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This paper introduces the use of nutrition profiles as a first step in the development of a concept that is suitable

for evaluating forest nutrition on the basis of large-scale foliar surveys. Nutrition profiles of a tree or stand

were defined as the nutrient status, which accounts for all element concentrations, contents and interactions

between two or more elements. Therefore a nutrition profile overcomes the shortcomings associated with the

commonly used concepts for evaluating forest nutrition. Nutrition profiles can be calculated by means of a

neural network, i.e. a self-organizing map, and an agglomerative clustering algorithm with pruning. As an

example, nutrition profiles were calculated to describe the temporal variation in the mineral composition of

Scots pine and Norway spruce needles in Finland between 1987 and 2000. The temporal trends in the frequency

distribution of the nutrition profiles of Scots pine indicated that, between 1987 and 2000, the N, S, P, K, Ca,

Mg and Al decreased, whereas the needle mass (NM) increased or remained unchanged. As there were no

temporal trends in the frequency distribution of the nutrition profiles of Norway spruce, the mineral

composition of the needles of Norway spruce needles subsequently did not change. Interpretation of the (lack

of) temporal trends was outside the scope of this example. However, nutrition profiles prove to be a new and

better concept for the evaluation of the mineral composition of large-scale surveys only when a biological

interpretation of the nutrition profiles can be provided.

Introduction

Forests are complex ecosystems. Gaining an insight into the
condition of forests and the assessment of the future
development of forests under the present and predicted
environmental scenarios requires large data sets from long-
term monitoring programmes. At present several large-scale
forest monitoring programmes exist globally, i.e. the Interna-
tional Cooperative Programme on the Assessment and
Monitoring of Air Pollution Effects on Forests (ICP Forests)
in Europe and North America, Forest Focus in the EU, the
Acid Deposition Monitoring Network in East Asia, and the
Forest Health Monitoring Programme in the USA. Owing
to the relationships between the environment and the
foliar mineral composition, these programmes monitor,
among other ecosystem components, the mineral composition
of tree foliage. As a result, these programmes have over the
years built up large data sets of the mineral composition of tree
foliage.
Experiments under controlled conditions have shown

relationships between the mineral composition of tree foliage
and, for example, N deposition,1 and the ozone2 and CO2

concentration3 in the environment. Carefully designed experi-
ments allow the quantification of the joint effect of two or three
environmental characteristics on the mineral composition of
tree foliage, e.g. ozone and drought,4 ozone and a limited N
availability,5 CO2 and ozone,6,7 SO2 and NO2,

8 and ozone, P
and drought.9 However, when long-term environmental
changes are monitored, the controlled conditions of designed
experiments are replaced with complex real-world conditions.

The relationships between the environmental characteristics
and the mineral composition of tree foliage are, to some
extent, less clear in monitoring programmes under real-word
conditions than in designed experiments.10 Foliage analyses
in monitoring programmes fall short of the expectations
raised by foliage analyses in designed experiments. In
monitoring programmes, the relationships observed in con-
trolled experiments are probably buried in the variability
caused by planning, sampling, sample preparation, instru-
mental analysis and data evaluation.11 When a quality
assurance programme eliminates these sources of variation,
the significance of foliar mineral analysis as a tool for
environmental monitoring largely depends on the concept
used to evaluate the data, i.e.Critical Range, Nutrient–Element
Balance, etc. At present, most of the commonly used concepts
have one or several shortcomings (see further). Although, these
shortcomings can be surmounted by the experimental control
of designed experiments, they make evaluation of the mineral
composition of foliage in monitoring programmes relatively
problematic.
This study introduces the use of nutrition profiles as a first

step in the development of a more complete concept to evaluate
forest nutrition on the basis of large-scale foliar surveys. The
aims are: (1) to define and explain the concept of the nutrition
profile, and (2) to describe a mathematical method that can be
used in calculating nutrition profiles. These ideas are then
applied to describe the temporal variability in the mineral
composition of a foliar survey of 16 Norway spruce (Picea
Abies (L.) Karst) and 20 Scots pine (Pinus sylvestris L.) stands
carried out in Finland between 1987 and 2000. The major
questions to be addressed in this example are: (1) did the
mineral composition of tree foliage change between 1987 and
2000 and, if so, (2) how did the foliar nutrient concentration
change?

{ The opinions expressed in the following article are entirely those of
the author and do not necessarily represent the views of either the
Royal Society of Chemistry, the Editor, or the Editorial Board of JEM.
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Concepts for the evaluation of forest nutrition

