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Abstract— Assessment of model properties with
respect to data is important for reliable analysis of
data. After training, Self-Organizing Map (SOM) can
be assessed, for instance, with respect to its quantiza-
tion or its topology preservation properties with one-
number summaries. In this paper, we present a decom-
position of the SOM distortion measure for measuring
different aspects of the SOM for map units locally. The
terms measure quantization quality, the goodness of
topological preservation, and the stress between these
two aspects. Experiments are used to illustrate the
behavior of the distortion measure terms in different
error scenarios.

1 Introduction

The Self-Organizing Map (SOM) [11] is a neural net-
work model based on unsupervised, competitive learn-
ing. The model combines aspects of vector quantiza-
tion with a topology-preserving ordering of the quan-
tization vectors. For reliable analysis of data and for
drawing meaningful inferences about the data analy-
sis problem, model assessment with regard to both of
these properties should be carefully performed. In the
remainder of the section, we describe the basic algo-
rithm and motivate our view on the assessment prob-
lem of the SOM.

A SOM consists of m units located on a regular,
low-dimensional grid of map units. The map unit
positions rj on the regular grid are fixed; each map
unit is connected to a number of neighboring map
units with a neighborhood relation. The closest set
of map units are called its neighbors. Each (map)
unit j has an associated d-dimensional prototype vec-
tor mj = [mj1, . . . ,mjd]. During training, the map
adjusts to the data by adapting the prototype vectors
according to the following training rule:

mj := mj + αhbij(xi − mj) (1)

where xi is a sample vector, α is a learning rate, and
hbij is the value of neighborhood function between map

units j and bi, the best-matching prototype to the sam-
ple vector xi: bi = arg minj{‖xi − mj‖

2}. The most
usual neighborhood function is the Gaussian:

hij = e−‖ri−rj‖
2/2r2

, (2)

where r is a neighborhood radius 1.
The prototype vectors together with the search for

the best-matching unit define a tessellation of the input
space into a set of Voronoi regions or sets

Vj = {x | ‖x − mj‖ < ‖x − mk‖ ∀k 6= j}

and by construction, each map unit is associated with
one such Voronoi set. In the experiments in this paper,
an alternative training algorithm called batch map is
used to train the maps. In this algorithm, the best-
matching map unit (BMU) of each data vector xi is
found first. Secondly, new prototype vectors are calcu-
lated as weighted averages of all data samples:

mj =

∑n
i=1

hbijxi
∑n

i=1
hbij

=

∑m
i=1

hijNini
∑m

i=1
hijNi

(3)

where n is the number of data samples, Ni is the
number of data samples in Voronoi set Vi, and ni =
∑

x∈Vi
x/Ni is their centroid. Eq. 1 is a stochastic ap-

proximation of the batch map algorithm.
A mathematical difficulty in the analysis of the SOM

algorithm (Eq. 1) is that it has been shown not to be
the gradient of any cost function in the general case [2].
The absence of a cost function has lead researchers to
find other ways to measure the overall quality of SOMs,
for example based on classification error [12], maxi-
mum likelihood [16], and topological path lengths [8].
Also the distortion measure

Ed =

n∑

i=1

m∑

j=1

hbij‖xi − mj‖
2

(4)

1A generalization of the SOM architecture is a network of
map units with no output space locations at all. Examples of
such networks include growing grid [4] and GCS [3]. By defining
the neighborhood function in terms of path lengths along the
network, the measures described in this paper are applicable to
such variants, too.
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investigated in this paper can be used for measuring
the overall quality of a given SOM. Two results speak
for its usage: (1) in case of a discrete data set and
fixed neighborhood kernel, it can be shown to be a lo-
cal energy function of the SOM [10], and (2) the SOM
training rule (Eq. 1) has been shown to be a computa-
tionally efficient approximation for the gradient of the
distortion measure [6].

However, there are two sides to this question of SOM
evaluation: the quality of quantization and the quality
of topology representation. Since these are competing,
but not directly opposed objectives of the SOM, we
must not restrict ourselves to an arbitrary combination
of their quality measures. Rather, to fully understand
a given SOM, both of these must be measured.

We would like to know what kind of errors there are
and where they are located. Note that there are two
kinds of errors in topological representation: (1) errors
in preservation of the original topological relationships
between items, and (2) errors in trustworthiness of the
representation of relationships [17, 5]. Errors in the
first occur when data items originally close to each
other are mapped far from each other in the repre-
sentation. Errors in the latter occur when data items
close to each other on the representation are actually
far from each other in the original space.

