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Abstract. Microarrays allow the monitoring of thousands of genes si-
multaneously. Before a measure of gene activity of an organism is ob-
tained, however, many stages in the error-prone manual and automated
process have to be performed. Without quality control, the resulting mea-
sures may, instead of being estimates of gene activity, be due to noise
or systematic variation. We address the problem of detecting spots of
low quality from the microarray images to prevent them to enter the
subsequent analysis. We extract features describing spatial characteris-
tics of the spots on the microarray image and train a classifier using a
set of labeled spots. We assess the results for classification of individ-
ual spots using ROC analysis and for a compound classification using a
non-symmetric cost structure for misclassifications.

1 Introduction

Microarray techniques have enabled the monitoring of thousands of genes simul-
taneously. These techniques have proven powerful in gene expression profiling
for discovering new types of diseases and for predicting or diagnosing the type
of a disease based on the gene expression measurements [1]. It is indeed an in-
teresting possibility that we examine all genes of a given organism at the same
time and possibly under different conditions. This opens up new ways of making
discoveries, assuming that the large amounts of data can be reliably analyzed.

The rapidly increasing amount of gene expression data and the complex re-
lationships about the function of the genes has made it more difficult to analyze
and understand phenomena behind the data. For these reasons, functional ge-
nomics has become an interdisciplinary science involving both biologists and
computer scientists.

Before estimates of the gene activities are obtained from an organism, a
multi-phased process takes place allowing different sources of noise to enter the
analysis. Noise is in fact a major issue with microarrays. Low quality measure-
ments have to be detected before subsequent analysis such as clustering is per-
formed and inferences are made. However, the detection of these poor quality
spots has not been widely discussed. In this paper, we attempt to provide one
solution to this problem.



2 Microarray technology

The microarray experiments are basically threefold involving the preparation of
the samples of interest, the array construction and sample analysis, and the data
handling and interpretation. The microarray itself is simply a glass slide onto
which differing single-stranded DNA chains have been attached at fixed loci.

The phenomenon that microarrays exploit is the preferential binding of com-
plementary single-stranded sequences. Popularly mRNA extracted from two dif-
ferent samples are brought into contact as they are washed over the microar-
ray. Hybridization takes places at spots where complementary sequences meet.
Therefore, hybridizations of certain nucleic acid sequences on the slide indicate
the presence of the complementary chain in the samples of interest.

2.1 Two-sample competitive hybridization and dye separation

A popular experimental procedure is the monitoring of the mRNA abundance
in two samples. When two samples are simultaneously allowed to hybridize with
the sequences on the slide, the relative abundance of the hybridized mRNA in
the samples can be measured. This measure is assumed to reflect the relative
protein manufacturing activity in the cells. Often a common reference is used
making further comparisons of gene activities e.g. between individuals possible.

The two samples are labeled with different fluorescent dyes allowing their
separation when excited with the corresponding laser. When the whole slide
is scanned, two 16-bit images looking as Fig. 1 are obtained, each reflecting
the gene activities of the respective sample. The intensities of the image pixels
correspond to the level of hybridization of the samples to the DNA sequences
on the microarray slide.

2.2 From digitized images to intensity measures

To get an estimate of the gene activities, the pixels corresponding to the gene
spots, and consequently the genes, must be found. The images are segmented or
partitioned into foreground (i.e. belonging to a gene) and background regions.
The gene activity estimates are then derived from the foreground regions. Many
different methods exist including the average intensity of pixels inside some pre-
defined area around the assumed spot center or within an area found by seeded
region growing or histogram segmentation. Estimates of the background noise
can also be obtained. The estimates can be global, i.e. all genes are assumed to
include the same noise or local, i.e. the background estimate is determined indi-
vidually for all genes or for some set of genes using a (predefined) combination
of the pixel intensities outside the area used for gene activity estimation.

The gene activity estimation has an impact on the subsequent data analysis
and interpretation. If the gene’s measured activity is not due to the activity
itself, subsequent analysis using this erroneous estimate will, of course, be mis-
leading. To overcome this, background correction is often done, usually simply by
subtracting the background intensity estimates from the gene activity estimates.



Fig. 1. A scanned microarray image and four example spots, which demonstrate pos-
sible problems, i.e. spots of varying sizes, scratches, and noise.

