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Representing interactions between variables in large
data sets in an understandable way is usually important
and hard task. This article presents a methodology how
a linear dependency structure between variables can be
constructed from multivariate data. The dependencies be-
tween the variables are specified by multiple linear regres-
sion models. A sparse regression algorithm and bootstrap
based resampling are used in the estimation of models and®Ver short ranges many processes can be approximated by a
in construction of a belief graph. The belief graph high- linear model.
lights the most important mutual dependencies between the A flow chart of the methodology proposed in this study
variables. Thresholding and graph operations may be ap- is presented in Figure 1. The method consists of five phases.
plied to the belief graph to obtain a final dependency struc- First, there should be some multivariate data available. Th
ture, which is a tree or a forest. In the experimental section data do not necessarily have to be time-series data, althoug
results of the proposed method using real-world data settime-series data is used as an example in this study.
were realistic and convincing. The second phase deals with the preprocessing of data.
Some operations have to be usually performed on measure-
ments before they can be analyzed mathematically. Some
measurements may be missing or measurements can be
noisy.

In the third phase, as many multiple linear regression

Large data sets are available from many different models as there are variables in the data are estimated. Each
sources, for example from industrial processes, economyyariable is a dependent variable in turn and the rest of the
mobile communications network, and environment. Deeper variables are possible independent variables. The most sig
understanding of the underlying process can be achieved bynificant independent variables for each model are selected
exploring or analyzing the data. Economical or ecological using the bootstrap and a sparse regression algorithm. The
benefits are a great motivation for the data analysis. relative weights of the regression coefficients are comgpute

In this study, dependencies between the variables in datg€rom the bootstrap replications. The relative weight of the
set are analyzed. The purpose is to estimate multiple linearregression coefficient measures a belief that the correspon
regression models and learn a linear dependency tree or foring independent variable belongs to the estimated linear
est of the variables. The dependency structure clearlyshow model.
how a change in a value of one variable induces changes in In the fourth phase, a belief graph is constructed from the
values of other variables. This might be useful information relative weights of the regression coefficients. The belief
in many cases, for instance, if values of some variable can-graph represents the strength of the dependencies between
not be controlled directly. the variables. In the belief graph there are as many nodes

The multiple linear regression models have a couple of as there are variables in the data. The relative weights de-
advantages. The dependencies in linear models are easy tfine arcs of the belief graph. A predefined threshold value
interpret. In addition, processes may be inherently limear and a moralizing operation are applied to the belief graph

Figure 1. The flow chart of the proposed
method.

1. Introduction



resulting a moral graph or a final dependency graph. Structural equation modeling (SEM) [20] is another
Finally, a dependency structure of the variables is calcu-technique to investigate relationships between the vimsab
lated from the dependency graph. A set of variables, which SEM provides a methodology to test a plausibility of hy-
forms a multiple linear regression model, belongs to a samepothesized models. The predefined dependencies between
maximal clique. However, the formulation of final depen- the variables are investigated using the SEM, when the de-
dency structure is restricted such that the dependenaies ca pendencies are learned from the data using the method pro-
not form circles in a final structure i.e. the variable cannot posed in this study. Structural Equation models can consist
be dependent on itself through the other variables. Thas, th of both observed and latent variables. The latent variables
final dependency structure is a tree or a forest. can be extracted from the observed ones using for example
The rest of the article is organized as follows. In Sec- the factor analysis. Observed variables are only modeled in
tion 2 a few other similar studies are briefly described. The this study.
multiple linear regression model and sparse regression al-
gorithms are introduced in the beginning of Section 3, fol- 3 Methods
lowed by the bootstrap and the computation of the relative
weights of the regression coefficients. The construction of
linear dependency tree or forest is proposed in Section 4.
The proposed method is applied to real-world data set. The . .
descFr)ipt?on of data and theprgsults of experiments are shown The depgndenues between the variables are modeled us-
in Section 5. The experiments mainly serve an illustrative Ing the multiple linear regression. The model is
example of the proposed methodology. Conclusion and fi-
nal remarks are in Section 6.

