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Abstract

We present a general framework for Self-

Organizing Maps, which store probabilistic

models in map units. We introduce the neg-

ative log probability of the data sample as the

error function and motivate its use by showing

its correspondence to the Kullback-Leibler dis-

tance between the unknown true distribution of

data and our empirical models. We present a

general winner search procedure based on this

probability measure and an update step based

on its gradients. As an application, we derive

the learning rules for a particular probabilis-

tic model that is used in user profiling in mo-

bile communications network. Due to the con-

strained nature of the parameters of our prob-

abilistic model, we introduce a new parameter

space, in which the gradient update step is per-

formed. In the experiments, we show clustering

of user profiles using calling data involving nor-

mal users of mobile phones and users that are

known to be victims of fraud. In the summary,

we discuss further applications of the approach.

1 Introduction

The Self-Organizing Map [1] [2] is one of the

most popular neural network models for unsu-

pervised learning. It has been successfully ap-

plied in clustering and visualization of high di-

mensional data. However, application of the

standard Self-Organizing Map algorithm relies

on the validityof the squared Euclidean distance

between the map units and data as an error func-

tion. This condition is fulfilled for most cases

involving feature vectors, but is not valid for pa-

rameters of probabilistic models, which are the

focus of this paper.

In this paper, we derive a general framework

for learning Self-Organizing Maps, which store

probabilistic models in the map units. We show

that minimizing the Kullback-Leibler distance

between the unknown true generator of data and

our empirical models leads to minimizing the

negative log probability of the data with our em-

pirical model. The winner search is based on

this probability measure. The adaption step is

based on the gradients of this probability mea-

sure with regard to the parameters of the proba-

bilistic models.

We present an application of this framework

to learning multiple user profiles in an unsuper-

vised fashion from calling data from a mobile

communications network. The models are gen-

erative probability density models, which ex-

press dynamic transitions of an observed vari-

able call. Since the models are conditional den-

sities, the parameters are constrained in a way

which makes the direct application of gradient

update unsuitable. Therefore, we introduce a

new parameter space, in which the gradient up-

date step takes place. The constrained parame-

ters can be calculated with the softmax function.

The learning process reinforces the constraints

during the learning, so that the models are guar-

anteed to be proper.

A novel aspect of our work is the application

of the Self-Organizing Map to dynamic proba-

bilistic models. Previously, Kohonen had stated

that implementation of selective responses to

dynamic phenomena using the Self-Organizing

Map is one of the more difficult problems. He



defines a framework for such implementations

by defining operator maps [2], where cells are

tunable operators, usually filters for dynamic

patterns. Kohonen sees as the central prob-

lem the tuning of such operators to an input se-

quence. Within this framework falls the work of

Lampinen and Oja [3], who introduced a Self-

Organizing Map algorithm for autoregressive

models, where the map units consist of linear

prediction coefficients of linear autoregressive

models. Kangas [4] reports work with opera-

tor maps for analyzing speech data. Joutsensalo

[5] combines the Self-Organizing Map learning

rule with Oja’s subspace rule for data compres-

sion and representing non-linear data distribu-

tions or manifolds. The latest work in this line

is the Adaptive-Subspace SOM of Kohonen [6],

which — with its modular architecture — learns

to identify input patterns subject to some simple

transformations. The common thread of these

works is that models are stored in the map units

of Self-Organizing Maps and that learning inte-

grates adapting these models to data. All these

papers use the Euclidean distance function as

the error measure. Contrary to this, we develop

a suitable error measure to be used with prob-

abilistic models. Since we are learning condi-

tional probability densities, the work involves

constraints on the parameters of the probabilis-

tic models, which must be reinforced during

learning.

In Section 2, we briefly review the standard

Self-Organizing Map algorithm and in Section

3 introduce the the general framework for learn-

ing Self-Organizing Maps, which have proba-

bilistic models as map units. Also, a derivation

of the learning rules on a user profiling problem

is presented. We present experimental results

with our approach in clustering dynamical prob-

abilistic models. A Self-Organizing Map is used

to model calling behavior in a mobile commu-

nications network. The clusters of models can

be used in fraud detection [7], each model be-

ing a prototype of behavioral dynamics. In the

Section 4, we summarize and present possible

further applications.