Depending on how the gene activity estimate and the background estimate have
been derived, the resulting measures may be largely deviant.

Image analysis methods using predefined regions, histogram segmentation or
region growing essentially all lead to biased results, even if background correction
is used, if the data quality is not taken into consideration. This can be understood
by observing Fig. 1. The spots may be of various sizes or contaminated and can
therefore have an effect on the activity estimation when no attention to the
spatial information is given. The Mann-Whitney segmentation algorithm may
provide better results as it associates a confidence level with every intensity
measurement based on significance [2]. If the noise level on the slides is not
constant, non gene activity due measures may start dominating the results as
most of the genes on typical slides are silent. Background estimations may be
even more affected by contamination. In order for the background correction
to be effective, the background estimates should be derived iteratively and not
by using the same pixels for each spot. Moreover, the most contaminated spots
should be excluded from the analysis as the measure does not reflect the gene
activity at all. Replicate measurements may be of help [3] especially when the
median of the measures is used in the analysis.

To this day, little has been published on data quality related issues. Previ-
ously, the effect of the choice of image analysis method has been assessed. It has
been shown that the background adjustment can substantially reduce the pre-
cision of low-intensity spot values whilst the choice of segmentation procedure
has a smaller impact [4]. Measures based on spot size irregularity, signal-to-noise
ratio, local background level and variation, and intensity saturation have been
used to evaluate spot quality [5]. Experiments on error models for gene array
data and expression level estimation from noisy data have been carried out [6].
The intrinsic noise of cells has also been researched [7,8].



3 Detection of faulty spots

Our work is based on analyzing real-valued raw 16-bit images with the approx-
imate gene loci known. Each gene spot is searched from a 31 x 31 environment
defined by the gene center locus obtained as a result of previous image segmen-
tation with QuantArray software. The sizes of these blocks were chosen to allow
some non-exactness in gene loci and to be large enough to be able to include valid
spot pixels. We apply image analysis techniques in extracting spatial features
describing relevant properties of microarray spots [9].

3.1 Defining the spot area

The spot area is defined on the basis of raw pixel intensity values and their
spatial distribution. We assume that the intensity of the spot pixels deviates
from the background intensity in the positive direction. At the initial step, the
raw pixels are judged to belong to the spot if their raw intensity is more than
12.5 percent of the maximum pixel intensity found in the 31 x 31 image. This is
how the histogram segmentation methods work. Here, however, the histogram
segmentation forms only the initial step of the segmentation procedure.

From these regions, the largest connected block of pixels is picked using
eight-connectivity, and pixels inside the area are joined to the area using four-
connectivity. This way, we obtain a binary image in which the spot area is
differentiated from the background. Examples of these images, which can be
regarded as masks for the original intensity images, are shown in Fig. 2.

(a) (b) (c) (d) (e) (f)

Fig. 2. The search for the spot area is presented using a non-faulty spot (a-c) and
a faulty spot (d-e). The 31 x 31 pixel block around the spot centers (a and d), the
corresponding binary image obtained using threshold 12.5 percent of the maximum
intensity found within this block (b and e), and the largest connected region of the
binary image with holes filled (c and f).

3.2 Spatial features of the spots

We assume that features extracted from the spot area can be used to describe
the quality of the measurement. The features are collected into a feature vector
x = [x1, . . . , x6] and are later used to discard redundant low quality data from
subsequent analysis. Through the choice of the features, an implicit model for



the spots is defined. The image pixel coordinates are denoted as (h, v) pairs and
the individual pixel coordinates with hi and vi, i = 1, . . . , n, n being the number
of pixels belonging to the spot in this context. The features we extract are:

The horizontal range of the spot x1 = max(|hi − hj |), i �= j
The vertical range of the spot x2 = max(|vi − vj |), i �= j
The elongation of the spot as the ratio of the
eigenvalues

x3 = λ1/λ2

The circularity of the spot as the ratio between
the area of the estimated spot and an ideal cir-
cle with the same perimeter

x4 = 4πArea/(Perimeter)2

The uniformity of the spot expressed as the dif-
ference between the Euclidean distance of the
mass centers between the binary image and the
intensity image masked with the binary image

x5 = ‖1/n
∑n

i=1(hi, vi) −
1/n

∑n
i=1 inti(hi, vi)‖

The Euclidean distance between the assumed
spot center and the binary image

x6 = ‖1/n
∑n

i=1(hi, vi) −
(hc, vc)‖

3.3 Classification based on the spatial features

As stated earlier, our primary task is to classify microarray spots to classes faulty
and good. This binary class variable ci is predicted on the basis of six features,
or input variables, describing relevant properties of the objects to be classified.
Having access to n labeled training data, that is, pairs (xi, ci), i = 1, . . . , n,
we can train a classification model in order to classify future cases where label
information is not available.