3.1 Multiple linear regression

Yo = P1xe1 + Poe o + .o 4 Bu i + €, 1)

wherey; is the dependent variable, ;,7 = 1,...,k are
2 Related work the independent variableg;,i = 1,...,k are the corre-
sponding regression coefficients, agndis normally dis-
tributed random noise with zero mean and unknown vari-

To our knowledge, novelty of this work is in the sparse .
ancee; ~ N(0,02). The indext = 1,..., N represents

construction of linear models and the application of the ¢ - :

bootstrap. Several studies about dependencies between tHE€ {th observation of the variablesandz; and \V is the

variables in multivariate data are accomplished, for edamp SamPple size. o _

[3], [13], [1], [16], and [20]. Equation (1) can also be written in matrix form as fol-
Dependency trees are also used in [3]. A method which 1OWS

approximates optimally d-dimensional probability distri- y=Xp+e @)

bution of thed variables is shown. Each variable can only Here we assume that the variables are normalized to zero

be dependent on at most one variable in that model, whenmean and thus, there is no need for a constant term in mod-
in this study one variable can be dependent on several varie|s (1) and (2).

ables. The ordinary least squares (OLS) solution is
Belief networks are discussed in [13]. The belief net-
work induces a conditional probability distribution ovés i bors = (XTX) 1 Xy 3)
variables. The belief networks are directed and acyclic. De
pendency networks which can be cyclic are presented inWherebors = [b1,.. ., by] is the best linear unbiased esti-

[11]. In both belief and dependency networks the variables mate of the regression coefficients.

are conditioned upon its parent variables. The directed de-

pendency means that changes in the parent has effect on thd.2 Linear sparse regression

child. The undirected dependency means that changes are

induced into the both directions. In this study, continuous  The usual situation is that the available data are

variables are only modeled, whereas the belief and the de{x1, ..., xz, y) and the linear regression model should be

pendency network can be used with discrete variables. estimated. The OLS estimates are calculated using all the
Independent variable group analysis (IVGA) is proposed independent variables. However, the OLS estimates may

in [16]. In that approach the variables are clustered. Thenot always be satisfactory. The number of possible inde-

variables in one cluster are dependent on each other bupendent variables may be large and there are likely non-

they are independent on the variables which belong to otherinformative variables among them.

clusters. In IVGA, the dependencies between the groups or The OLS estimates have a low bias but a large variance.

clusters are ignored and the dependencies in each group cahhe large variance impairs the prediction accuracy. The pre

be modeled in different ways. diction accuracy can sometimes be improved by shrinking



some regression coefficients toward zero, although at the

same time the bias increases [4]. The models with too many wig

independent variables are also difficult to interpret. Now,

the objective is to find a smaller subset of independent vari-

ables that have the strongest effect in the regression model _
In the subset selection regression only a subset of the us3

independent variables are included to the model, but it is :

an inefficient approach if the number of independent vari- “

ables is large. The subset selection is not robust because v o

small changes in the data can result in very different mod-

els. More stable result can be achieved using the nonnega- _

tive garrote [2]. The garrote also eliminates some variable ~ Figure 2. The progress of the LARS algorithm.

and shrinks other coefficients by some positive values. The figure is reproduced from the original
Ridge regression [12] and lasso [22] algorithms produce ~ LARS article by Efron et al. [7].

a sparse solution or at least shrink estimates of the regres-

sion coefficients toward zero. Both algorithms minimize a

penalized residual sum of squares

0 91
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& The lasso algorithm is not applicable if the number of

argmin {||y — XB|2 + )\Z |ﬁi|7}7 4) possible independent variables is large. _Forward stagewi_s
B = linear regression (FSLR) can be used instead of lasso in
o _ _ that case [10]. FSLR approximates the effect of the lasso

wherey = 2 in ridge regression ang = 1 in lasso. The  penpaltyy = 1 in Equation (4). New independent variables
tuning parametek controls the amount of shrinkage thatis  are added sequentially to the model in FSLR. Two constants
applied to the coefficients. The problem in Equation (4) can s and A/ have to be set before iterations. The regression
be represented equivalently as a constrained optimizationcoefficient that diminish most the current residual sum of

problem. In that approach the residual sum of squates  squares, is adjusted by amountscdt each successive iter-
X b||* is minimized subject to ation. The value o should be small and/ should be a
X relatively large number of iterations.
Z 18;" < 7, (5) All the estimates of coefficients,i = 1,..., k are setto
P zero in the beginning. Many of the estimatesire possibly

) ) ) still zero after M iterations. It means that corresponding
where~ is the same as in Equation (4) and the constanti,qjependent variables are not yet added to the regression
7 controls the amount of the shrinkage. The parameters made|. The solution after the/ iterations is almost similar

in Equation (4) andr in Equation (5) are related to each  thap the lasso solution with some They are even identical
other by a one-to-one mapping [10]. A large value)of i, some cases [10].