2 The SOM Algorithm

The Self-Organizing Map is a neural network

model for the analysis and visualization of high-

dimensional data. It maps nonlinear statisti-

cal relationships between high-dimensional in-

put data into simple geometric relationships on

a regular, usually two-dimensional grid. It has

been successfully applied for the analysis of in-

dustrial processes [8], [9], for example. For a

bibliography on published papers, see [10].

The Self-Organizing Map is a collection of

prototype vectors, between which a neighbor-

hood relation is defined. This neighborhood

relation defines a structured lattice, usually a

two-dimensional, rectangular or hexagonal lat-

tice of map units. Training a Self-Organizing

Map from data is divided into two steps, which

are applied alternately. First, a winner unit is

searched, which minimizes the following Eu-

clidean distance measure between data samples

x and the map units mk

c = argmin
k
kx�mk

k:

Then, the map units are updated in the topolog-

ical neighborhood of the winner unit. The topo-

logical neighborhood is defined in terms of the

lattice structure, not according to the distances

between data samples and map units. The up-

date step can be performed by applying

mk
(t +1) := mk

(t)+α(t)hc
(t;k)[x(t)�mk

(t)]

where the last term in the square brackets is

proportional to the gradient of the squared Eu-

clidean distance d(x;mk
) = kx�mk

k

2
. The

learning rate α(t) 2 [0;1] must be decreasing

function of time and the neighborhood func-

tion hc
(t;k) is non-increasing function around

the winner unit defined in the topological lattice

of map units. A good candidate is a Gaussian

around the winner unit defined in terms of the

coordinates r in the lattice of neurons

hc
(t;k) = exp(�

krk
� rc

k

2

2σ(t)2
):

During learning, the learning rate and the

width of the neighborhood function are de-

creased, typically in a linear fashion. The map

then tends to converge to a stationary distribu-

tion, which approximates the probability den-

sity of data.

The Self-Organizing Map may be visualized

by using a unified distance matrix representa-

tion [11], where the clustering of the SOM is

visualized by calculating distances between the

map units locally and representing these with

gray levels. Another choice for visualization is

the Sammon’s mapping [12], which projects the

high-dimensional map units on a plane by min-

imizing the global distortion of inter point dis-

tances when applying the mapping.



3 Self-Organizing Map for

Clustering Probabilistic

Models

In our approach the map unit k stores the em-

pirically estimated parameter vector θk with an

associated probabilistic model q(x ; θk
). For im-

plementing a Self-Organizing Map Algorithm,

we need to define a distance between the map

units (i.e. the θk) and data generating models.

Euclidean distance between parameters of the

probabilistic models is obviously a bad choice,

since models which are very close in parameter

space1 might encode very different probabilis-

tic models. For example, a prior probability of

P = 0 for a disease might mean something dra-

matically different for a patient than a proba-

bility of P = 0:01. Also the distance between

θ and a data point itself cannot be defined in

a Euclidean way since they have different di-

mensionality. Therefore the natural choice for a

distance measure in parameter space should be

derived from the associated probabilistic mod-

els. The most common distance measure for this

case is the Kullback-Leibler distance [13, 14]

KL(p k q) =�

Z

p(x) log
q(x ; θk

)

p(x)
dx: (1)

The true distribution p(x) is unknown but can

be approximated by a Dirac unit impulse at the

available data sample p(x) � δ(xi), which af-

ter substitution to Equation (1) gives us for the

Kullback-Leibler distance the expression

� logq(xi ; θk
):

which is the negative log probability of data

for our empirical model. Thus, minimizing

the Kullback-Leibler distance between the un-

known true distribution that generated the data

and our empirical model leads to minimizing

the negative logarithm of the probability of the

data with our empirical model. This justifies

the use of this probability measure as a dis-

tance measure between models and data. In

light of this derivation, we can derive a Self-

Organizing Map algorithm for parametric prob-

abilistic models. To illustrate the idea, we de-

rive an algorithm for a specific case of user pro-

filing in mobile phone networks.

