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Abstract

Fraud causes substantial losses to telecommunication carriers. Detec-
tion systems which automatically detect illegal use of the network can be
used to alleviate the problem. Previous approaches worked on features
derived from the call patterns of individual users. In this paper we present
a call-based detection system based on a hierarchical regime-switching
model. The detection problem is formulated as an inference problem on
the regime probabilities. Inference is implemented by applying the junc-
tion tree algorithm to the underlying graphical model. The dynamics are
learned from data using the EM algorithm and subsequent discriminative
training. The methods are assessed using fraud data from a real mobile
communication network.

1 INTRODUCTION

Fraud is costly to a network carrier both in terms of lost income and wasted capacity. It has
been estimated that the telecommunication industry looses approximately 2-5% of its total
revenue to fraud. The true losses are expected to be even higher since telecommunication
companies are reluctant to admit fraud in their systems. A fraudulent attack causes lots of
inconveniences to the victimized subscriber which might motivate the subscriber to switch
to a competing carrier. Furthermore, potential new customers would be very reluctant to
switch to a carrier which is troubled with fraud.

Mobile communication networks —which are the focus of this work— are particularly
appealing to fraudsters as the calling from the mobile terminal is not bound to a physical
place and a subscription is easy to get. This provides means for an illegal high-profit
business requiring minimal investment and relatively low risk of getting caught. Fraud is



usually initiated by a mobile phone theft, by cloning the mobile phone card or by acquiring
a subscription with false identification. After intrusion the subscription can be used for
gaining free services either for the intruder himself or for his illegal customers in form of
call-selling. In the latter case, the fraudster sells calls to customers for reduced rates.

The earliest means of detecting fraud were to register overlapping calls originating from
one subscription, evidencing card cloning. While this procedure efficiently detects cloning,
it misses a large share of other fraud cases. A more advanced system is a velocity trap which
detects card cloning by using an upper speed limit at which a mobile phone user can travel.
Subsequent calls from distant places provide evidence for card cloning. Although a velocity
trap is a powerful method of detecting card cloning, it is ineffective against other types of
fraud. Therefore there is great interest in detection systems which detect fraud based on
an analysis of behavioral patterns (Barson et al., 1996, Burge et al., 1997, Fawcett and
Provost, 1997, Taniguchi et al., 1998).

In an absolute analysis, a user is classified as a fraudster based on features derived from
daily statistics summarizing the call pattern such as the average number of calls. In a differ-
ential analysis, the detection is based on measures describing the changes in those features
capturing the transition from a normal use to fraud. Both approaches have the problem
of finding efficient feature representations describing normal and fraudulent behavior. As
they usually derive features as summary statistics over one day, they are plagued with a
latency time of up to a day to detect fraudulent behavior. The resulting delay in detection
can already lead to unacceptable losses and can be exploited by the fraudster. For these
reasons real-time fraud detection is seen to be the most important development in fraud
detection (Pequeno, 1997).

In this paper we present a real-time fraud detection system which is based on a stochastic
generative model. In the generative model we assume a variable victimized which indicates
if the account has been victimized by a fraudster and a second variable fraud which indi-
cates if the fraudster is currently performing fraud. Both variables are hidden. Furthermore,
we have an observed variable call which indicates if a call being is performed or not. The
transition probabilities from no-call to call and from call to no-call are dependent on the
state of the variable fraud. Overall, we obtain a regime-switching time-series model as de-
scribed by Hamilton (1994), with the modifications that first, the variables in the time series
are not continuous but binary and second, the switching variable has a hierarchical struc-
ture. The benefit of the hierarchical structure is that it allows us to model the time-series
at different time scales. At the lowest hierarchical level, we model the dynamical behavior
of the individual calls, at the next level the transition from normal behavior to fraudulent
behavior and at the highest level the transition to being victimized. To be able to model a
time-series at different temporal resolutions was also the reason for introducing a hierarchy
into a hidden Markov model for Jordan, Ghahramani and Saul (1997). Fortunately, our
hidden variables have only a small number of states such that we do not have to work with
the approximation techniques those authors have introduced.