2 Decomposition of the SOM

distortion measure

The SOM distortion measure Ed can be divided to two
component terms [14]:

Ed =

n∑

i=1

Hbi
‖xi − nbi

‖2 +

m∑

i=1

Ni

m∑

j=1

hij‖ni − mj‖
2.

(5)
where Hbi

=
∑

j hbij . The second term can be further
divided such that Ed can be expressed as a sum of
three component terms Ed = Eqx + Enb + Env:

Ed =

m∑

j=1

NjHj

(

Var{x|j}+‖nj−m̄j‖
2+Varh{m|j}

)

=
m∑

j=1

NjHjVar{x|j}

︸ ︷︷ ︸

Eqx

+
m∑

j=1

NjHj‖nj − m̄j‖
2

︸ ︷︷ ︸

Enb

+
m∑

j=1

NjHjVarh{m|j}

︸ ︷︷ ︸

Env

(6)

where Var{x|j} is the (biased) local variance of
the data Var{x|j} =

∑

x∈Vj
‖x − nj‖

2/Nj , m̄j the

weighted mean and Varh{m|j} the weighted variance

of the prototype vectors: m̄j =
∑

k hjkmk/Hj and
Varh{m|j} =

∑

k hjk‖mk − m̄j‖
2/Hj [18] 2. Notice

that the contribution of each variable and each map
unit to the distortion measure can be easily measured.
In the following, each of the three component terms is
discussed in more detail.

Eqx : The first term, local data variance, measures
the quantization quality of the SOM as the variance
of the data vectors within each Voronoi set. If the
neighborhood function values for each map unit are
normalized to unity such that Hbi

= 1, ∀i, Eqx corre-
sponds to classical vector quantization error. The Eqx

is slightly different from the measure typically used to
calculate quantization quality of a SOM, the average
quantization error

∑

i ‖xi − mbi
‖/n: in Eqx squared

distances are used, and the data vectors are compared
to the centroid of the Voronoi set, not to prototype
vector, which only acts as the grouping criterion.

Env : The last term, neighborhood variance, mea-
sures the topological quality of the SOM. More specif-
ically, since it is a measure of closeness of prototype
vectors close to each other on the map grid, it mea-
sures the trustworthiness of the map topology. In [17]
it was indeed noted that a strong point of the SOM
as opposed to many other projection algorithms is its
trustworthiness. Notice that the neighborhood vari-
ance only takes data vectors into account as weighting
factors (Ni). Therefore, like the smoothness measure
by Hämäläinen [7] and the topographic product [1],
Env actually measures the quality of the map grid in
representing the topology of the prototype vectors, not
the topology of the data. In contrast, in the topo-
graphic function [19], topographic error [9], and preser-
vation of kNN sets [17] measures the data vectors have
an important role in measuring topological quality.

Enb : The middle term, neighborhood bias, is per-
haps the most interesting because it links the quanti-
zation and ordering together. It can be interpreted as
the stress between those properties. To our knowledge,
such measures have not been proposed earlier.

3 Experiments

Two sets of experiments are reported to illustrate the
behavior of the terms in the decomposed distortion
measure. In the first set of experiments, we control
the degree of flexibility of the SOM by varying the
final neighborhood radius in the training. As a sim-
plified rule of thumb, using large neighborhood radii
should result in stiff maps, which (over)stress topo-
logical ordering at the cost of quantization accuracy.

2Note that these elements are also utilized in [13].



In the second set of experiments, we introduce topo-
logical errors to the map configuration by altering the
topological coordinates of map units, either locally or
globally to create a twist in the map.

Controlling the stiffness of the map We control
the stiffness of the map by training several maps by
varying the final neighborhood radius in the training
between 0 to 12. We evaluate the terms in the de-
composition for each map. Figs. 1 and 2 show the av-
erage relative magnitudes of the decomposition terms
together with confidence bounds over 20 repeated runs.
Fig. 1 shows the results for a one-dimensional map with
100 map units trained with two-dimensional uniformly
distributed data (see Fig. 3). Fig. 2(a) and (b) show
the results for two-dimensional maps trained with uni-
formly distributed two- and five-dimensional data, re-
spectively.
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Figure 1: The relative magnitude of the terms in the
decomposed distortion measure of maps trained and
evaluated with varying final training radii shown on
the x-axis. One-dimensional map is trained with two-
dimensional data. The dashed lines indicate the 95%
intervals of 20 repeated runs.

For large values of neighborhood radius the relative
Env error decreases with increasing training radius.
For small values there is a sharp drop at approximately
r = 0.5. At this point, the values of the neighborhood
function become so small that its effect on the distor-
tion measure vanishes and SOM effectively becomes
the k-means algorithm.

