, x ≥ 0. We
also denote by LP′(A,B, C) the problem that is otherwise similar but where the
first restriction is replaced by Ax = B.

The matrix C is said to express the objective function, and A and B state
the constraints of the problem.

The problems LP(A,B, C) and LP′(A,B, C) are equivalent in expressive power
and computational complexity. We use the first formulation in the fully general
case of the formula bounding task Bound (Definition 1). For the kinds of inputs
we get from Apriori and similar procedures, we actually have equalities for all
input formulae, so we can use LP′(A,B, C). Note that equalities y = z can always
be converted to the inequalities y ≤ z and y ≥ z. We map the problem Bound

into an instance of a linear programming problem LP(A,B, C) or LP′(A,B, C)
(depending on the kind of input). We talk about LP and inequalities in the
following, but the case of LP′ and equalities is similar.

Assume now that I is the solution of an instance of Bound(X,Φ, f, ψ). By
Lemma 1, we know that if the set I is nonempty, it is a subinterval of [0, 1]
(in rationals). Therefore, we proceed to compute its infimum; the case of the
supremum is symmetric. Let n = |X|; then there are 2n full clauses over X.

As outlined at the end of the previous subsection, we take all the equalities
and inequalities implied by f , and replace all occurrences of the supports of
formulae by sums of supports of full clauses. In addition, we need to take the
equality

∑

i[θi] = 1, summing over all full clauses θi.
We will represent all of these equalities and inequalities in one big matrix

inequality Ax ≤ B. We tentatively let x = ([θ1] [θ2] . . . [θ2n])T, the vector com-
prising the supports of all full clauses θj in some canonical order; but the opti-
mizations described after Theorem 1 can reduce x. Now every inequality of the
form k1[θ1] + k2[θ2] + · · · + k2n [θ2n] ≤ z with integers k1, . . . , k2n becomes the
row (k1 k2 . . . k2n) in A and the corresponding element z in B. Inequalities with
the ≥ sign can be transformed by multiplying with −1.

Having encoded all the constraints of the problem in A and B, we now have
to select C so that the solutions to the LP problem correspond to the supports
of ψ. We once again invoke Proposition 2 to turn [ψ] into a sum of supports of full
clauses. Thus C will be a 0/1 vector with Cx = [ψ], and minimizing Cx subject to
the constraints gives the required infimum. Linear programming yields a rational
value for the infimum, since for example the Simplex algorithm [Kre93, §21.3]

4 http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html

uses only sums, differences, products and ratios to solve LP. Thus, the infimum
corresponds to an assignment of nonnegative rational values to the supports of
the full clauses, summing to 1 and obeying all the constraints of the original
problem. Multiplying all the supports by the least common multiple of their
denominators gives integer counts, whence a relation can be constructed. Thus
the infimum is actually a minimum.

We have now proved the following theorem.

Theorem 1. The formula bounding task Bound(X,Φ, f, ψ) can be reduced to
the linear programming task LP(A,B, C). The matrix A will have O(|Φ|) rows
and 2n columns, and the vectors B and C will both have 2n elements, where
n = |X|.

One of the reasons we used full clauses was that they can be used to an-
swer any support queries of Boolean formulae. However, many other families of
formulae have this property. For example, Proposition 1 of [MT96] implies that
the family of all conjunctions of atoms can be used to determine the supports
of all Boolean formulae. Let us define a representation Θ over X as a family
of formulae such that the counts of all Boolean formulae over X can be deter-
mined from the counts of the formulae in Θ. In this context, we use integer
counts countr(θ) =

∑

t∈r[θ]t instead of supports [θ]r = countr(θ)/ countr(>).
Any representation that works for all r must have 2n formulae. Indeed, given

the counts corresponding to a representation, we can use Proposition 2 to form
a linear system of equations from which the counts of full clauses can be solved.
If there are fewer than 2n equations, the system is underdetermined, and since
all its factors are integers, it will have infinitely many integral solutions. It is
therefore relatively easy to construct two relations with the same counts of all
formulae of the supposed representation but different counts of some full clauses.