Based on the assumption that classes have differing statistical properties
in terms of the distributions of the feature variables, we may use the class-
conditional approach [10,11]. Suppose we already have a classification model,
we may assign a spot to the class to which it is most likely to belong to, i.e.
whose posterior probability is the largest. Using Bayes rule, this is equivalent to
assigning the spot, i.e. the feature vector x derived from it, to the class ci for
which the discriminant function gi is the largest, as in cj = arg maxk gk(xj),
where gi(x) = log p(x|ci)p(ci). The underlying distributions p(x|ci) are assumed
to be Gaussian. The parameters of the class-conditional distributions, i.e. mean
vectors and covariance matrices, are estimated from pre-labeled training data.
The prior probabilities are not of concern because the optimal bias is found by
observing the misclassification costs.

3.4 Assessment of classification results

Before put to practice, it is important to assess the accuracy of the proposed
scheme to detect faulty spots. We are interested in the following two aspects:
first, how well the individual spots are classified correctly and how often the
spots are misclassified in the two possible directions (good as faulty and faulty as



good) and second, combining the results for the three classifications of replicate
spot measurements, what is the most beneficial compound result that fulfills our
goal. In both approaches, we have the problem of choosing an optimal decision
function.

Receiver Operating Characteristics (ROC) Curve [12,13] visualizes the trade-
off between false alarms and detection, helping the user in choosing an optimal
decision function. With the ROC curve, we can assess the errors made in the
classification of individual spots. However, we are in fact faced by the need to
classify three spots that are repetitive measurements of the same gene expression,
two of which are possibly redundant.

We are fundamentally interested in correct classification of good spots as
good (true negative, tn) and faulty spots as faulty (true positive, tp), but the
situation is complicated by our consideration of classifying good spots as faulty
(false positive, fp) not being so harmful as long as at least one of the replicate
good spots is classified correctly. On the contrary, classifying faulty spots as
good (false negative, fn) is considered harmful, since possible measurements of
the faulty spots may enter the subsequent analysis. Formulating the above as a
matrix for misclassification costs, we get Λ = (λij) = Σfn/Σ(tn + fn), with the
exception λi4 = 1, when i = 1, 2, 3.

The entries in the cost matrix λij signify how much cost is incurred when
the compound configuration of three spots i is chosen when j is in fact the
right choice. For instance, the entry λ41 signifies the cost of classifying the com-
pound classification faulty faulty faulty as good good good, and therefore a cost
of 1 units is incurred. The order of the outcomes is irrelevant as long as the
classification-label pairs match. The cost matrix contains off-diagonal zeros to
allow misclassifications of some good spots if at least one good spot is classified
as good. If a good spot finally enters the subsequent analysis, our goal is fulfilled.
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Fig. 3. Classification results presented with a ROC curve (a) and as a function of
classification cost with a varying boundary threshold (b).



4 Experimental results

The covariance matrices and mean vectors of the class descriptive Normal dis-
tributions were estimated from data consisting of 7488 spots. The spots were
visually determined to be either valid or faulty enabling the derivation of the
class separating discriminant functions. Data consisting of 2881 spots, of which
2617 were valid and 264 faulty, was used to test the classifier. Each test spot was
considered to be an independent sample. The results are presented with a ROC
curve in Fig. 3 a.

The ROC curve characterizes the diagnostic accuracy of the classifier. The
false positive rate is the probability of incorrectly classifying a valid spot and
describes thus the specificity of our classifier. Equally, the true positive rate is
the probability of correctly classifying a faulty spot. As random guessing would
result in a linear curve connecting the points (0,0) and (1,1), our performance
is much improved. Fig. 3 a shows, the true positive rate of our classifier is high
even with rather low false positive rates indicating high sensitivity. However,
perfect classifiers would have true positive rates equal to 1.0. Note that the false
positive axis has been scaled from 0 to 0.2.