corresponds to a small value of

The ridge regression solution is easy to calculate, be-
cause the penalty term is continuously differentiable. The
solution is

The preceding methods such as ridge regression, lasso,
and FSLR are introduced as the historical precursors of the
Least Angle Regression (LARS) model selection algorithm.
We are mainly interested in the methods producing sparse

brp = (XTX n )\I)—lXTy, (6) models. .T.hus,. lasso and FSLR could be applie_d, but they

have deficiencies compared to the LARS algorithm. The

where T is an identity matrix, but it does not necessarily parameters\ or 7 in lasso andy and M in FSLR have to
set any coefficients exactly to zero. Thus, the solution is be predefined, whereas LARS is completely parameter free
still hard to interpret if the number of independent vargsbl  and it is also computationally more efficient than lasso or
k is large. The lasso algorithm sets some coefficients to FSLR. However, all the three methods produce nearly same
zero with a proper, but finding the lasso solution is more solutions. Only LARS algorithm is applied to selection of
complicated due to absolute values in the penalty term. Athe most significant independent variables in this study.
guadratic programming algorithm has to be used to compute In Figure 2 the progress of the LARS algorithm is vi-
the solution. Also, the value af or A\ which controls the  sualized. All the variables are scaled to have zero mean
shrinkage is strongly dependent on data. Therefore, seekand unit variance. One independent variable is added to the
ing such a value may be difficult in many cases. The data-model in each step. First, all regression coefficients are se
based techniques for estimation of the tuning parameter to zero. Then, the most correlated independent variajle
are presented in [22]. with y is found. The largest possible step in the direction



of u, is taken until some other variabig, is as correlated  can fail even if Equation (1) for the regression model is cor-

with the current residuals as;,. That is the pointy,. At rect. In the bootstrapping pairs approach weaker assump-
this point LARS differs from traditional Forward Selection tions about validity of Equation (1) are made.

which would proceed to the poinj;, but the next step in In the bootstrapping pairs,/ is assumed to be
LARS is taken in a directions, equiangular betweem;, an empirical distribution of the observed data vectors
andz;,. LARS proceeds in this direction until a third vari-  (x1,...,2.%,y:), Wheret = 1,... N. F puts prob-
ablex;, is as correlated with the current residualsaas ability mass of1/N on each vectof(x; 1, ..., %5, Y1)

andx;,. Next step is taken in a directioms equiangular A bootstrap sample is now a random sample of skze
betweenx;,, z;,, andx,, until a fourth variable can be drawn with replacement from the population &fvectors

added to the model. This procedure is continued as long(x; 1, ..., 2k, yt).

as there are still independent variables left. Bsteps are B independent bootstrap sampléX *, y*?),i =
needed for the full set of solutions i.e. the result idiffer- 1,..., B of the sizeN are drawn from the distributiof’.
ent multiple linear regression models. In Figurg 2epre- The bootstrap replicationis™ of the estimate$ are com-

sent the corresponding OLS estimates frictmstep. LARS puted using the LARS algorithm and the MDL information
estimatesy,, approach but never reach OLS estimaggs criterion. The statistic of interest or some other featufes
except at the last step the LARS and OLS estimates arethe parameters can be calculated from thegg bootstrap
equivalent. The mathematical details of LARS algorithm replications.
are presented in [7].

The problem is to find the best solution from all the 3.4 Computation of relative Weights of regression
possibilities which LARS returns i.e. a proper number of model
independent variables. This selection can be done accord-
ing to the minimum description length (MDL) information
criterion [9]. The variancer? of ¢; is assumed to be un-
known, thus, the MDL criterion is written in context of the
linear regression, as presented in [9],

In this study, relative weights of the coefficients of mul-
tiple linear regression model are computed. The relative
weights are calculated from the bootstrap replications as
follows

1 B b*z
MDL(k:):glogﬂy—QHQ—i-glogN. @) w—EZITbM-- (8)
=1

y is the dependent variablg,is the estimate of the depen- B js the number of bootstrap replications ad is theith
dent variable,N is the sample size ankl is the number  pootstrap replication of coefficients The absolute values
of added independent variables. The value of Equation (7)are taken over a” the Components of Vedf)ir_ There is
iS Ca|Cu|ated fOI‘ a” the SO|uti0nS. The Selected regl’(ElSSiO asum Of the abso'ute Va'ues of Coefﬁcients in the denomi_
model minimizes Equation (7). nator. 1 is a vector of ones and the length of the vector is