However, this does not rule out smaller representations that work for specific
relations. When storing the counts of the conjunctions-of-atoms representation,
we can leave out some counts that can be derived from others. If, e.g., there are
no tuples satisfying the conjunction AB, we can leave out the count of ABC,
and if the counts of D and DE are equal, we need store only one of the counts
of AD and ADE. Similar ideas have been studied in [ML98,BBR00,BR01].

In our problem, we use fractional supports, not counts, which leaves one less
degree of freedom. Since the supports of full clauses must add up to 1, we can
leave out one number from the full-clauses representation.

In the case of LP′, where A is a 0/1 matrix, we can often prune the problem.
If some row ai of the matrix A is less than or equal to another row aj , we can
replace aj by aj−ai, while doing the corresponding replacement in B. Sometimes
this will result in a zero in B; we can then deduce that several unknowns are
zero and prune them. Even if this doesn’t occur, the matrix becomes sparser,
which helps with some algorithms that solve linear programming problems.

We now continue the example bounding task of Table 1. We reduce the system
depicted in the table to LP(A,B, C) with x = ([AB] [AB] [AB] [AB])T. For exam-
ple, the second equation is translated from [AB]+[AB] = 0.6 to (1 1 0 0)x ≤ 0.6

and (−1 −1 0 0)x ≤ −0.6. These inequalities form the third and fourth lines of A
and B (see below). In this case, the first equation already forms the consistency
constraint

∑

[θ] = 1, so we need not add it now.
We obtain the following matrices:

x =









[AB]
[AB]
[AB]
[AB]









, A =











1 1 1 1
−1−1−1−1

1 1 0 0
−1−1 0 0

1 0 1 0
−1 0−1 0

1 0 0 0
−1 0 0 0











, B =











1
−1
0.6
−0.6

0.7
−0.7

0.5
0











,

and C=(1 0 0 0) (resp. C=(−1 0 0 0)) for finding the lower (resp. the upper)
bound of [AB]. Solving these two LP problems gives the minimum 0.3 (with x =
(0.3 0.3 0.4 0.0)T) and the maximum 0.5 (with x = (0.5 0.1 0.2 0.2)T). We can
obtain actual relations by multiplying the values of x by 10.

4 Experiments

We investigated the properties of the bounding procedure on two data sets. The
first is connect-4 containing some game-state descriptions, the second is anpe, a
database about unemployed people, set up by the French unemployment agency.
We describe the specific properties of the data sets along with our results in
Sections 4.2 and 4.3.

We used as input to the bounding procedure different collections of frequent
itemsets along with their supports [AMS+96,MT96]. As explained previously, an
itemset is interpreted as the Boolean conjunction of items that it contains. Dif-
ferent collections of frequent itemsets correspond to different support thresholds,
denoted by minsupp .

In the implementation of the experiments, we used a less voluminous, al-
though totally equivalent, representation of frequent itemsets, first described
in [BR01]. Since this representation is smaller than all frequent itemsets, the
resulting Φ contains less queries. The equivalence of representations guarantees
that the same information can be inferred from it as from all frequent itemsets
and their supports. We controlled the equivalence by redoing some of the exper-
iments using the ordinary frequent itemsets, and got exactly the same results.

4.1 The framework of the experiments

We can compute the support of a Boolean formula over an itemset X exactly, if
we know the supports of all subsets of X. The procedure for this computation
in [MT96] is also applicable when we know the supports of frequent sets only,
but then it will yield approximate bounds—it is sound but not complete. Thus,
we test our new contribution using formulae over infrequent itemsets.

The protocol of the experiments can be simply put as following: we compare
the average size of intervals inferred by Bound for 100 formulae, for which the

combinatorial support-computing procedure of [MT96] is confronted with infre-
quent (thus missing) terms. The infrequent terms are due to the fact that the
support threshold we use to mine frequent itemsets (considered further in the ex-
periments with their corresponding supports as formulae with known supports)
exceeds the support of some terms required by the procedure of [MT96].

The detailed protocol is the following. For each of the two data sets, we
selected k = 100 random itemsets X1, ..., Xk that have 10 items each and whose
supports do not exceed a predefined σmax (10% for connect-4 and 0.1% for
anpe). To avoid selecting only itemsets with very low support, which typically
account for the clobbering majority of all itemsets, we weighted the probability
of selecting an itemset X proportionally to its support [X]. Even then, most of
the selected itemsets have low support compared to σmax (on average, 2.26% for
connect-4 and 0.010% for anpe).