Irrespective of which statistical methods are used, i.e. analysis
of variance, principal component analysis, cluster analysis etc.,
the evaluation of foliar mineral composition is based on the
well-known relationship between growth and the plant-
available concentration of an element. This relationship has
three regions: a deficient, an adequate and an excess range.12 At
a certain concentration of the element under study, the growth
will be optimal when all other elements are available in non-
limiting amounts. The element status of the plant is evaluated
on the basis of the foliar concentration (x1) of the element
under study, and described as the vector x ~ [x1], e.g. the
Critical Range (CR) and Deviation from Optimal Percentage
(DOP) concept.13 When at least one element is limiting plant
growth, alleviating the limiting growth factor results in a
growth increase towards the optimal biomass. The interactions
between elements are formalised as element ratios also known
as the Nutrient–Element Balance concept.14 An unbalanced
ratio indicates that one of the factors is limiting growth. The
element status of the plant is then evaluated by means of the
ratios between two (x1/x2) or more (x1 1 x2/x3) foliar element
concentrations, and it is described as the vector x ~ [x1,x2] or
x~ [x1 1 x2,x3]. Diagnostic systems such as the Diagnosis and
Recommendation Integrated System (DRIS)15 and the Com-
positional Nutrient Diagnosis (CND)16 are based on the
concept that plant growth is controlled by the foliar
concentrations of all the elements (x1, x2, x3, ...xd). DRIS
and CND compute all the possible two-way nutrient ratios x~
[x2/x1, x3/x1, ... xd/x1, x3/x2,...xd/x2,...xd21/xd]. Based on these
ratios, DRIS calculates a single correction factor for all
nutrients, whereas CND provides single correction factors for
any nutrient ratio. When DRIS and CND are expanded to
include nutrient concentrations, they can account for both the
element concentrations and interactions between two elements.
Although all of these concepts have proven to be useful, their
use is limited by one or several conceptual shortcomings. The
above-mentioned concepts either do not account for the
interactions between elements and/or the fact that the growth
of trees is controlled by the foliar concentrations (x1, x2, x3,
...xd) and contents of all elements (x1 6 FM, x2 6 FM, x3 6
FM,..., xd 6 FM), where FM is the foliar mass. As a
consequence, we defined the nutrition profile of a tree or stand
as the nutrient status, which accounts for all element
concentrations, contents and interactions between two or
more elements. The nutrition profile is formalised by the vector
x ~ [x1, x2, x3,..., xd 2 1, FM]. Trees or stands with similar
nutrition profiles form their own group. Each group k is
characterised by a so-called group nutrition profile (x̄k). The
nutrition profile of evergreen trees x ~ [(x1,...,xd 2 1,FM)C,
(x1,...,xd 2 1, FM)C 1 1,...,(x1...,xd 2 1, FM)C 1 N] is
more complicated than the profile of deciduous trees x ~
[x1,...,xd 2 1,FM] owing to the presence of a number of foliar
age-classes (C, C 1 1,..., C 1 N) in evergreens.

Method used to calculate the group nutrition profile
(x̄k)

A method that is suitable for calculating the group nutrition
profile needs to account for all element concentrations,
contents and interactions between two or more elements.
Therefore it has to preserve the interactions between the
elements of the vector x ~ [x1,x2,x3,...,xd 2 1,FM]. In other
words, the method has to preserve the topology of the data set.
If not, the aspect that makes the nutrition profile more
complete than the other concepts is lost. We propose a
clustering method17 based on the distance matrix of a self-
organizing map18 as a method to calculate the group nutrition
profile (x̄k). The calculations are then as follows:

The data are normalized beforehand so that the mean of
each variable is 0 and the variance becomes 1. The normal-
ization method scales the data linearly, which preserves the
structure of the absolute values of the measurements. The
method which is used to normalize the data defines the distance
between multidimensional vectors. For example, how should a
change of 1 mg g21 in nitrogen concentration be related to a
change of 1 g in the weight of 1000 needles? Normalizing all the
variances to unity solves this problem by defining that changes
in different variables are equal if they are in equal proportion to
their standard deviations. As a result, all variables have equal
weights. This is technically convenient, but it has serious
drawbacks in biological terms if the data processing methods
seek an explanation of the variance, as in principal component
analysis and other methods. However, the method applied in
this study does not explain the variance of the data. The
normalized data are only used to sort the observations. As
further data processing and interpretation are based on the
observed data, normalization does not have any drawbacks.
The normalized nutrition profile for each stand of the survey

is described as x. The vectors x are sorted with a self-organizing
map (SOM).18 Basically the SOM positions all the
d-dimensional vectors x in a d-dimensional space. These
positions in the d-dimensional space are projected on a
2-dimensional grid. A neighbourhood relationship controls
the projection such that the topology of the data set is
preserved. As a consequence vectors x, which are close to each
other in the d-dimensional space, will be close to each other in
the 2-dimensional projection. The mathematical solution for
the projection was formulated by Kohonen.18 Usually, the
SOM consists of a 2-dimensional regular grid of map units.
Each map unit i is represented by a prototype vector, mi ~

[mi1,...,mid 2 1,FMi], where d is the dimension of the input
vector. The prototype vectors define a tessellation of the input

space into a set of Voronoi sets Vi ~ {x|,x2 mi,v ,x2 mj, ;j

| i}, where x are the data vectors and ,x2mi, is the Euclidean
norm. The SOM quantifies the training data set with a
representative set of prototype vectors. Thus, each data vector
belongs to the Voronoi set of the prototype vector to which it is
most similar. The neighbourhood relationship, commonly a
Gaussian neighbourhood function, controls the quantization
process such that the topology of the data set is preserved. The
whole algorithm can be regarded as a non-parametric, non-
linear regression. Without the neighbourhood relationship the
SOM algorithm reduces to the k-means clustering algorithm.18

The prototype vectors of the SOM are used to calculate a
distance matrix, showing the median distances between
neighbouring map units i.e. neighbouring nutrition profiles.
A clustering algorithm divides the vectors x into a limited

number of groups. The U-matrix of the self-organizing map
(SOM) is a commonly used tool to cluster the SOM visually.19