Section 2 introduces our hierarchical regime-switching fraud model. The detection prob-
lem is formulated as an inference problem on the regime probabilities based on subscriber
data. We derive iterative algorithms for estimating the hidden variables fraud and victim-
ized based on past and present data (filtering) or based on the complete set of observed
data (smoothing). We present EM learning rules for learning the parameters in the model
using observed data. We develop a gradient based approach for fine tuning the emission
probabilities in the non-fraud state to enhance the discrimination capability of the model.
In Section 3 we present experimental results. We show that a system which is fine-tuned on
real data can be used for detecting fraudulent behavior on-line based on the call patterns.
In Section 4 we present conclusions and discuss further applications and extensions of our
fraud model.



2 THE HIERARCHICAL REGIME-SWITCHING FRAUD

MODEL

2.1 THE GENERATIVE MODEL

The hierarchical regime-switching model consists of three variables which evolve in time
stochastically according to first-order Markov chains. The first binary variable v
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(victim-
ized) is equal to one if the account is currently being victimized by a fraudster and zero
otherwise. The states of this variable evolve according to the state transition probabili-
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equal to one if the fraudster currently performs fraud and is equal to zero if the fraudster
is inactive. The change between actively performing fraud and intermittent silence is typ-
ical for a victimized account as is apparent from Figure 3. Note that this transient bursty
behavior of a victimized account would be difficult to capture with a pure feature based
approach. The states of this variable evolve following the state transition probabilities
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assumption of exponentially distributed call duration. Although not quite realistic, this is
the general assumption in telecommunications. Typically, both the frequency of calls and
the lengths of the calls are increased when fraud is executed. The joint probability of the
time series up to time T is then
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where in the experiments we used a sampling time of one minute. Furthermore, V
T

=

fv

0

; : : : ; v

T

g, S
T

= fs

0

; : : : ; s

T

g, Y
T

= fy

0

; : : : ; y

T

g and P (v

0

; s

0

; y

0

) is the prior dis-
tribution of the initial states.

V t+1V t-1 V t

s t-1 s t s t+1

yt-1 yt yt+1

Figure 1: Dependency graph of the hierarchical regime-switching fraud model. The square
boxes denote hidden variables and the circles observed variables. The hidden variable v

t

on the top describes whether the subscriber account is victimized by fraud. The hidden
variable s

t

indicates if fraud is currently being executed. The state of s
t

determines the
statistics of the variable call y

t

.

2.2 INFERENCE: FILTERING AND SMOOTHING

When using the fraud detection system, we are interested to estimate the probability that
an account is victimized or that fraud is currently occurring based on the call patterns up to
the current point in time (filtering). We can calculate the probabilities of the states of the
hidden variables by applying the following equations recursively with t = 1; : : : ; T .
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where c is a scaling factor. These equations can be derived from the junction tree algorithm
for the Bayesian networks (Jensen, 1996). We obtain the probability of victimization and
fraud by simple marginalization
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In some cases —in particular for the EM learning rules in the next section— we might
be interested in estimating the probabilities of the hidden states at some time in the past
(smoothing). In this case we can use a variation of the smoothing equations described in
Hamilton (1994) and Kim (1994). After performing the forward recursion, we can calculate
the probability of the hidden states at time t

0 given data up to time T > t

0 iterating the
following equations with t = T; T � 1; : : : ; 1.
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2.3 EM LEARNING RULES

Parameter estimation in the regime-switching model is conveniently formulated as an in-
complete data problem, which can be solved using the EM algorithm (Hamilton, 1994).
Each iteration of the EM algorithm is guaranteed to increase the value of the marginal log-
likelihood function until a fixed point is reached. This fixed point is a local optimum of the
marginal log-likelihood function.

In the M-step the model parameters are optimized using the estimates of the hidden states
using the current parameter estimates. Let � = fp
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The E-step determines the probabilities on the right sides of the equations using the current
parameter estimates. These can be determined using the smoothing equations from the
previous section directly by marginalizing
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where the terms on the right side are obtained from the equations in the last Section.