3.1 Clustering User Profiles

In this paper we apply our approach to clus-

tering user profiles described by calling behav-

1In Euclidean sense

ior in a mobile communications network. The

equation

P(xt = jjxt�1 = i; θ) = θi j

denotes the transition of observed variables

from one time step to next. The cases are the be-

ginning of call (xt�1 = 0, xt = 1), the end of the

call (xt�1 = 1, xt = 0), on-going call (xt�1 = 1,

xt = 1), and on-going silence (xt�1 = 0, xt = 0).

The calling pattern of a particular user is de-

scribed by the parameter vector θ. The four

parameters θi j have constraints θi j 2 [0;1] and

∑ j θi j = 1. The user profiles are learned in an

unsupervised fashion from data.

3.1.1 Log Probability-based Winner Search

As shown earlier, minimizing the negative

logarithm of the probability minimizes the

Kullback-Leibler distance between the empiri-

cal and the true distribution. We define the win-

ner search in terms of this probability measure,

which gives us in our specific case the equation

� logP(x ; θk
) = �

1

T
[log

T

∏
t=1

P(xt jxt�1; θk
)]

= �

1

T
[

T

∑
t=1

log P(xt jxt�1; θk
)]:

For distributions in the exponential family,

the likelihood can be expressed in terms of

the sufficient statistics. We may express the

likelihood measure with sufficient statistics,

which for a time-series x = fx1; : : :;xTg and our

model, are the counts ni j of the cases xt = j and

xt�1 = i. To obtain invariance to the length of

the time-series, we scale the ni j to get the ratios

pi j =
ni j

T
. This formulation allows us to esti-

mate the pi j in an on-line fashion, if necessary.

The likelihood expression can be further manip-

ulated by considering the sufficient statistics ni j

and the ratios pi j

� logP(x ; θk
) = �

1

T
[

1

∑
i; j=0

ni j log P(xt jxt�1; θk
)]

= �

1

∑
i; j=0

pi j log θk
i j:

The winner search procedure looks for the

best-matching map unit P(xt jxt�1; θc
) among all

the map units, in our approach the best statisti-

cal fit of the model to data. The winner unit may



be defined with the equation

c = argmin
k
[�

1

∑
i; j=0

pi j log θk
i j]: (2)

Conditions on the pi j and proper θk
i j ensure

that the distance is always greater than or equal

to zero.

3.1.2 Constrained Update Rules

The form of update step is a gradient update of

the form

θk
(t +1) := θk

(t)+α(t)hc
(t;k)

∂ logP(x(t); θk
)

∂θk

for the map units in the topological neighbor-

hood of the winner unit. Since the models

are conditional densities and involve constraints

discussed earlier, the direct application of gra-

dient descent procedure on updating the param-

eters does not enforce the constraints. If the

constraints are not satisfied during learning, cor-

rect calculation of likelihood is not possible.

Therefore, we need an update rule that takes

into account the constraints between the param-

eters. To solve this problem, we introduce un-

constrained parameters wk
i j, which map to our

constrained parameter space θk
i j by applying the

softmax layer. The softmax layer [13, 14] is de-

fined as

θk
i j =

exp(wk
i j)

∑ j exp(wk
i j)

: (3)

The gradients of the negative log probabil-

ity with regard to the free parameters can be

calculated with the chain rule of differentia-

tion. After algebraic manipulation we get for

our probability-based error and the our model2

∂ logP(x(t); θk
)

∂wk
i j

= ∑
l

∂ logP(x(t); θk
)

∂θk
il

∂θk
il

∂wk
i j

= pi j(1�oi j)� pi: joi j

where the oi j is the output of the softmax layer

as a function of the free parameters wi j; j =

f0;1g. Note that the update of the parameter

wi j involves also counts pi j and pi: j.

The update term for the winner unit and its

topological neighbors is now

∆wk
i j(t) = α(t)hc

(t;k)∑
l

∂ logP(x(t); θk
)

∂θk
il

∂θk
il

∂wk
i j

:

2
: is the negation operator, :1 = 0, :0 = 1

The constrained parameters can then readily

be calculated by applying the softmax function

to the free parameters.