Unfortunately, when humans identify clusters, the results
obtained by different people are not necessarily the same.
Therefore, an automated clustering algorithm which clusters
the distance matrix of the SOM, is preferred:
(1) Local minima of the distance matrix are used as seed

points for the base clusters. Local minima are the map units of
which the median distance to neighbouring units is smaller than
the median distance of any of the neighbouring units to their
neighbours.
(2) A region-growing algorithm17 finds the unassigned map

unit with the smallest distance to a cluster, and assigns it to the
corresponding cluster. The continuity constraint is used to
ensure that the clusters form continuous areas on the map.
Therefore, only map units are considered for merging when
they neighbour a cluster. Assigning the unassigned map units is
continued until all the map units belong to a cluster. This
procedure provides a partitioning of the map into a set of base
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clusters. The number of clusters equals the number of local
minima in the distance matrix.
(3) A cluster hierarchy may represent the true structure of the

data better than a single-level partitioning. Therefore, an
agglomerative clustering algorithm20 is used to construct the
cluster hierarchy from the base clusters. This produces a binary
tree, which may contain unrepresentative base clusters.
Unrepresentative base clusters occur when the distance
matrix has some local minima, which are products of
random variations in the data rather than real local maxima
of the probability density function.
(4) Unrepresentative base and intermediate clusters are

removed from the hierarchy. The pruning procedure, which
removes unrepresentative clusters from the hierarchy, is
discussed in detail by Vesanto and Sulkava.17 This procedure
gives a pruned cluster tree together with measures of the
clustering quality of the sub-cluster sets of each node in the
tree.
(5) The group nutrition profile (x̄k) is calculated as the vector

with the average values of the nutrition profiles (x) of the
members of group k. The group nutrition profiles are
calculated on the basis of the observed data.

The Finnish example

The concept and mathematical procedure explained above
were applied to an example of a large-scale foliar survey carried
out in Finland from 1987 to 2000. The example introduces the
foliar survey and demonstrates the procedure for calculating
group nutrition profiles. The quality and robustness of the data
and calculations are tested, and further data processing to
describe the temporal dynamics of the nutrition profiles is
demonstrated.

The large-scale foliar survey 1987–2000

The survey was initiated as a part of the UN/ECE International
Co-operative Programme on Assessment and Monitoring of
Air pollution effects on Forests (ICP Forests). Needle samples
were collected from 36 plots of the Finnish Level I network of
ICP Forests.21 The 36 stands, which were located on mineral
soils in background areas in different parts of the country, were
sampled annually between 1987 and 2000. Sixteen of the stands
were dominated by Norway spruce (Picea abies Karst. (L.))
and 20 by Scots pine (Pinus sylvestris L.). In 1990 and 1991 only
6 and 15 stands were sampled, respectively. Five stands were
felled during the 14 year period, and could no longer be
sampled. These stands were replaced by five other Level I plots
in the vicinity of the original stand. Foliar N, S, P, K, Ca, Mg
and Al concentrations were determined on 367 composite
samples. This means that 27% of the maximum possible
number of 504 composite samples (36 plots 6 14 years) were
missing. The needle mass of 1000 needles (NM) was not
measured in the years 1990 and 1991 with the result that 6% of
the measurement sets did not contain NM.
Every year between October and November, the same two

persons collected the needle samples from dominant or co-
dominant trees in the stands. Ten trees were selected in each
stand, and three branches with current- and previous-year
shoots were cut with an 18 m long pruning device from the top
third of the crown of each sample tree. The branches were
stored in a freezer (218 uC) during the period between
sampling and pre-treatment. Pre-treatment was performed as
follows: the branches were cut up in order to separate the
shoots with different needle-year classes. Shoots with the same
needle-year class of each tree were pooled and further treated as
a separate sample. Each sample was then divided into two
parts: three pine shoots per tree or five spruce shoots per tree
for determining the needle mass (NM), and the rest of the
sample for determining the foliar element concentrations.

Needle mass was determined as follows: 10 needles were
removed from each shoot and the needles dried for 24 h at
105 uC. 300 Scots pine needles or 500 Norway spruce needles
were then weighed (10 trees per plot6 3 or 5 shoots per tree6
10 needles per shoot), and the weight converted to a 1000-
needle basis. The foliar element concentrations were deter-
mined as follows: the shoots were dried at 40 uC for 10 days and
the needles were then removed from the shoots. The needles
were then ground using an ultracentrifugal mill (Retsch type
Zm 1). The mesh diameter of the ring sieve was 1 mm. All 10
samples from the same year class on each plot were pooled by
combining equal weights of needle powder from each tree. The
elemental composition (N, S, P, K, Ca, Mg and Al) was
determined on the pooled samples. In 1987 and 2000 the 10
trees from each plot were also analysed separately.
The samples from all sampling years were analysed in the

same laboratories of the Finnish Forest Research Institute (the
Central Laboratory, Vantaa, and the Parkano Research
Station) by the same personnel. The N concentration of the
needles was determined by the Kjeldahl method (Tecator
Digester and Distilling Unit) between 1987 and 1994, and
without further pre-treatment on a CHN analyser from 1995
onwards (1995–1998: LECO CHN-600 Analyser, 1999–2000:
LECO CHN-2000 Analyser). Boron was determined by
Azomethin H-reagent and a UV-VIS spectrophotometer
between 1987 and 1997. The S, P, K, Ca, Mg and Al
concentrations in the needles were determined, following wet
digestion in HNO3/H2O2, by inductively coupled plasma
atomic emission spectroscopy (ICP-AES). From 1987 until
1997, digestion was performed by the Open Wet Digestion
method (Thermolyne 2200 Hot Plate), followed by determina-
tion on an ARL 3580 ICP-emission spectrometer. Since 1998
the needle samples were digested by the Closed Wet Digestion
method in a microwave (CEM MDS 2000). The analyses were
then performed on a TJA Iris Advantage ICP-emission
spectrometer. Unwashed needles were analysed, and the results
were expressed per 105 uC dry weight.