The MallowsC,, criterion [18], [19] is a common crite-  the same as the length of the vectéf. All the compo-
rion in subset selection. Howevér, is not used, because it nents of vectotb*’| are divided by the previous sum. These
can select submodels of too high dimensionality [1]. A re- gperations are done for every bootstrap replication and the
view of several other information criteria can be found from scaled bootstrap replications are added together. This sum

[21]. is divided by the number of bootstrap samplés The re-
sultis a vectorw, which includes the relative weights of the
3.3 Bootstrap coefficientsb.
There is a relative weight; for the each possible inde-
The bootstrap is a statistical resampling method and it pendentvariable;,i = 1, ..., k in the vectorw. The value

was introduced by Efron in [6]. The idea of bootstrap is to of eachw; is within the rangewv; € [0,1] and)_, w; = 1.
use sample data to estimate some statistics of the data. N@he relative weight of the independent variable is a measure
assumptions are made about the forms of probability distri- of the belief that the independent variable belongs to the es
butions in the bootstrap procedure. The statistic of istere timated linear model. The independent variable can be re-
and its distribution are computed by resampling the origina jected from the estimated model if the valuewfis zero
data with replacement. or under a predefined threshold value. The most signifi-
Bootstrapping a regression model can be done in twocant independent variables have the largest relative wgigh
different ways. The methods are bootstrapping residualsin this study the variables are scaled to have unit variance,
and bootstrapping pairs [8]. The independent variablestherefore, the regression coefficients are comparablecto ea
(x1,...,xy) are treated as fixed quantities in the bootstrap- other and their absolute values can be used as a measure of
ping residuals approach. That assumption is strong and itsignificance.



The vector of relative weights can also be regarded as a The direct use of the full information in the belief graph
discrete probability distribution. From the probabilitisd will be studied further.
tribution it can be seen which independent variables are
likely to be included to the final linear sparse regression 4.2 Constructing a moral graph
model.

The following idea of constructing an undirected and a

4 Learning a linear dependency structure moral graph from the belief graph is adapted from [13]. Let
_ ) Vi,i=1,..., k stand for a node or a variable in the graphs.
4.1 Constructing a belief graph The directions of dependencies can be discarded figm

and the result is an unweighted undirected gréph It
Let us assume now that there are datavailable, which can be assumed now that two variablésand V; belong
havek + 1 variables andv measurements for each variable. potentially to the same linear model if they are connected
The objective is to find multiple linear regression models by an arc in@,,. We mean that the variables belong possibly
among the variables. Each variable is the dependent varito the same set of variables which forms one linear sparse
able in turn and the rest of the variables are the possibleregression model. That is, the roles of the variablgand
independent variables. So, the following models have to beV; either as independent variable or dependent variable are
estimated. not specified yet.
Let us assume that a variak#g, is the actual dependent
R variable. A possible regression modeklis, = 3, x; +
Ty = bimy +05ms + .+ Bk + b T Bi, i, + b, vF\)/hereqS is agfunction of the oﬁer inéllepjéndent
variables and noise. When variables andx;, are consid-
. . . ered as the dependent variables, it is possible that thendepe
Ty = b+ b m Tt dency with the variable;, is found, but the dependencies
betweenc;, andx;, are ignored in both cases. However,
all three variablesc;,, «;,, andz;, belong potentially to
the same linear model. An arc can be added to connect the
corresponding nodes iA,,. The added arc is called a moral
arc. A moral graph,, is obtained when all moral arcs
Tr1 = Yoy + 05wy + 4+ by + b have been adgedpl@u. The moral arcs are added €,

The relative weights of the regression coefficients are com-according to the following procedure.
puted for all the abové + 1 linear models as it is described

in Sections 3.2-3.4. A belief gragH, is constructed from
thesek + 1 vectors of the relative weights.