3.2 Experiments

Hollmén and Tresp used a hierarchical regime-

switching model to detect fraud in a mobile

communications network [7]. Their model in-

volved a probability density for the observed

time-series as presented in the previous sec-

tion. Their regime-switching model, however,

involved only one probability density for each

type of behavior (fraud and non-fraud). The

probability density model for the observed vari-

able call models the transitions from the ob-

served state of no calling and calling to the same

state at the next time step.

The methods presented in this paper enable

learning multiple models of user behavior in an

unsupervised fashion from data. In the experi-

ments, we model the different dynamics of call-

ing behavior by learning a Self-Organizing Map

that stores these models in the map units.

The data are call detail records from calls

made with mobile phones. The data set con-

tains 600 normal users, each with calling data

for 49 days and 302 fraudulent users, each with

calling data for 92 days. The data set was di-

vided into two sets for training and testing. The

data are represented in the form of a time series,

each value indicating whether a mobile phone

was used or not during a particular minute. The

data was sampled with a rate of one minute.

Sufficient statistics ni j and the ratios pi j were

counted for the time series. An example time

series is presented in Figure 1.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0
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0.8

1

Figure 1: The data for one user is shown. The

time period on the horizontal axis is one week.

The estimated models express the probability

of transitions between the states of no calling

(zero) and calling (one).

With this data, we trained a Self-Organizing

Map of 80 units (8 � 10 map units). The topol-

ogy between the map units was chosen to be

rectangular. The neighborhood function used in

the experiments was Gaussian. The map was

trained on the sufficient statistics of the time se-

ries, which can be used to calculate the negative

log probabilities.
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Figure 2: Two parameters θ00 (horizontal axis),

θ11 (vertical axis) of the models stored in map

units of the Self-Organizing Map are shown

with circles. The rectangular lattice structure is

shown with lines between map units. The pa-

rameters for training data involving fraud users

are shown with diamonds, normal users with

cross marks. Parameters in the upper areas of

the figure correspond to long calls, while the

parameters in the rightmost area correspond to

infrequent calls.

The training of the map was performed in two

training steps, first a coarse ordering3 and there-

after fine-tuning4. For both training rounds, the

learning rate was linearly decreased to zero dur-

ing learning. The σ of the Gaussian neighbor-

hood function was decreased linearly to one.

Two parameters of the trained map can be seen

in Figure 2. The response of the map to class-

specific distributions is visualized in Figure 3.

The figure shows that the upper parts of the map

have become sensitive to fraud users, whereas

normal users are mapped to lower parts of the

map by the winner search.

4 Summary

We presented a general framework for clus-

tering probabilistic models with the Self-

Organizing Map algorithm. The standard Eu-

clidean distance in the winner search was re-

placed with a probability measure, which was

shown to correspond to the Kullback-Leibler

distance between the true and the empirical

model. In the update step, the gradients of the

negative log probability measure are used. As

3α(0) = 0:9, σ(0) = 5, 10000 iterations
4α(0) = 0:1, σ(0) = 2, 106 iterations

Figure 3: The training set (left column) and test-

ing set (right column) have been mapped to map

units and are represented as hit counts. The

lighter the map unit, the more data samples were

mapped to it by the winner search procedure.

In the upper row are the fraud users and in the

lower row the normal users. We can see that the

class-specific distributionsare well separated by

the map and that therefore the map can be the

basis for the analysis of future calling patterns.

an application, we derived the learning algo-

rithms for specific probability distribution func-

tions to be used in user profiling of mobile

phone users. Due to the constrained form of

the parameters, additional parameterization and

a softmax function were introduced to reinforce

the constraints during learning.