Quality control

Between 1987 and 1995 the quality of the analytical methods
was checked by means of method blanks, repeated measure-
ment of internal reference samples, repeated measurement of
certified reference samples and participation in inter-laboratory
tests. The laboratories participated in 8 international (IUFRO
International Forestry Sample Exchange) and 5 national
(Finnish Forest Research Institute Inter-Calibration) inter-
laboratory tests. In 1995 the quality assurance system was
extended to include the repeated measurement of certified
reference samples (CRM 101). Between 1995 and 2000, the
laboratories participated in 14 international (International
Plant-Analytical Exchange Programme, and ICP-Forests inter-
laboratory ring tests) and one national (Finnish Forest
Research Institute Inter-Calibration) inter-laboratory test.
The methods used on the current and earlier instruments and
equipment were validated with standards and older samples
from inter-laboratory proficiency tests.
In total, the laboratory analysed 9 plant samples in national

and 120 plant samples in international inter-laboratory tests
between 1987 and 2000. The limited number of outliers (not
given) showed that the relative quality, compared with other
analytical laboratories working in the field of plant analysis, is
good. During the same period the relative standard deviation
(RSD), based on repeated measurements of 11 different
internal control samples and a measure of the precision of
the methods, ranged between 0.7 and 1.8% for N, 1.5 and 5.1%
for S, 1.5 and 4.1% for P, 1.7 and 7.5% for K, 1.5 and 4.5% for
Ca, 1.1 and 4.3% for Mg and 1.6 and 4.5% for Al. Since 1995,
the accuracy of the analytical methods was determined by
repeated measurements of a certified reference sample. The
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accuracy for N, S, P, Ca andMg satisfies the needs of this study
(Table 1). The trend in the accuracy of the methods for
determining S (Table 1) may have overestimated a decreasing
trend in foliar S concentrations by 12% between 1995 and 1999.
The recovery of Al was 30% too low compared with the
certified Al concentration (Table 1). The low Al recovery is
caused by not using HF in the sample digestion method.
Nevertheless, the precision for Al (RSD of 4.5%) satisfies the
needs of this study.

Calculation of the nutrition profiles

By definition, nutrition profiles contain the element concentra-
tion of all elements and the total foliar biomass (FM). Needle
samples were analysed for N, S, P, K, Ca, Mg and Al, in this
survey. Therefore, a nutrition profile with the N, S, P, K, Ca,
Mg, Al concentrations and FM is likely to best represent the
structure of the data set. However, the number of repetitions
(367) is too low to construct reliable 8-dimensional nutrition
profiles because the data would be overfitted. We decided to
calculate the nutrition profiles based on N, S, P and FM only,
thus excluding K, Ca, Mg and Al. The K, Ca, Mg and Al
concentrations were added in the presentation of the profiles.
This approach prevented overfitting of the data. By definition,
nutrition profiles should also contain the total foliar biomass
(FM). Total foliar mass is the logical growth response to be
used together with foliar concentrations. However, as total
foliar mass data were not available for the monitored plots, we
used the mass of 1000 needles (NM) as a substitute for the total
needle mass. We were not able to find any study which
supported or tackled the relationship between the mass of 1000
needles and the total needle mass. It is not clear which processes
are measured by the mass of 1000 needles. Although the mass
of 1000 needles lacks physiological meaning, it accounts for
some dynamics and its use is reported to improve the
interpretation of the nutrient status of tree foliage.22–27 As a
result, the mass of 1000 needles was considered to be an
acceptable substitute for the total needle mass in the nutrition
profiles of this study. When available, basal area increment
could also substitute total foliar biomass.28 Despite these
departures from the concept of the nutrition profile, the main
features of the concept were respected, i.e. the data evaluation
method accounted for the element concentrations, contents
and interactions between two or more elements. Nutrition
profiles containing current-year N, S and P concentrations and
NM from 1987 to 2000 from all the 36 plots were submitted to
the SOM. Amap consisting of a regular hexagonal grid with six
by nine map units was used in the SOM. The map was trained
using the batch algorithm18 in two rough training epochs and
five fine-tuning epochs. The final neighbourhood width was 1 in
order to ensure good quality quantization. The SOM Tool-
box,29 available at http://www.cis.hut.fi/projects/somtoolbox
was used to train the SOM and calculate the distance matrix.
The quality of the SOM quantization was measured using

the average quantization error, which is the average distance
from each data vector to the closest prototype vector. The

average quantization error was 0.82, which is an acceptable
value for this error given the number of map units (six by nine).
The average number of measurements per map unit was 6.8.
Increasing the map size could have decreased the quantization
error but could also have led to overfitting of the data in
specific too few measurements per map unit. Preservation of
the topology of the maps was measured by means of the
topographic error. This is the percentage of data vectors for
which the best matching unit and the second best matching unit
are not neighbouring map units.30 The topographic error was
5.5%. Due to the low number of topographic errors, the
topology of the data set was preserved well in the quantization
process. Therefore, clustering the distance matrix of the SOM
was expected to give reliable results. The distance matrix was
clustered with an agglomerative clustering algorithm with
pruning. The quality of the clustering was measured with the
gap index Igap. The Igap value for the final clustering was 1.67.
This means that the cluster was better than a random clustering
with a probability of 0.7, and the quality of the clustering is
therefore considered to be good. In addition, each cluster
contained more than 25 samples. Although the data set was
small for the applied methods, which could affect the
generalization property of the results, the quality indices
given in this section indicate a realistic representation of the
structure of data set. Due to the pruning algorithm, cluster 2
was pruned out of the hierarchy, and bottom-level clusters 1
and 4 were combined into cluster 10 in the final clustering. As a
result, 6 groups, each represented by a group nutrition profile,
were retained. The topology of the group nutrition profiles,
named 3, 5, 6, 7, 8 and 10, is presented in Fig. 1. The element

Table 1 Average value ¡ half width of the 95% confidence interval of CRM 101 certified reference sample. N, S, P, Mg and Ca are expressed as
mg.kg21 dry mass and Al as mg.kg21 dry mass