Each variable of dat® is presented as a node in the be-
lief graphG,. The weighted arcs between the nodes are ob-
tained from the nonzero relative weights. Thus, the weights
of arcs measure the strength of the belief that there exists ] )

In this study, the graphy, is created frontz,, such that

a linear dependency between the corresponding two vari- k Sue e
the parent/; has a smaller index than the chilgli.e. i < j

ables. The directions of dependencies are from the inde-, . 2 . . .
pendent variable to the dependent variable. in G,. This restriction confirms that the relationships can

The dependencies or the number of arcs in the belief_be interpreted correctly and the ngmbero_f add_ed moral arcs
graph can be reduced by setting some threshold vafoe is reaspnable. The parent and chllq rglanonshlps can b_e de-
the relative weights. The relative weight is set to zero if it {Ined differently to}, as above and it likely results in a dis-
is below the threshold and the rest of the relative weights Similar moral graph and a final dependency structure. The
are set to unity. This means that remaining dependencieg'”al dependency strupture can be constructed as Wel! from
are treated as equally important thereafter. The beligfigra C« @S fromG,,. Basically, sparser models are obtained
G, becomes unweighted directed gragh after using the from Gu, bu_t th_e moral arc addition can give additional use-
threshold\. However, some dependencies may be bidirec- Ul information in some cases.
tional. The value of threshold is not estimated according to
some defined principle. A suitable value fdris decided 4.3 Constructing final linear models
by exploring the values of relative weights. The purpose is
to find such value fon that minor changes in would not The objective is to find multiple linear regression mod-
cause major changes in the gragh. els among the variables in the ddia The linear models or

T, = b%ibg + béa;d + ...+ bllcwk + bllﬁLl(BkJrl

bi-+1wk‘+1

. k k k k
T, = bjxr + b+ ...+ b _1xp—1 + bk+1xk+1

e Create a directed gragh, from G,,. The directions of
dependencies are set to graghsuch that there do not
exist cycles. For each nodg, find its parentsPy; in
G!,. Connect each pair of nodesfy, by adding undi-
rected arcs between the corresponding nodés,in



the sets of variables are sought from the unweighted undi-these restrictions. The independent variables are thaisare
rected graphG, or from the moral graplt+,,,. The vari- of the dependent variable in the final dependency structure.
ables, which are interpreted to belong to the same model,The construction of the dependency structure starts frem th
are parts of the same maximal clique. A subgraptygfor linear model which has the highest coefficient of determi-
G, is called a clique if the subgraph is complete and max- nation. After that, the linear models are added such that the
imal. A subgraph is complete, if every pair of nodes in the coefficients of determination are as good as possible and the
subgraph is connected by an arc. The clique is maximal, if previous restrictions are not violated.
it is not a subgraph of the larger complete subgraph [13].

An algorithm, which can be used to generate all maximal 5 Experiments
cliques from an arbitrary undirected graph, is presented in
detail in [15]. A short description of the algorithm is given
in the next two paragraphs.

Let C,, stand for a list of all cliques which include A real-world data set which is used in this study is called
nodes. The algorithm starts by forming all 2-cliques. Al the System data. The System data consist of nine measure-
pairs of nodes which are connected by an arc are 2-cliquesments from a single computer which is connected to a net-
There exists 3-clique if two 2-cliques have one node in \york. The computer is used for example to edit programs
common and two sole nodes are connected. For examplegy puplications and to calculate computationally inteasiv
if there are cliqueq V4, 152}, {V1,V3} and{V4, V3} in the tasks [23].
graph, then there exists 3-cliqf&, V2, Vs }. All 3-cliques Four of the variables describe the network traffic. Rest of
are collected to the list’s. the variables are measurements from the central processing

All (n + 1)-cliques can be constructed from the lisf. unit (CPU). All the variables are in relative measures in the
Two n-cliquesc), andc?, which have alreadyn — 1) nodes  data set. The variables are bl ks/ s (read blocks per
in common, are tested if they could form a néw+ 1)- second (network)), 2sbl ks/ s (written blocks per second
cliquec, . There has to exisi-cliquec;,, which has(n — (network)), 3.usr (time spent in user processes (CPU)), 4.

5.1 Data

n?