The ideas presented here may be used for de-

riving a modified version of the Learning Vector

Quantization (LVQ) algorithm [2], which could

be used to learn a time-series classifier in a su-

pervised fashion. Similarly, the ideas concern-

ing the constraints on the parameters may be

applied in situations, where the features have

intrinsic constraints and are represented as pro-

portions. Such a development could be coined

as Self-Organizing Map of pie charts. Addi-

tionally, in order to visualize the clusters of

probabilistic models with Sammon’s mapping

[12], the discrepancy measure should be mod-

ified to account for the Kullback-Leibler -based

distances in the original space and the squared

Euclidean distance in the low-dimensional dis-

play. Furthermore, it would be interesting to

cluster models involving latent variables, such

as mixture models [15] or hidden Markov mod-

els [16] or to train their component densities

with the Self-Organizing Map algorithm pre-

sented in this paper and compare the results with

the standard mixture density approach and the

use of the EM algorithm [17]. It would be in-



teresting to consider the possible relationships

of the resulting set of parameters and samples

from a Bayesian posterior distribution.

Acknowledgments

The first author was funded by Siemens AG. He

wishes to thank Professor Olli Simula for su-

pervising the thesis work and Professor Bernd

Schürmann and Michiaki Taniguchi, both at

Siemens AG, Corporate Technology for contin-

uing support. The first author also thanks Suvi

and Risto for support.

References

[1] Teuvo Kohonen. The self-organizing map.

Proceedings of the IEEE, 78(9):1464–

1480, September 1990.

[2] Teuvo Kohonen. Self-Organizing Maps.

Springer-Verlag, 1995.

[3] J. Lampinen and E. Oja. Self-organizing

maps for spatial and temporal AR models.

In Proc. 6 SCIA, Scand. Conf. on Image

Analysis, pages 120–127, 1989.

[4] Jari Kangas. On the Analysis of Pattern

Sequences by Self-Organizing Maps. PhD

thesis, Helsinki University of Technology,

1994.

[5] Jyrki Joutsensalo. Nonlinear data com-

pression and representation by combining

self-organizing map and subspace rule. In

Proc. ICNN’94, Int. Conf. on Neural Net-

works, pages 637–640, Piscataway, NJ,

1994. IEEE Service Center.

[6] Teuvo Kohonen, Samuel Kaski, and Harri

Lappalainen. Self-organized formation

of various invariant-feature filters in the

adaptive-subspace SOM. Neural Compu-

tation, 9:1321–1344, 1997.

[7] Jaakko Hollmén and Volker Tresp. Call-

based fraud detection in mobile commu-

nications networks using a hierarchical

regime-switching model. In M. Kearns,

S. Solla, and D.A. Cone, editors, Ad-

vances in Neural Information Processing

Systems: Proceedings of the 1998 Confer-

ence (NIPS’11), 1999.

[8] T. Kohonen, E. Oja, O. Simula, A. Visa,

and J. Kangas. Engineering applications

of the self-organizing map. Proceedings

of the IEEE, 84(10):1358–84, 1996.

[9] Esa Alhoniemi, Jaakko Hollmén, Olli

Simula, and Juha Vesanto. Process

monitoring and modeling using the self-

organizing map. Integrated Computer

Aided Engineering, 6(1):3–14, 1999.

[10] Samuel Kaski, Jari Kangas, and Teuvo Ko-

honen. Bibliography of self-organizing

map (SOM) papers: 1981-1997. Neural

Computing Surveys, 1:102–350, 1998.

[11] A. Ultsch and H. Siemon. Kohonen’s self-

organizing maps for exploratory data anal-

ysis. In Proceedings of the International

Neural network Conference (INNC’90),

pages 305–308. Kluwer, 1990.

[12] John W. Sammon Jr. A nonlinear mapping

for data structure analysis. IEEE Trans-

actions on Computers, C-18(5):401–409,

May 1969.

[13] Chris Bishop. Neural Networks in Pattern

Recognition. Oxford Press, 1996.

[14] Brian D. Ripley. Pattern Recognition and

Neural Networks. Cambridge University

Press, 1996.

[15] R.A. Redner and H.F. Walker. Mixture

densities, maximum likelihood and the

EM algorithm. SIAM Review, 26(2):195–

234, 1984.

[16] Alan B. Poritz. Hidden markov mod-

els: A guided tour. In Proceedings

of the IEEE International conference of

Acoustics, Speech and Signal Processing

(ICASSP’88), pages 7–13, 1988.

[17] A. P. Dempster, N.M. Laird, and D.B. Ru-

bin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal

of the Royal Statistical Society, Series B,

39:1–38, 1977.