N S P Mg Ca Al

CRM 101
Certified 18.89 ¡ 0.18 1.70 ¡ 0.04 1.69 ¡ 0.04 0.62 ¡ 0.09 4.28 ¡ 0.08 173 ¡ 5
1995 (4/10)a 17.7 ¡ 1.8 1.80 ¡ 0.09 1.81 ¡ 0.09 0.62 ¡ 0.04 4.10 ¡ 0.25 124 ¡ 11
1996 (10/10)a 18.6 ¡ 0.6 1.78 ¡ 0.04 1.77 ¡ 0.08 0.62 ¡ 0.04 4.31 ¡ 0.22 127 ¡ 11
1997 (7/5)a 18.8 ¡ 2.2 1.73 ¡ 0.14 1.81 ¡ 0.08 0.61¡ 0.10 4.39 ¡ 0.16 123 ¡ 16
1998 (5/14)a 18.8 ¡ 0.8 1.65 ¡ 0.16 1.75 ¡ 0.14 0.60 ¡ 0.06 4.09 ¡ 0.29 126 ¡ 9
1999 (23/23)a 19.2 ¡ 1.0 1.66 ¡ 0.09 1.79 ¡ 0.12 0.61¡ 0.02 4.22 ¡ 0.31 119 ¡ 17
2000 (10/10)a 19.1 ¡ 0.8 1.60 ¡ 0.06 1.74 ¡ 0.08 0.60 ¡ 0.02 4.15 ¡ 0.28 117 ¡ 15
a (number of repetitions for nitrogen/number of repetitions for S, P, Mg, Ca and Al).

Fig. 1 Two dimensional projection on 6 by 9 map units of the
4-dimensional vectors x which were sorted in a 4-dimensional space
with a self-organizing map. A neighbourhood relationship controlled
the projection such that the topology of the data set is preserved. As
a consequence, vectors x, which are close to each other in the
4-dimensional space, are close to each other on the map. In this figure
the element concentrations of the vectors x were replaced by the
number (3, 5, 6, 7, 8 or 10) of the most similar group nutrition profile.
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concentration and NM for each group nutrition profile is given
in Table 2. The N, S, P, K, Mg concentrations and Mg:N ratio
were similar for the same profiles in both Norway spruce and
Scots pine. Due to the autecology of the tree species, however,
the values for Ca, Al, Ca:Al, S:N and NM were very different
for Scots pine and Norway spruce needles. The topology from
Fig. 1 is reflected in the values of the nutrition profiles in
Table 2.
A 14 year sequence with the group nutrition profiles that best

represented the data for N, S, P and NM was made for each
plot (Table 3). The variation in the chemical composition of the
foliage is now captured by the group nutrition profiles for Scots
pine and Norway spruce separately. However, the temporal
and spatial variability in forest nutrition is not yet described.
This example was limited to a description of the temporal
variability. The temporal variability was described by means of
an individual transition matrix for both tree species (Table 4).
The analysis could be extended to a spatio-temporal analysis by
calculating individual transition matrices for different regions.
A transition matrix indicates the probability of switching from
one profile to another between two consecutive years. The
transition matrices were calculated as follows. First, the
number of data vectors Zk belonging to a group nutrition
profile x̄k was counted for each of the profiles k~ 1,..., 6. Then
the number of Zkl was counted; these are observations that
belong to profile k in year t and belong to profile l in year t1 1.
The maximum likelihood estimates of the transition probabil-
ities (âkl) for the temporal variation of the nutrition profiles
were calculated by âkl ~ Zkl/Zk, where k and l are the number
of group nutrition profiles, i.e. 6. The transition matrix is a
probabilistic model of the temporal variation of the nutrition
profiles and allows, by means of iteration, calculation of the
frequency distribution of the nutrition profiles at steady state.
The accuracy of the analytical methods sometimes equalled

or even exceeded the differences in concentrations between
nutrition profiles. Therefore, it cannot be ruled out, for these
shifts and nutrients, that the shift from one year to another is
caused by the analytical method and not by a real change in the
needle composition. The robustness of the nutrition profiles to
changes in a single element concentration was tested for N, S
and P. The changes in the element concentration were within

the limits of the accuracy of the N, S and P analysis. Nutrition
profiles 3, 5, 6, 8 and 10 were robust for 79 to 96% of the
changes in the N, S and P concentration. Profile 7 was robust
for 87 % of the changes in N concentration. However, profile 7
was robust for only 65 of the changes in the S and 73% of the
changes in P. Despite the fact that for a single element the
accuracy of the analytical methods can be equal or even exceed
the differences in concentrations between some group nutrition
profiles, shifts between group nutrition profiles usually
represent a real change in nutrient concentrations and/or NM.

Temporal variation of the foliar nutrient concentrations

The questions that we wanted to answer in this example were:
(1) did the mineral composition of Norway spruce and Scots
pine change between 1987 and 2000 and, if so, (2) how did the
foliar nutrient concentrations change?
(1) The observed frequency distribution of the profiles was

counted from the 36 14 year sequences (Table 2). Profiles 3, 5,
6, 7, 8 and 10 occurred 4, 28, 13, 84, 23 and 0 times,
respectively, for Norway spruce, and 39, 1, 13, 20, 4 and 139
times for Scots pine (Table 5). The observed frequency
distribution of the profiles is not uniform for Norway spruce
(Chi-square, p~ 0.00) or for Scots pine (Chi-square, p~ 0.00).
The observed frequency distribution showed that, given the
environmental conditions between 1987 and 2000 in Finland,
profile 7 dominated the chemical foliar composition of Norway
spruce and profile 10 dominated the composition of Scots pine
needles.
The transition matrix (Table 4), which describes the

probabilities that the chemical composition of the needles
shifts from one profile to another, is a probabilistic model of
the temporal variation of the nutrition profiles. The probabil-
istic model can be used to calculate the frequency distribution
of the nutrition profiles at the steady state. At the steady state
the frequency distribution of the nutrition profiles is constant
over time. Note that these calculations are valid predictions
only if the transition matrix does not change during the period
needed to converge on the steady state. This assumes that the
future environmental conditions will be similar to the
conditions experienced between 1987 and 2000. This is an

