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Abstract Quantization of continuous variables is important in data
analysis, especially for some model classes such as Bayesian networks
and decision trees, which use discrete variables. Often, the discretiza-
tion is based on the distribution of the input variables only whereas
additional information, for example in form of class membership is fre-
quently present and could be used to improve the quality of the results.
In this paper, quantization methods based on equal width interval, max-
imum entropy, maximum mutual information and the novel approach
based on maximum mutual information combined with entropy are con-
sidered. The two former approaches do not take the class membership
into account whereas the two latter approaches do. The relative merits
of each method are compared in an empirical setting, where results are
shown for two data sets in a direct marketing problem, and the quality
of quantization is measured by mutual information and the performance
of Naive Bayes and C5 decision tree classifiers.

1 Introduction

Whereas measurements in many real-world problems are continuous, it may be
desirable to represent the data as discrete variables. The discretization simpli-
fies the data representation, improves interpretability of results, and makes data
accessible to more data mining methods [6]. In decision trees, quantization as
a pre-processing step is preferable to local quantization process as part of the
decision tree building algorithm [1,4]. In this paper, quantization of continu-
ous variables is considered in a binary classification problem. Three standard
quantization approaches are compared to the novel approach, which attempts to
balance the quality of input representation (measured by entropy) and the class
separation (measured by mutual information).

The comparison of the four approaches to quantization is performed on two
data sets from a direct marketing problem. Mutual information, Naive Bayes
classifier, and C5 decision tree [8] are used in measuring the quality of the quan-
tizations.



2 Quantization

Quantization, also called discretization, is the process of converting a continuous
variable into a discrete variable. The discretized variable has a finite number of
values (J), the number usually being considerably smaller than the number of
possible values in the empirical data set. In the binary classification problem, a
data sample (xi, yi)

N
i=1 and yi ∈ {0, 1} is available. Variable xi ∈ IRk is a vector

of variables on a continuous scale. In the quantization process, the component k

of the xi later denoted by xik, is mapped to the discrete counterpart x′

ik when
the original variable xik belongs to the interval defined by the lower and upper
bounds of the bin. The number of data falling into a bin j is defined as nkj and
the probability of a bin as pkj =

nkj

N
.

One could approach the discretization process in many different ways, start-
ing for example from naive testing of random configurations and selecting the
best one for a particular problem. More structured approaches may consider
discretizing all variables at the same time (global), or each one separately (lo-
cal). The methods may use all of the available data at every step in the process
(global) or to concentrate on a subset of data (local) according to the current level
of discretization. Decision trees, for instance, are usually local in both senses.
Furthermore, two following search procedures could be employed. The top-down
approach [4] starts with a small number of bins, which are iteratively split fur-
ther. The bottom-up approach [5], on the other hand, starts with a large number
of narrow bins which are iteratively merged. In both cases, a particular split or
merge operation is based on a defined performance criterion, which can be global
(defined for all bins) or local (defined for two adjacent bins only). An example
of a local criteria was presented in [5].

In this paper, a globally defined performance criterion is optimized using a
greedy algorithm. In each iteration of the one-directional greedy algorithm, a
most favorable action at the time is chosen. In the initial configuration one allo-
cates a large number of bins to a variable and starts merging two adjacent bins
by choosing the most favorable merge operation. The approaches used in this
paper are local in the sense that variables are discretized separately and global
in the sense that all the available data are used in every step of the quantization
process. Discretizing variables separately assumes independence between them,
an assumption which is usually violated in practice. However, this simplifies the
algorithms and makes them scalable to large data sets with many variables. In
contemporary data mining problems, these attributes become especially impor-
tant. In a real situations, one particular value on the continuous scale may occur
very frequently overwhelming the entire distribution of the variable. For exam-
ple, the field "total length of the international telephone calls" for a particular
private customer is likely to be predominately filled with zeros. This situation
corresponds to a peak in the probability density function and can lead to the
deterioration of the quantization process. If this is detected, for example by
checking if a given value appears in more than 60% of the samples, a dedicated
interval should be allocated and these samples removed from the discretization
process.



Equal Width Interval By far the simplest and most frequently applied method
of discretization is to divide the range of data to a predetermined number of bins
[6]. Each bin is by construction equally wide, but the probabilities of the bins
may vary according to the data. In classification problems, this approach ignores
the information about the class membership of data assigned to each bin.

Maximum Entropy An alternative method is to create bins so that each bin
equally contributes to the representation of the input data. In other words,
probability of each bin for the data should be approximately equal. In fact, this
is achieved by maximizing the entropy of the binned data. The entropy for the
binned variables may be defined as Hk =

∑J
j=1 pkj log pkj , where the sum is over

all bins. Entropy has been used in context of discretizing variables in [9].

Maximum Mutual Information In classification problems, it is important to op-
timize the quantized representation with regard to the distribution of the output
variable. In order to measure information about the output preserved in the dis-
cretized variable, mutual information may be employed [3]. Mutual information
was used in the discretization process of the decision tree construction algorithm
(ID3) in [7]. Mutual information is measured in terms of quantized variables as

Ik =
J∑

j=1

P (bkj , y = 1) log
P (bkj , y = 1)

P (bkj)P (y = 1)
+ P (bkj , y = 0) log

P (bkj , y = 0)

P (bkj)P (y = 0)

Maximum Mutual Information with Entropy By combining the maximum en-
tropy and the mutual information approaches, one hopes to obtain a solution
with the merits of both. This should strike a balance between the representation
of the input and the knowledge of the output variable at the same time. In other
words, one would like to retain balanced bins that turn out to be more reliable
(prevent overfitting in this context) but simultaneously to optimize the binning
for classification. Our greedy algorithm is based on a criterion function which is
the product of the mutual information and the maximum entropy as

Gk = HkIk.