Based on these itemsets, we randomly drew k Boolean formulae ψ1, ..., ψk, one
formula, ψi, over each Xi. To mimic formulae of interest in real life, for each Xi

we first selected a subset Yi ⊆ Xi of items, each item of Xi with probability 0.7.
Then we defined ψi as a disjunction of random full clauses over Yi. We included
each full clause θ in ψi with probability 0.5 − 0.04j, where j is the number
of negative literals in θ. Thus, we preferred clauses with more positive literals.
For example, a clause with 10 negative literals had the probability of 0.1 to be
included in ψi.

Then we computed Bound(Xi, Φi, fi, ψi) where Φi consists of the precom-
puted frequent sets among the subsets of Xi, and fi assigns to each frequent set
its known support.

We report two scores, each of them is an average over the 100 computa-
tions. Denoting the resulting lower and upper bounds by Li and Ui for each
computation, the first score is the average of Ui − Li, the second the average
of (Ui − Li)/Ui, both averages over i ∈ {1, . . . , 100}.

4.2 Experiments with connect-4

The connect-4 data set is very dense. It contains relatively small number of items
(129) and rows (67 557).

In Figure 1 (left) we report the average size of the interval returned by
the bounding procedure for different values of minsupp . As we can see, a lower
minsupp results in a better bounding precision. This is due to the increasing
number of input itemsets, therefore a richer information about the original data
set. However, the cost associated with the computation and the use of these
more voluminous collections of summaries also increases.

4.3 Experiments with anpe

The anpe data set is quite uncorrelated. With its 214 items and over 109 000
rows, it is significantly bigger than connect-4.

Frequent set mining extracts relatively small collections, unless we set a very
small minsupp . We chose to extract itemsets at these low thresholds. In Figure 1

connect-4

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100
Support threshold of itemsets in the input of BOUND (%)

0.0

0.1

0.2

0.3

0.4

0.5

Relative interval size (left scale) Absolute interval size (right scale)

anpe

0.00

0.02

0.04

0.06

0.08

0.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Support threshold of itemsets in the input of BOUND (%)

0.00

0.01

0.02

0.03

0.04

0.05

Relative interval size (left scale) Absolute interval size (right scale)

Fig. 1. Average interval size vs input itemsets’ support threshold produced by BOUND
on the connect-4 (left) and anpe (right) data sets.

(right) we report the average interval sizes. As previously, we relate the scores
to different minsupp .

Owing to the lower support thresholds, the resulting intervals were much
smaller than in the previous experiment (i.e. the results of bounding were more
precise). Observe that both the relative and the absolute errors are below 0.1
for all runs.

4.4 Observed running times

In our experiments, we first gather summary query answers, to simulate either
off-line or on-the-fly collecting of highly processed information. Then, we draw
random formulae, as described in Section 4.1. For each random formula, we
execute two steps: conversion into an LP′(A,B, C) problem and solving it.

During the experiments, we observed that frequent itemset mining is the
most expensive phase, despite the optimization of using an efficient condensed
representation of the itemset collection described in [BR01]. For example, for
the connect-4 data set and minsupp = 5% it took more than 3000 seconds.
Conversion to LP′(A,B, C) took 4.78 seconds per formula on average, and solv-
ing LP′(A,B, C) took only about 3.1 seconds per formula. Thus, the bounding
procedure can be quite efficient in practice, after the frequent itemset mining
has been performed.

5 Discussion and Future Work

We have considered the problem of bounding the support of Boolean formulae
when some aggregate information is available. We showed that the bounding
problem can be reduced to a linear programming problem whose size can in
the worst case be exponential in the number of attributes. While our result
is foremost a theoretical one, we also gave empirical results showing that the
bounding method can be effectively used to obtain additional information from
frequent itemsets or other summaries.