Table 2 Mean values and standard deviations of the N, S, P, K, Mg, Ca and Al concentration (mg.g21), Mg:N, Ca:Al and S:N ratios
(dimensionless) and needle mass (g per 1000 needles) for the six group nutrition profiles of Norway spruce and Scots pine in Finland

Nutrition profiles

3 5 6 7 8 10

Norway spruce
N 13.7 ¡ 2.63 11.4 ¡ 0.99 10.2 ¡ 0.36 12.4 ¡ 0.96 13.3 ¡ 1.33 n.a. ¡ n.a.
S 1.06 ¡ 0.09 0.82 ¡ 0.06 0.86 ¡ 0.05 0.94 ¡ 0.09 1.10 ¡ 0.10 n.a. ¡ n.a.
P 1.75 ¡ 0.11 1.19 ¡ 0.15 1.62 ¡ 0.24 1.53 ¡ 0.21 2.02 ¡ 0.22 n.a. ¡ n.a.
K 7.15 ¡ 0.40 6.19 ¡ 0.76 6.48 ¡ 1.26 6.39 ¡ 1.16 6.66 ¡ 1.03 n.a. ¡ n.a.
Mg 1.18 ¡ 0.11 1.10 ¡ 0.12 1.17 ¡ 0.13 1.19 ¡ 0.16 1.30 ¡ 0.15 n.a. ¡ n.a.
Ca 3.97 ¡ 0.56 4.23 ¡ 1.18 3.73 ¡ 1.09 5.00 ¡ 1.35 5.00 ¡ 1.14 n.a. ¡ n.a.
Al 0.05 ¡ 0.02 0.03 ¡ 0.02 0.03 ¡ 0.01 0.04 ¡ 0.02 0.06 ¡ 0.03 n.a. ¡ n.a.
Mg:N 0.09 ¡ 0.02 0.10 ¡ 0.01 0.16 ¡ 0.01 0.10 ¡ 0.01 0.10 ¡ 0.02 n.a. ¡ n.a.
Ca:Al 100 ¡ 50.0 173 ¡ 113 117 ¡ 37.0 144 ¡ 95.9 101 ¡ 57.2 n.a. ¡ n.a.
S:N 0.08 ¡ 0.02 0.07 ¡ 0.01 0.08 ¡ 0.01 0.08 ¡ 0.01 0.08 ¡ 0.02 n.a. ¡ n.a.
NM 5.60 ¡ n.a. 4.04 ¡ 0.58 4.33 ¡ 0.79 4.23 ¡ 0.73 4.66 ¡ 0.86 n.a. ¡ n.a.

Scots pine
N 13.6 ¡ 0.86 11.2 ¡ n.a. 9.65 ¡ 0.63 12.3 ¡ 0.71 13.6 ¡ 0.71 11.9 ¡ 1.10
S 1.09 ¡ 0.09 0.79 ¡ n.a. 0.87 ¡ 0.10 0.96 ¡ 0.08 1.13 ¡ 0.12 0.89 ¡ 0.08
P 1.81 ¡ 0.16 1.19 ¡ n.a. 1.60 ¡ 0.15 1.46 ¡ 0.13 2.05 ¡ 0.15 1.46 ¡ 0.13
K 5.68 ¡ 0.41 4.58 ¡ n.a. 6.43 ¡ 0.66 5.18 ¡ 0.70 5.88 ¡ 0.46 5.11 ¡ 0.53
Mg 1.18 ¡ 0.17 1.00 ¡ n.a. 1.11 ¡ 0.15 1.08 ¡ 0.08 1.13 ¡ 0.06 1.06 ¡ 0.13
Ca 2.41 ¡ 0.41 2.35 ¡ n.a. 2.95 ¡ 1.02 2.12 ¡ 0.43 2.26 ¡ 0.18 2.00 ¡ 0.40
Al 0.34 ¡ 0.10 0.28 ¡ n.a. 0.10 ¡ 0.09 0.26 ¡ 0.08 0.37 ¡ 0.05 0.24 ¡ 0.08
Mg:N 0.09 ¡ 0.02 0.09 ¡ n.a. 0.12 ¡ 0.02 0.09 ¡ 0.01 0.08 ¡ 0.01 0.09 ¡ 0.01
Ca:Al 8.14 ¡ 3.95 8.27 ¡ n.a. 40.4 ¡ 17.2 10.2 ¡ 2.74 6.23 ¡ 1.40 9.03 ¡ 3.17
S:N 0.08 ¡ 0.01 0.07 ¡ n.a. 0.09 ¡ 0.01 0.08 ¡ 0.01 0.08 ¡ 0.12 0.08 ¡ 0.01
NM 12.5 ¡ 2.70 n.a. ¡ n.a. 5.27 ¡ 1.74 8.14 ¡ 0.46 8.35 ¡ 0.95 11.5 ¡ 2.43
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unrealistic assumption. Therefore, the difference between the
observed frequency distribution (1987–2000) and the frequency
distribution at the steady state are only presented as measures
of the temporal variation in the nutrition profiles and not as
predictions. The steady state frequency distribution for
Norway spruce (Table 5) was derived from the transition
matrix for Norway spruce. Evidence is, however, missing