Attaining true positive rates close to one is difficult due to the various source
and type of noise on the array. However, the optimal working point of the classi-
fier can be found by associating costs with the different possible errors that can
be made. This was done to assess the quality of replicate spot classification. The
spots were considered in triplets with costs incurring each time a invalid spot is
labeled as valid or with all valid spots being classified as faulty. The resulting
curve is shown in Fig. 3 b.

The observing of Fig. 3 b shows that the location of the curve minimum is
shifted from 0. The costs assigned to misclassifications introduces a bias into the
class separating boundaries as the cost matrix is asymmetric. The classification
costs are therefore minimal when the threshold equals ca. -6. With our data, this
is the optimum working point. If more negative threshold is chosen, more faulty
spots become labeled as valid reducing the sensitivity of the classifier. On the
other hand, a more positive threshold reduces the specificity. However, costs also
incur when threshold equal to -6 is chosen because the classifier is imperfect.

The nonsymmetric slopes of Fig. 3 b are due to the different variances of the
features derived from valid and faulty spots. As the variance between the valid
spots is small, the specificity decreases faster with increasing threshold than
the sensitivity with decreasing threshold introducing costs. The features derived
form high intensity noise are well separated from those derived from valid spots
whereas the resemblance between valid spots and spot-like dirt is smaller. The
noise spots that are very different from the valid ones become classified as valid
only when the threshold is shifted very far away from the unbiased boundary.
Thus, the slope is very gentle when moving in the reduced sensitivity direction.



5 Summary

Microarray technology offers new ways to explore the functions of the genome.
For making reliable analyzes, the quality aspects of the data have to taken into
account. In this paper, we proposed an automated classification of microarray
image spots to classes faulty and good based on a on features derived form
the spatial characteristics of the individual spots on the microarray. Assessment
was presented for classification of individual spots using ROC analysis and for
compound classification of replicate measurements using a non-symmetric mis-
classification cost matrix.

References

1. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,
H. Coller, M.H. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S.
Lander. Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science, 286:531–537, 1999.

2. Yidong Chen, Edward R. Dougherty, and Michael L. Bittner. Ratio-based decisions
and the quantitative analysis of cdna microarray images. Journal of Biomedical
Optics, 1997.

3. Mei-Ling Ting Lee, Frank C. Kuo, G.A. Whitmore, and Jeffrey Sklar. Impor-
tance of replication in microarray gene expression studies: Statistical methods and
evidence from repetetive cdna hybridizations. Proc. Natl Acad. Sci. USA, 2000.

4. Yee Hwa Yang, Michael J. Buckley, Sandrine Dudoit, and Terence P. Speed. Com-
parison of methods for image analysis on cdna microarray data. Technical Report
584, Department of Statistics, University of California, Berkeley, December 2000.

5. Xujing Wang, Soumitra Ghosh, and Sun-Wei Guo. Quantitative quality control in
microarray image processing and data acquisition. Nucleic Acids Research, 29(15),
2001.

6. Ron Dror. Noise models in gene array analysis. Report in fulfillment of the area
exam requirement in the MIT Department of Electrical Engineering and Computer
Science, 2001.

7. Mukund Thattai and Alexander van Oudenaarden. Intrinsic noise in gene regula-
tory networks. Proc. Natl Acad. Sci. USA, 2001.

8. Ertugrul M. Ozbudak, Iren Kurtser Mukund Thattai, Alan D. Grossman, and
Alexander van Ouderaarden. Regulation of noise in the expression of a single
gene. Nature Genetics, 2002.

9. Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis and
Machine Vision. Chapman & Hall Computing, 1993.

10. David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining.
Adaptive Computation and Machine Learning Series. MIT Press, 2001.

11. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley & Sons, second edition, 2001.

12. J.P. Egan. Signal Detection Theory and ROC Analysis. New York: Academic
Press, 1975.

13. John A. Swets. Measuring the accuracy of diagnostic systems. Science, 240:1285–
1293, 1988.