2) nodes in common with cliques, andc?, in the listC,,.
Additionally, (n—1)th node of} has to be equivalent tath
node ofc. andnth node ofc3 has to be equivalent toth
node ofc2, then there ign + 1)-cliquec,, 11 in the graph.
For example, if there exist cliqueg = {V1, Vs, V3, Vi},

sys (time spentin system processes (CPU)), Bt r (time

spent handling interrupts (CPU)), & o (CPU was idle
while waiting for 1/0 (CPU)), 7.i dl e (CPU was idle and
not waiting for anything (CPU)), 8i pkt s (the number
of input packets (network)), and ®pkt s (the number of

c; ={V1,Va, V3, Vs} andcj = {V1, V5, V4, V5 }, thenthere  output packets (network)).
exist 5-cliquecs = {V1, V5, V3, V4, V5} in the graph. This The System data is collected during one week of com-
procedure is repeated as long as new cliques can be conputer operation. The first measurement is done in the morn-
structed. All listsC;,i = 1,...,nq, are tested in the  ing on Monday and the last one is done in the evening on
end, that any:-clique is not a subclique @f. + m)-clique,  Friday. The measurements are done every two minutes dur-
m > 0. If there exist subcliques they can be eliminated. In ing the day and every five minutes during the night. The
the end, the dependent variable in all the cliques is selecte measurements are done from every nine variables each time.
such that the coefficient of determination is maximized. There are missing values in all the variables. A more de-
The problem to find all maximal cliques is known to be tailed description of the System data set is found from [23].
N P-hard [14]. This means that the computational time for a
solution is nondeterministic and the number of cliques can5.2 Preprocessing of the data
increase exponentially. Several other algorithms for -solv
ing the clique problem are introduced and analyzed in [14].  |n general, processes are usually in different states dur-
Computationally, the task is feasible, if the number of vari ing the measurements. It is possible that dissimilar linear
ables in the datd is not large. The number of variables dependency structures are needed to describe the operation
can be a few hundred. The number of arcs in the graph alsaf computer during the week, for example one structure
affects on the computational efficiency. during the day and another during the night. The variable
The number of found complete and maximal cliques can bl ks/ s can vary depending on if someone is working with
be large, but there are additional criteria how final cliques the computer.
are selected. Firstly, two cliques can have only one vagiabl In this study, the similar states of the process are sought
or node in common. Secondly, the common variable can-using the variablél ks/ s, which is, thus, a reference vari-
not be a dependent variable in both cliques. Finally, cyclesable. The reference variable can be any of the variables in
are not allowed in the dependency structure. Therefore, thethe data set depending on which feature is wanted to be ex-
dependency structure is a dependency tree or a forest undgslored. The reference variable is plotted in Figure 3.
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Figure 4. Development of coefficient values in

the LARS algorithm (a). Values of MDL crite-
rion for different models (b). The vertical line

in (a) and the diamond in (b) represents the
minimum value of MDL criterion.

Figure 3. The reference variable bl ks/ s and
the selected windows.

A query window is selected from the reference variable.
The query window of reference variable should include in-

formation or the measurements of the feature i.e. the inter-from the rest of the time-series. All the selected windows

Figure 3. The measurements in the query window are doneculations there aré/ = 560 data points in total from every

in the afternoon on Friday. variable.

The similar states of the reference variable can be lo- New time-series are acquired when the selected windows
cated mathematically in many ways. In this study, the sum of the original variables are put one after another. The-orig
of squares of differences between the query window and ain@l measurements often include noise. The level of the
candidate window is minimized. The candidate window is Noise may be disturbingly high. Inthat case, noise rednctio
a part of the reference variable which is as long as the queryt€chniques can be applied to the selected windows, for ex-
window. The candidate windows are not allowed to overlap @mMPple techniques based on the wavelet transform [5], [17].
with each other or with the query window. The candidate ~ This kind of similarity search in high dimensions, i.e
windows which have the smallest sum of squares of differ- With very long time windows, should be approached with
ences between the query window are chosen. caution. The Euclidean distance between the windows may

The sum of squares of differences between the query"ot work because of the curse of dimensionality. This se-

window and the candidate window i.e. the Euclidean dis- '€ction of windows, however, is not central to this work, but
tance between them is calculated as follows it can be used if only the certain parts of the time-series are

interesting and wanted to be explored.
M

— )2 .
Be = ;(yw Yei)™s ®) 53 Anexample of sparse regression
wherey, is the query windowy. is the candidate window, The operation of LARS algorithm is illustrated with an
and) is a number of the measurements which are includedexample. The variablbl ks/ s is the dependent variable
in the query window. and rest of the variables are the possible independent vari-