(Chi-square, p ~ 0.90) to show that the observed frequency
distribution and the frequency distribution at the steady state
are different for Norway spruce. It was concluded that there
were no significant temporal dynamics in the frequency
distribution of the group nutrition profiles of Norway spruce
between 1987 and 2000. For Scots pine, the frequency
distribution at the steady state (Table 5) is different from the

Table 3 Group nutrition profiles, which best represent the observed N, S, P concentrations and NM, for each monitored plots from 1987 to 2000.
The plot numbers are the numbers used in the ICP Forest level I programme. Ns denotes plots dominated by Norway spruce, Sp plots dominated by
Scots pine, and n.a. years and plots without data. The numbers refer to the group nutrition profiles

Plot 87 88 89 90 91 92 93 94 95 96 97 98 99 00

426 Ns n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5 7
532 Ns 8 8 8 n.a. 8 7 7 8 7 6 7 8 7 7
556 Ns 8 8 8 n.a. n.a. 7 7 8 7 7 6 7 7 7
581 Sp 3 3 10 n.a. 3 7 3 10 10 10 3 3 10 10
685 Sp n.a. n.a. n.a. n.a. n.a. 10 10 3 3 10 10 3 10 3
819 Ns 8 8 8 n.a. 7 7 7 7 7 7 7 7 7 7
1078 Ns 7 7 7 n.a. 7 8 7 7 7 6 5 7 5 7
1104 Sp 7 3 10 n.a. 7 10 10 10 10 10 10 10 10 10
1108 Ns 7 7 7 n.a. 7 7 5 7 7 5 5 5 n.a. 3
1112 Sp 7 3 7 n.a. 3 7 7 7 10 10 10 10 10 10
1117 Ns 8 8 8 n.a. 3 7 7 8 7 7 7 7 5 7
1121 Ns 7 7 7 n.a. 7 5 5 5 5 5 5 5 5 5
1190 Sp 10 3 10 n.a. 10 10 10 10 10 10 10 10 10 10
1194 Ns 7 8 7 n.a. 3 7 7 7 7 7 5 7 5 n.a.
1198 Ns n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 8 7
1591 Ns n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5 5
1721 Ns 7 3 7 n.a. n.a. 7 5 6 7 6 7 7 n.a. n.a.
1840 Sp 7 8 10 n.a. n.a. 10 10 10 10 10 10 10 n.a. n.a.
1901 Sp n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10 10
1927 Ns 7 7 7 n.a. n.a. 7 5 7 7 7 7 7 5 7
2018 Sp n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10
2100 Sp n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10 10
2151 Sp 7 3 10 n.a. 10 10 10 10 10 10 10 10 n.a. n.a.
2709 Sp 10 3 10 n.a. n.a. 10 10 10 10 10 10 10 10 10
2841 Ns 8 8 8 n.a. n.a. 7 5 7 6 7 7 7 6 7
3103 Ns n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6 6 6 7
3163 Ns 6 7 6 n.a. n.a. 6 5 5 5 n.a. n.a. n.a. n.a. n.a.
3259 Sp 10 3 10 n.a. n.a. 7 10 10 10 10 10 10 10 10
3350 Sp 10 10 10 0 n.a. 10 10 10 10 10 10 10 10 10
3606 Sp 6 3 3 7 7 10 3 3 10 3 10 10 10 10
3612 Sp 6 6 6 n.a. n.a. 6 6 6 6 6 6 6 6 10
3690 Sp 6 3 10 5 10 10 10 10 10 3 10 10 10 10
3708 Sp 3 3 3 10 10 10 3 3 3 3 3 10 10 10
3819 Sp 7 3 10 7 n.a. 7 7 7 7 10 10 10 10 10
3894 Sp 7 10 10 10 n.a. 10 3 10 10 10 10 10 10 10
3961 Sp 8 3 3 10 n.a. 10 8 10 8 3 3 10 10 3

Table 4 The transition matrices for Norway spruce and Scots pine between 1987 and 2000. The transition matrix shows the probability of
switching from one specific profile in year t (row) to a specific nutrition profile in the consecutive year t 1 1 (column)

Year t 1 1

Norway spruce Scots pine

Year t 3 5 6 7 8 10 3 5 6 7 8 10

3 0.00 0.00 0.00 1.00 0.00 0.00 0.38 0.00 0.00 0.11 0.00 0.51
5 0.00 0.50 0.08 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
6 0.00 0.10 0.20 0.70 0.00 0.00 0.17 0.00 0.75 0.00 0.00 0.08
7 0.04 0.13 0.11 0.60 0.11 0.00 0.28 0.00 0.00 0.33 0.06 0.33
8 0.00 0.00 0.00 0.37 0.63 0.00 0.50 0.00 0.00 0.00 0.00 0.50
10 0.00 0.00 0.00 1.00 0.00 0.00 0.11 0.01 0.00 0.01 0.02 0.86

Table 5 The observed and the steady state distribution frequency (%) of the nutrition profiles. Frequencies of the steady state distribution were
calculated with a transition matrix

Norway spruce Scots pine

3 5 6 7 8 10 3 5 6 7 8 10

Observed freq. (%) 2.6 18.4 8.5 55.3 15.2 n.a. 18.1 0.4 6.0 9.3 1.9 64.3
Steady state freq. (%) 2.6 15.8 9.2 55.3 17.1 n.a. 16.7 0.9 0 3.7 1.4 77.3
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observed frequency distribution of the nutrition profiles (Chi-
square, p ~ 0.00). The temporal trends in the frequency
distribution of the group nutrition profiles of Scots pine
indicated an increasing importance of profile 10, accompanied
by a decreasing importance of all other profiles between 1987
and 2000.
(2) The temporal trends in the frequency distribution of the

group nutrition profiles of Scots pine indicated an increasing
abundance of profile 10, accompanied by a decreasing
importance of all other profiles. This means that between
1987 and 2000 the N, S, P, K, Ca, Mg and Al decreased,
whereas the NM increased or remained unchanged. As there
were no temporal trends in the frequency distribution of the
group nutrition profiles of Norway spruce, the mineral
composition of the needles of Norway spruce needles
subsequently did not change between 1987 and 2000. The
same questions were addressed with the Critical Range and
Nutrient-element Balance concept. The similarities and differ-
ences between these concepts and the nutrition profiles can be
derived from this study and Lorenz et al.31 It should be noted
that foliar surveys can be used to ascertain which elements are
in short or excessive supply within the plant, but the cause of
the problem cannot be determined without additional data.
Interpretation of the (lack of) temporal trends was outside the
scope of this example.