We emphasize that our aim is to find exact bounds. Another approach would
be to approximate the frequency of the query and give some kind of tail bounds
for the error of the approximation. The most natural way would be to take a
sample from the database and compute all queries on the sample; thus, instead of
frequent sets, the sample would serve as the representation of the original data.
This kind of a method has been used for computing frequent sets (see [Toi96]).
A more sophisticated approximation can be based on frequent sets (or simi-
lar summaries) by building a probabilistic model over the variables occurring
in the formula. A method using the maximum entropy principle is described
in [PMS00]. Like our solution, it suffers from exponential complexity in the
number of variables occurring in the query.

Several open problems remain. One area is obtaining a faster method for the
inference problem. With large, redundant summaries such as frequent itemsets,
the solution by linear programming is quite slow, and it is in many cases outper-
formed by the simple “scan the database once and count” method. The method
could, however, be useful in cases where the data set is not available or where the
set of queries Φ (corresponding to known supports) carries a lot of information
condensed in well chosen summaries, orders of magnitude smaller than the data
set itself. Thus, the following fundamental issue is interesting.

Problem 1.Given a relation r, an amount Z of storage, and a class of queries Ψ
that we wish to perform on r, what should we store in Z (which presumably
cannot hold all of r) in order to most effectively answer the queries in Ψ?

Frequent sets are typically redundant collections, and thus are not optimal.
It is not clear whether the less redundant AD-trees [ML98] would be optimal.
If we store in Z the answers to some Boolean queries φ1, φ2, . . . , φN , the linear
programming approach shows the limits of what we can reconstruct. Perhaps a
suitable set of formulae would allow an analytical solution, possibly only approx-
imate, of the linear program. The problem of computing frequent sets from data
has been extensively studied, and they were were used in [MT96], which formed
the starting point for our research. But the linear programming framework does
not depend on them—it can be used with supports of any formulae.

Another interesting issue is how to relax (if possible) the requirements of
Definition 1 if the complete procedure is too slow. We do not want to give un-
sound answers, but too wide intervals are not necessarily harmful. The simplest
incomplete and sound algorithm “return the interval [0, 1]” is not useful, but
we suspect there might be a reasonably fast compromise between it and the
complete linear programming approach.

Problem 2. How close to completeness can a polynomial-time (or linear-time,
or randomized polynomial-time) sound solution to Bound come?

Acknowledgements

Part of the work was done when Artur Bykowski was visiting the Labora-
tory of Computer and Information Science at Helsinki University of Technol-
ogy. The connect-4 data set was provided by researchers at the IBM Almaden
research center, and the anpe data set was preprocessed and anonymized by
Christophe Rigotti at INSA-Lyon. Professor Heikki Mannila asked us the ques-
tion about support inference and gave useful comments on an earlier version of
this manuscript.

References

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
and A. Inkeri Verkamo. Fast discovery of association rules. In Usama M.
Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, chap-
ter 12, pages 307–328. AAAI Press, 1996.

[BBR00] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Approx-
imation of frequency queries by means of free-sets. In PKDD’00, Lecture
Notes in Computer Science, Vol. 1910, pages 75–85. Springer, 2000.

[BR01] Artur Bykowski and Christophe Rigotti. A condensed representation to find
frequent patterns. In PODS’01, Santa Barbara, CA, USA, May 2001. ACM.

[Kre93] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley Inc., sev-
enth edition, 1993.

[ML98] Andrew Moore and Mary Soon Lee. Cached sufficient statistics for effi-
cient machine learning with large datasets. Journal of Artificial Intelligence
Research, 8:67–91, 1998.

[MSW96] Jǐŕı Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for
linear programming. Algorithmica, 16(4/5):498–516, 1996.

[MT96] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and
condensed representations: Extended abstract. In KDD’96, pages 189–194.
AAAI Press, August 1996.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of fre-
quent episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289, 1997.

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient
mining of association rules using closed itemset lattices. Information Sys-

tems, 24(1):25–46, 1999.
[PMS00] Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Probabilistic models

for query approximation with large sparse binary datasets. In Proc. UAI-00,
2000.

[Toi96] Hannu Toivonen. Sampling large databases for association rules. In Proc.

VLDB, pages 134–145, 1996.
[ZRL97] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A new data

clustering algorithm and its applications. Data Mining and Knowledge Dis-

covery, 1(2):141–182, 1997.