The number of chosen candidate windows can be de-ables.
cided, for example, by setting a threshold value to Equa- The independent variables are added to the regression
tion (9). Another option is to select so many windows that model in the following ordembl ks/ s, wi o, sys, i p-
there are enough data points in further calculations. Ia Fig kts,i ntr,i dl e, opkt s, andusr . Development of re-
ure 3, windows2 — 8 are the chosen candidate windows. gression coefficients are plotted in the left panel of Figure
Smaller numbers of candidate windows refer to smaller val- The values of MDL criterion are plotted in the right panel
ues of Equation (9). The measurements in all the chosenof the same figure. The minimum value is achieved by step
candidate windows are done during the working hours. four i.e. the first four added independent variables are in-
The data in the chosen candidate windows and in thecluded to the regression model.
guery window from the reference variable are chosen and The sparse regression model is
the rest of the measurements are excluded from further cal-
culations. The parts, which have the same time label as cho- Upiksis = 0-44@ubiks/s + 0.45Zvi o (10)
sen candidate windows and query window, are also selected +0.19xsys + 0.07xj pkt s -
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Figure 5. The adjacency matrices of the be- Figure 6. The adjacency matrices of the un-
lief graph G} (a) and the unweighted directed weighted undirected graph G, (a) and the
graph G (b). moral graph G, (b).

The coefficients of determination of the sparse model (10)
and the full model are 0.89 and 0.90, respectively. Thus,
the excluded variables can be considered as non-inforenativ
and dropping out them improve the interpretability of de-
pendencies between the variables.

Figure 7. The dependency forest from the
5.4 The dependency structure of System data graph Gy.

The objective is to find the best multiple linear regres-
sion models from the preprocessed data set. The process
proceeds as it is described in Section 4. The first task isto  The final linear models are sought from the undirected
construct the belief grapy,,. graph G, and from the moral graplis,,,. The variables

The adjacency matrix of the belief graph is presented ~ which belong to the same multiple linear regression model
in the left panel of Figure 5. The relative weights of the re- are part of the same maximal clique in the graghs or
gression coefficients of thgh model are in théth column G.,. The maximal cliques are found using the algorithm
in the adjacency matrix. Thih variable has been the de- which is presented in Section 4.3.
pendent variable in thé¢h model and rest of the variables Three maximal cliques} = {i dl e,usr,sys,intr },
have been the possible independent variables. The relative; = {i pkts,opkts, wblks/s} and ¢ =
weights for the variable, . . ., 8, when the variable 1 isthe  {bl ks/ s,wbl ks/ s,wi o} were found from the graph
dependent variable, are presented in the first column of theG,. The best models are achieved if the variablds e,
adjacency matrix of7;,. The other columns are constructed i pkts andbl ks/ s are chosen to be the dependent vari-
in a corresponding way. Dark colors refer to a strong belief ables. The coefficients of determination are then 0.95, 0.94
that these variables are significant in the multiple linear r and 0.82. The dependency forest of these linear models is
gression model. For example, in the first column or in the in Figure 7.
first regression model the variablesvib( ks/ s), 4 (sys), All variables in cliquec} are measurements from the
and 6 (M 0) are the most significant independent variables. CPU. All regression coefficients were negative in this
The number of bootstrap replications was= 1000 in each model. If there is a positive change in some independent
of the nine cases. The relative weights of the coefficients variable, the value of the dependent variabig e will de-
were calculated according to Equation (8). crease.

The directed grapldz; is computed from&; using the Cliquesc} andc? are dependent on each other through
thresholdA = 0.1 i.e the dependencies whose relative the variablewbl ks/ s, which is one of the independent
weight is under 0.1 are ignored and rest of the weights arevariables in both models. When a positive change occurs
set to unity. The adjacency matrix 6f; is in the right panel  in the variablewbl ks/ s also the values of the dependent
of Figure 5. The unweighted undirected gra@l is ob- variables pkt s andbl ks/ s increase. All variables in the
tained fromG; by ignoring the directions of dependencies cliquec} are the measurements from the network traffic. In
and the moral graply,,, is calculated fronG,, as it is de- the cliquec?, the variabléol ks/ s is the measurement from
scribed in Section 4.2. The adjacency matriceg-gfand the network traffic and the variablé o is the measurement
G, are drawn in Figure 6. from the CPU.



Models (11) and (12) are dependent on each other
through the variablev 0. Changes i o has effect on
both dependent variablesdl e andi pkts. A positive
change inm o decreases the valuesiofll e andi pkt s.
However, the variablei o could be possibly excluded from
Figure 8. The dependency tree from the graph mod_el_ (12), sir!ce the value of its regression coef_fk_:ient is
G- negligible and it has not much effect on the coefficient of
determination.