Perspective

Although Critical Range (CR), Deviation from Optimal
Percentage (DOP), Nutrient–Element Balance, Diagnosis and
Recommendation Integrated System (DRIS) and the Compo-
sitional Nutrient Diagnosis (CND) concepts have proven to be
useful for evaluating the mineral composition of tree foliage,
their use is limited especially in monitoring programmes, by
one or several conceptual shortcomings. CR and DOP do not
account for the interactions between elements. In addition to
these concepts Nutrient–Element Balance, DRIS and CND do
not account for the fact that the growth of trees is controlled by
the foliar concentrations and contents of all elements. As a
consequence, we defined the nutrition profile of a tree or stand
as the nutrient status, which accounts for all element
concentrations, contents and interactions between two or
more elements. Trees or stands with similar nutrition profiles
form their own group. Each group is characterised by a so-
called group nutrition profile. The approach, which we called
nutrition profiles, differs from commonly used concepts in the
following characteristics:
(1) Most studies, apart from a few exceptions,32–34 limit the

evaluation of large-scale foliar surveys to evaluating the foliar
element concentrations. There is, however, clear evidence that
element concentrations alone do not fully characterize plant
element turnover.35 Therefore, it is desirable to evaluate foliar
surveys by simultaneously comparing the element concentra-
tion, the element content, and the growth response.27 A
nutrition profile contains explicitly the element concentration
and foliar mass, and thus implicitly the element content and
ratios. Owing to the neighbourhood relationship in the self-
organizing map (SOM), which was used to calculate the group
nutrition profiles, the relationships between the element
concentrations and foliar mass are preserved. As a conse-
quence, group nutrition profiles represent the element con-
centration, content and ratios, and thus allow simultaneous
comparison of the element concentration, content, ratios and
the growth response.
(2) Nutrition profiles contain untransformed data and

therefore have the potential for a straightforward interpreta-
tion. Due to the fact that a group nutrition profile represents a
group of stands, the interpretation of the group profile serves
all the stands characterised by this profile. Nutrition profiles

are based on the relationship between growth and the element
concentrations in the plant. Therefore, existing threshold and
classification values for element concentrations, contents and
ratios can be used to interpret the nutrition profile. In addition,
because nutrition profiles capture the relationships between
elements, the interpretation can be based on the relationships
between elements and, through this, largely overcome the
problems associated with the use of threshold values.12,35,36 To
benefit from the multi-dimensionality of the nutrition profiles,
a set of threshold values, classification values, ratio and
relationships between elements, should be used to describe a so-
called fingerprint of a specific environmental condition, for
example, a fingerprint for elevated N deposition, elevated CO2

concentrations, elevated ozone concentrations etc. It should be
noted that a successful interpretation of the nutrition profile
largely depends on the accuracy of the threshold and
classification values with which the analytical results are
compared. Unfortunately, little is known about nutrient stress
conditions in most natural environments35,36 and establishing
threshold and classification values is complicated by experi-
mental difficulties.12 However, nutrition profiles allow simul-
taneous comparison of the element concentration, content and
foliar mass. Therefore, vector analysis26,27 can be used to
interpret the temporal or the spatial variation of the nutrition
profiles. When a biological interpretation of the nutrition
profiles can be provided, nutrition profiles might prove to be a
new and better concept for the evaluation of the mineral
composition of large-scale surveys.
(3) A group nutrition profile (x̄k) describes the characteristic

nutrient status (in the example the average one) of a group of
trees or stands with similar nutrition profiles (x). This means
that there is variation in the element concentrations and foliar
mass within a profile. This variation within the profile is no
longer considered when the spatial and/or temporal variation
of group nutrition profiles is studied. Temporal or spatial
variation within a group profile will remain undetected. In this
respect group nutrition profiles act as a smoothing agent.
(4) It is the number of replicate samples in the monitoring

program that determines the maximal dimension of the group
nutrition profiles. The number of replicate samples is the
number of plots multiplied by the number of years, minus the
missing values. In the example, 367 replicate samples were used
to calculate 4 dimensional group nutrition profiles (N, S, P and
NM). Reliable group nutrition profiles, which contain ten or
more elements, should be calculated from large-scale foliar
surveys with thousands of replicate samples.
Although the example demonstrated the potential of the

concept, it does not fully explore the possibilities of this
technique:
(1) Element concentrations and needle mass from current

and previous-year needles could be included in the profile x ~
[(x1,...,xd 2 1,FM)C,(x1,...,xd 2 1,FM)C 1 1]. This could help to
show the dynamics of elements and to improve the interpreta-
tion of the nutrition profile under conditions in which threshold
and classification values are lacking.
(2) The spatial variation was not described in the example.

However, the temporal variation was described by means of
annual changes. More complex models of the spatial and
temporal variability could describe the spatial-temporal history
of the tree or stand’s foliage. Modelling the spatial and
temporal variation could help to understand the processes
underlying the changes in nutrition profiles.
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