In Fig. 3, the local values of the distortion measure
and each of the decomposition terms are shown for
one instance of the 1-dimensional map trained with 2-
dimensional data. The final training radius is 12. From
the figures, the border effect can be clearly seen in the
ends of the map. Of the decomposition terms, the
border effect is most prominent in Eqx and Enb. For
Enb, the areas of larger curvature get high values due
to elongated Voronoi regions. For Env on the other
hand, the biggest values can be seen where the map
units are most sparsely distributed.
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Figure 2: The same as in Fig 1, but two-dimensional
maps were trained with two-dimensional and five-
dimensional data in (a) and (b), respectively.

(a) Ed (b) Eqx

(c) Enb (d) Env

Figure 3: The normalized distortion measure evaluated
locally for each map unit. Bigger circle indicates higher
value.



Introducing topological errors A two-
dimensional map was trained with two-dimensional
uniformly distributed data. We introduced topological
errors in the map by exchanging the prototype vectors
of two map units (see Fig. 4). The distortion measure
and its terms were evaluated in each map unit for
both the correct and the distorted map. The results
are shown in Fig. 5 with black bars corresponding
to the correct map and white bars to the distorted
map. The twist in the map can be observed from the
distortion measure Ed, and its Enb and Env terms.

Figure 4: The map with an artificially introduced topo-
logical error. For evaluation of the terms in the distor-
tion measure, see Fig. 5.

In the next experiment, a two-dimensional SOM was
trained with two-dimensional data consisting of two
disjoint uniformly distributed rectangles. After train-
ing, a twist was introduced by switching the proto-
type vectors for the lower part of the map (see Fig. 6).
Again, the distortion measure and its terms were eval-
uated for each map unit for both the correct and the
twisted map. Results are shown in Fig. 7.

Again, the twist can be seen from the distortion
meausure, although it is somewhat masked by the non-
uniform distribution of the data. The effect of the twist
is most apparent in Enb at the sides of the map, which
is natural since this is where the prototype vectors have
been moved the most. Also the border effect at top and
bottom borders on the map can be clearly seen from
Eqx and Enb. The Env shows the change in the distri-
bution of data between the two rectangles. Notice that
it is closely related to the U-matrix [15]; also the U-
matrix visualizes the local trustworthiness of the SOM.
A benefit of the distortion measure is that it can be
evaluated for each vector component separately. From
Fig. 7(e-f) it can be clearly seen that the twist in the
map takes place in the X-component.

(a) Ed (b) Eqx
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Figure 5: The distortion measure (a) with terms (b-d)
evaluated for a map with a topological error (seen in
Fig. 4). The bars in a-d are the distortion (component
term) values for each map unit. The black bars indi-
cate the values of the map with no topological defects
and the white bars the values of the map with a topo-
logical error. The topological error and its location can
be clearly observed from (a) and (c-d).

4 Discussion

In this paper, the decomposition of the SOM distortion
measure was introduced and some preliminary results
were presented. It is clear that decomposition terms
respond differently to different error scenarios in the
map. The decomposition terms can be evaluated sepa-
rately for each map unit, and even for each vector com-
ponent, which makes it possible to locate the source of
the distortion error. It may be possible to use the de-
composition terms also to identify the type of the error.
In [20] Li discussed different kinds of topological errors
in SOMs and proposed that they could be made use of
to tell something of the true topology of the data set.

One of the most important uses of error measures is
comparision of different maps to each other. Not only
this, but ideally the measures should be:

(1) comparable for different data sets: starting from
different (sized) sample from the same distribu-
tion, to a completely different distribution

(2) comparable for different SOMs: different neigh-
borhood radius, different number of map units,
even different network architecture

(3) local, such that the source (location) of the error
(on the map) can be identified



Figure 6: The twisted map has a topological error on
a global scale. For the evaluation of the distortion
measure and its terms, see Fig. 7. The size of the circles
indicates the magnitude of the distortion measure.

As of yet, it is unclear whether the terms of the distor-
tion measure, or some normalized version thereof, fits
these requirements.

5 Summary

For reliable analysis of data, model assessment should
reflect both the quantization and topology preserva-
tion aspects of the SOM. We have presented a decom-
position of the SOM distortion measure that measures
these properties locally for map units. A novel as-
pect of the work is that it introduces a measure for
stress between the quantization and topology preser-
vation properties; also, the evaluation is done locally
for map units in order to locate possible anomalies in
the map. Experiments illustrate the behavior of the
component terms for a set of problems. We intend to
study the decomposition further: we continue by mak-
ing a full review and an experimental comparison of the
proposed measures to evaluate a SOM. Ultimately, the
measures should guide in optimizing the map topology
and in the training to get a SOM with desired proper-
ties.
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