6 Summary and conclusion
An alternative dependency structure is computed from

the graph G,,.  There were two maximal cliques In this study, the method for analyzing linear depen-

and the variablebl ks/s was left alone. Cligues dencies in multivariate data is proposed. The result of the
are ¢ = {idle,usr,sys,intr,wio} and ¢} = method is a linear dependency tree or a forest. The depen-
{i pkt s,wi o,wbl ks/ s,opkts}. The dependency dencies of the variables can be clearly seen from the final
structure is plotted in Figure 8. dependency structure. Thus, it is possible to get deeper un-

All the variables in the cliquel are measurements from derstanding of the underlying process. The linear depen-
the CPU. The best model is obtained, wheh e is the de- dencies are modeled by multiple linear regression models.
pendent variable. Then the coefficient of determination is ~ Similar states of time-series are selected using the Eu-
0.96, which indicates that the linear model describes the de clidean distance between a reference variable. A single re-
pendencies between the variables very well. The first lineargression model is constructed to model that selected state.

sparse regression model is It may be difficult or even impossible to construct a single
regression model to time-series, which consists of many dif

Yigie = —0.64zysr — 0.30xsys (11) ferent states. Every state would require a model of its own.

—0.132i ptr — 0.082yi o This study proposes how the relative weights of the re-

gression coefficients can be calculated from the bootstrap
replications. The relative weight of the regression coeffi-
The independent variables describe how much of thecient is a measure of belief that the corresponding indepen-
CPU power is spent to different activities and the dependentdent variable belongs to a certain regression model. In-addi
variable describes how much of the CPU power is unusedtion, the dependent variable or variables are selectedgluri
at the moment. According to the estimated linear model the execution of the algorithm.
the value of dl e decreases when the valuesusfr , sys, In the experiments it was shown that the most signifi-
i ntr andwi o increase. This is very intuitive result be- cant variables have the highest relative weights. The rela-
cause the processes which need CPU power obviously ditive weights seem to be appropriate to measure significance
minish the available CPU power. of the independent variables.
The cliquec; formulates another multiple linear regres- The final dependency structure was constructed from the
sion model. When the variablepkt s is selected to the belief graph. The belief graph represents the variables and
dependent variable, the best coefficient of determinationthe relative strength of the dependencies between the vari-

(0.94) is achieved. The second model is ables. A threshold value was used to reduce the dependen-
cies in the belief graph. The chosen threshold value has a

Yipkts = —0.01xvio + 0.11@wpi ks/ s (12) strong impact on the final dependency structure. A minor
+0.93Topkt s - change in the threshold value can cause a major changes in

the final dependency structure. Thus, special attentidreto t
threshold value should be paid. It would be beneficial to au-
The variabla pkt s consists of measurements from the tomate the selection of the threshold value. One possibilit

network traffic. The variablesbl ks/ s andopkt s de- might be to include it somehow in the moralizing operation.
scribes also the network traffic amd o is the same mea-  Another possibility could be to learn the final dependency
surement from the CPU as in model (11). When the num- structure from the belief graph ignoring the weakest depen-
ber of written blocks per second and the number of output dencies by some data based method such that a tree or a
packets increase the number of input packets also increasefrest structure is achieved.
according to Equation (12). This is a natural situation & th The proposed method was tested using a real world-data
bidirectional network traffic. The packets are sent to both set. The constructed dependency structures were convinc-
directions when for example a file is downloaded. ing. Approximately 95% of the variation of dependent vari-



ables was explained by the regression models which were[12] A. E. Hoerl and R. W. Kennard. Ridge regression: Bi-
constructed from the System data, although no assumptions

were made about the number of linear models. The result-

ing dependency structure was almost similar to one shown!

in Figure 8, when the whole data set was used in the con-

struction of the dependency structure. When models (11)

and (12) were tested with the excluded data the coefficients
of determination were nearly as good as with the used data.

[1

13]

4]

The final dependency structure highlights the dependen-[15)
cies of the variables in an intelligible way. On the other
hand, it is difficult to measure the level of interpretalilit
The goodness of the models may be hard to justify if coef-
ficient of determinations are moderate, but the dependencyllG]
structure can still give additional and unexpected inferma
tion in co-operation with someone who has specific knowl-
edge of the underlying process.
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