2.4 DISCRIMINATIVE TRAINING

In our data setting, it is not known when the fraudulent accounts were victimized by fraud.
This is why we use the EM algorithm to learn the two regimes from data in an incom-
plete data setting. We know, however, which accounts were victimized by fraud. After EM
learning the discrimination ability of the model was not satisfactory. We therefore used
the labeled sequences to improve the model. The reason for the poor performance was
credited to unsuitable call emission probabilities in the normal state. We therefore mini-

mize the error function E =
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was minimized with Quasi-Newton procedure with numerical differentiation.

3 EXPERIMENTS

To test our approach we used a data set consisting of 600 accounts which were not affected
by fraud and 304 accounts which were affected by fraud. The time period for non-fraud and
fraud accounts were 49 and 92 days, respectively. We divided the data equally into training
data and test data. From the non-fraud data we estimated the parameters describing the
normal calling behavior, i.e. p

y

i;j=0;k

. Next, we fixed the probability that an account is

victimized from one time step to the next to p

v

i=1;j=0

= 10

�5 and the probability that

a victimized account becomes de-victimized as p

v
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�4. Leaving those
parameters fixed the remaining parameters were trained using the fraudulent accounts and
the EM algorithm described in Section 2. We had to do unsupervised training since it was
known by velocity check that the accounts were affected but it was not clear when the
intrusion occurred. After unsupervised training, we further enhanced the discrimination
capability of the system which helped us reduce the amount of false alarms. The final
model parameters can be found in the Appendix.

After training, the system was tested using the test data. Unfortunately, it is not known
when the accounts were attacked by fraud, but only on per-account basis if an account was
at some point a victim of fraud. Therefore, we declare an account to be victimized if the
victimized variable at some point exceeds the threshold. Also, it is interesting to study the
results shown in Figure 3. We show data and posterior time-evolving probabilities for an
account which is known to be victimized. From the call pattern it is obvious that there are
periods of suspiciously high traffic at which the probability of victimization is recognized
to be very high. We also see that the variable fraud s

t

follows the bursty behavior of
the fraudulent behavior correctly. Note, that for smoothing which is important both for
a retrospective analysis of call data and for learning, we achieve smoother curves for the
victimized variable.
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Figure 2: The Receiver Operating Characteristic (ROC) curves are shown for on-line detec-
tion (left figure) and for retrospective classification (right figure). In the figures, detection
probability is plotted against the false alarm probability. The dash-dotted lines are results
before, the solid lines after discriminative training. We can see that the discriminative
training improves the model considerably.

After EM training and discriminative training, we tested the model both in on-line detec-
tion mode (filtering) and in retrospective classification (smoothing) with smoothed proba-
bilities. The detection results are shown in Figure 2. With a fixed false alarm probability
of 0.003, the detection probabilities for the training set were found to be 0.974 and 0.934
using on-line detection mode and with smoothed probabilities, respectively. With a testing
set and a fixed false alarm probability of 0.020, we obtain the detection probabilities of
0.928 and 0.921, for the on-line detection and for retrospective classification, respectively.

4 CONCLUSIONS

We presented a call-based on-line fraud detection system which is based on a hierarchi-
cal regime-switching generative model. The inference rules are obtained from the junction
tree algorithm for the underlying graphical model. The model is trained using the EM algo-
rithm in an incomplete data setting and is further refined with gradient-based discriminative
training, which considerably improves the results.

A few extensions are in the process of being implemented. First of all, it makes sense to
use more than one fraud model for the different fraud scenarios and several user models
to account for different user profiles. For these more complex models we might have to
rely on approximations techniques such as the ones introduced by Jordan, Ghahramani and
Saul (1997).

Appendix

The model parameters after EM training and discriminative training. Note that entering the
fraud state without first entering the victimized state is impossible.
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Figure 3: The first line shows the calling data y

t

from a victimized account. The second
and third lines show the states of the victimized and fraud variables, respectively. Both are
calculated with the filtering equations. The fourth and fifth lines show the same variables
using the smoothing equations. The displayed time window period is seventeen days.
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