The greedy algorithm approximates the gradient ascent optimization. Writing

the gradient of the product of two functions as ∂f(x;θ)g(x;θ)
∂θ

= f ′(x; θ)g(x; θ) +
g′(x; θ)f(x; θ), we note that the search direction is driven by the balance of
the two factors subject to constraints imposed by data. A similar measure in-
volving mutual information divided by entropy was proposed in the context of
discretization in [8]. However, the measure was used for the problem of binary
discretization in splitting operation. Our novel approach assumes discretization
into several bins and the comparison is done among all merging operations.

3 Experiments

Two data sets were used in the evaluation. Both of them were collected and
used in direct marketing campaigns. The input variables represented customer



information and the output was the customer’s binary response. The data set 1
consisted of 144 input variables and 12496 samples whereas the data set 2 had 75
input variables and 35102 samples. The first data set was artificially balanced to
contain an equal number of positive and negative responses, in the second data
set only one tenth of the samples belonged to the positive response class as in
usually strongly imbalanced direct marketing problems. The evaluation criteria
used for measuring the influence of the discretization procedure on the classifi-
cation problem were mutual information, predicted 50 % response rate based on
Naive Bayes, and classification accuracy of C5 classifier. Each experiment was
conducted with a randomly selected training set and a testing set of the same
size, the results shown are based on the testing set. All the experiments were
repeated 25 times. In the case of mutual information, all the variables of each
data set were discretized and the mutual information of the discretized variable
and the output variable were measured on the test data. From each data set, 10
most relevant variables were chosen and in order to create different subproblems
randomly selected subsets of four variables were used for building classifiers. Us-
ing response rate together with the Naive Bayes, the possibly imbalanced class
priors present in the data do not have any effect. In C5 classifier, a fixed cost
matrix was given to flatten out the imbalanced class distribution. All the exper-
iments were repeated with the goal of discretizing the continuous variables to 4,
6, and 8 bins. The results are shown in terms of relative performance in Fig 1.

4 Discussion

Measuring the relative scores by mutual information, the approaches that take
into account the class membership of data prove to be superior. Ranking of the
methods remains the same in both the balanced and the imbalanced data sets.
In general, the addition of bins improves the performance of the discretization
methods. Moreover, the mutual information approach is better than the novel
method in case of low number of bins, whereas the novel method was superior
when the number of bins was bigger, even though mutual information is used
as the assessment measure. The importance of the entropy term in the novel
method increases along the number of bins. Of the simple methods, which ignore
the available output information in the classification problem, the entropy-based
method is better than the equal width interval method.

Using 50 % response rate based on Naive Bayes classifier, results are some-
what more difficult to interpret. In this case it is important to note that each
variable is treated separately, which is likely to increase the independence of the
discretized variables compared with the original ones. It seems that the novel
method is superior to all other methods, although the large variance on the esti-
mates makes this subject to a debate. For example, in the case of data set 1 and
the experiment with eight intervals, the median of the novel method is the best,
75 % confidence interval is similar to others, and finally the 95 % confidence lim-
its are much worse than in the case of mutual information. On the other hand,
the median performance of the novel method proves to be the best in most cases.
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Figure1. Relative scores of the discretization methods measured mutual information
are shown for the data set 1 (first row, left panel) and data set 2 (first row, right
panel). Relative scores of the discretization methods measured by 50 % response rate
of Naive Bayes are shown for the data set 1 (second row, left panel) and data set 2
(second row, right panel). Relative scores of the discretization methods measured by
classification performance achieved with C5 classifier are shown for the data set 1 (third
row, left panel) and data set 2 (third row, right panel). In all figures, the horizontal
axis is divided to three sections for experiments with four, six and eight bins. The
order of discretization methods in each section is equal width interval (1), maximum
entropy (2), maximum mutual information (3), and maximum mutual information with
entropy(4). The performance of repeated experiments are visualized with median, 25 %
and 75 % percentiles. In addition, 95 % confidence interval is shown with dashed lines.



In case of a C5 classifier, none of the methods outperforms others, especially
on the first data set. The variance of the estimates is also relatively large as to
make accurate judgments. In the second data set, however, equal width interval
approach is clearly worse than the other presented methods. One possible reason
for the questionable performance of the tree classifier could be that our discretiza-
tion works for each input variable separately, whereas optimal creation of the
decision tree would take into account the interdependencies between variables.
Using the novel discretization method, these interdependencies are essentially
ignored and the solution is likely to weaken the interdependencies between dis-
cretized input variables. Taking all the variables into account at the same time
may be seen beneficial in this context as proposed in [2].

5 Summary

Methods for quantizing continuous input variables in classification problems were
presented. Relative merits of the equal width interval, maximum entropy, maxi-
mum mutual entropy and the novel maximum mutual information with entropy
approaches were compared with two data sets from direct marketing problems
using three criteria. Concluding, none of the tested approaches would be pre-
ferred over others whenever the C5 decision tree is to be used for modeling. On
the other hand, the novel method proposed in this paper would be recommended
for Naive Bayes classifiers where it may lead to performance improvements.
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