
TEKNILLINEN KORKEAKOULU

Tietotekniikan osasto

Tietotekniikan koulutusohjelma

Process Modeling

Using the Self-Organizing Map

Jaakko Hollmén

Diplomityö on tehty informaatiotekniikan syventymiskohteessa

Työn valvoja apulaisprofessori Olli Simula

Työn ohjaaja DI Pirkka Myllykoski

Otaniemi 15.2.1996

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä ja työn nimi:

Jaakko Hollmén

Process Modeling Using the Self-Organiznig Map

(Prosessien mallitus itseorganisoivan kartan avulla)

Päivämäärä: 15.2.1996 Sivumäärä: 50

Osasto: Tietotekniikan osasto

Professuuri: Tik-61 Tietojenkäsittelytekniikka (informaatiotekniikka)

Valvoja: Apulaisprofessori Olli Simula

Ohjaaja: DI Pirkka Myllykoski

Prosessin optimoinnin motivaationa ovat taloudelliset kannusteet. Tuotannollisessa

ympäristössä, jossa kyseessä ovat suuret tuotannon volyymit, jopa pienet prosessi-

parannukset voivat tuoda suurta taloudellista hyötyä.

Tässä työssä esitetään tapa mallittaa teollista valmistusprosessia prosessimittauk-

siin perustuen. Mittauksina käytetään sisääntulevan raaka-aineen ominaisuuksia,

itse prosessiparametrien asetuksia tuotannon aikana sekä lopputuotteen laatuomi-

naisuuksia. Tätä dataa käytetään keinotekoisen hermoverkon opetuksessa. Her-

moverkot ovat adaptiivisia malleja, jotka oppivat datasta ja joilla on kyky yleistää.

Prosessin malli muodostetaan itseorganisoivan kartan avulla. Itseorganisoiva kartta

on opetuksessa käytetyn datan epälineaarinen regressiomalli. Tätä mallia voidaan

esimerkiksi käyttää laatuparametrien ennustamisessa annetuilla prosessiasetuksilla

sekä prosessiparametrien muutosten aiheuttamia vipuvaikutuksia.

Työssä esitetään myös malliin perustuva prosessisimulaattori, jonka avulla voidaan

helpottaa prosessissa tehtyjen muutosten aiheuttamia vipuvaikutusten tutkimista.

Itseorganisoiva kartta jakaa mittausavaruuden osiin. Yksinkertaisia malleja voidaan

sovittaa dataan, joka kuuluu tällaiseen paikalliseen alueeseen.

Työ on valmistunut osana Teknologian kehittämiskeskuksen TEKES:n "Oppivien ja

älykkäiden järjestelmien sovellukset" -teknologiaohjelmaa. Työ on tehty Teknillisen

korkeakoulun Informaatiotekniikan laboratoriossa, ja sen ovat rahoittaneet TEKES,

Rautaruukin tutkimuskeskus sekä Rautaruukin ohutlevyryhmä Hämeenlinnassa.

Avainsanat: prosessi, neuroverkko, itseorganisoiva kartta, mallitus.

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE

MASTER'S THESIS

Author and name of the thesis:

Jaakko Hollmén

Process Modeling Using the Self-Organizing Map

Date: 15.2.1996 Number of pages: 50

Department: Department of Computer Science

Professorship: Tik-61 Computer Sciences (Information Sciences)

Supervisor: Associate professor Olli Simula

Instructor: M.Sc. Pirkka Myllykoski

Process optimization is largely motivated by economic incentives. In a production

environment, where large production volumes are involved, even small improvements

can result in large economic gains.

In this work, way to model an industrial production process based on process mea-

surements is presented. The measurements include the raw material characteristics,

the process parameter settings during the production and the quality characteristics

of the end product. This data is used for training an art�cial neural network. The

arti�cial neural networks are adpative models that learn from data and have the

capability to generalize.

The process model is built with the Self-Organizing Map (SOM). The Self-

Organizing Map is a non-linear regression model of the training data. This model

can, for example, be used in predicting quality parameters with given process set-

tings and in investigating the leverage e�ects of the process parameter changes.

In this work, a process simulator tool based on the model is also presented, with

which the investigation of leverage e�ects is facilitated.

The Self-Organizing Map partitions the measurement space into local regions. Sim-

ple models can be �tted to the data belonging to a local region.

The work is part of the Technology Development Centre TEKES project "Applica-

tions of learning and intelligent systems". It has been carried out in the Laboratory

of Computer and Information Science in Helsinki University of Technology, and it

has been funded by TEKES, Rautaruukki Research Center and Rautaruukki thin

sheet division in Hämeenlinna.

Keywords: process, neural network, Self-Organizing Map, modeling.

Contents

1 Introduction 6

1.1 Background . 6

1.2 Organization of this work . 7

2 Self-Organizing Map 8

2.1 Arti�cial neural networks . 8

2.2 Self-Organizing Map (SOM) . 11

2.2.1 Data preprocessing . 12

2.2.2 Initialization . 14

2.2.3 Training . 15

2.2.4 Visualization . 19

2.2.5 Validation . 20

2.3 Applications . 22

3 Principal component analysis 24

3.1 Principal component analysis . 24

4 Models 28

4.1 General . 28

4.2 SOM as a regression model . 29

4.3 SOM and local model �tting . 31

5 Case study: Rautaruukki 34

5.1 Problem domain . 34

5.2 Process data . 36

5.3 Using SOM as a regression model 38

5.3.1 Predicting quality parameters 38

5.3.2 Sensitivity analysis . 40

2

CONTENTS 3

5.4 Using SOM and local model �tting 43

6 Conclusions 45

Bibliography 46

Glossary of terms and

abbreviations

ANN Arti�cial Neural Network

BP Back-Propagation algorithm

BMU Best-Matching Unit

MLP Multi-Layer Perceptron

PCA Principal Component Analysis

KLT Karhunen-Loève Transform

RBF Radial Basis Function

SOM Self-Organizing Map

�(t) adaptation gain value

c index of the best matching unit

C

x

covariance matrix of the random variable x

e

i

ith eigenvector

i unit index

h

ci

(t) neighborhood kernel function

�

i

ith eigenvalue

m

i

(t);m

i

weight vector of the unit i

m

i

k

(t), m

i

k

component k of the weight vector m

i

�

x

mean of the random variable x

N

c

neighborhood of the winner node c

r

k

location vector inside the array of neurons

�(t) neighborhood kernel width function

t time variable

x(t);x measurement vector

x

k

(t); x

k

component k of the measurement vector x

4

Preface

This study was carried out in the Laboratory of Computer and Information Sci-

ence in Helsinki University of Technology. The work is a part of a national

Technology Development Centre (TEKES) program "Applications of learning

and intelligent systems".

I would like to thank my supervisor Olli Simula and instructor Pirkka Myl-

lykoski for their support. I wish also to thank all the people in the Laboratory of

Computer and Information Science and in the Neural Networks Research Centre

for their help and support. Worth a special mention are Jari Kangas and Aapo

Hyvärinen, who helped me during this work, although it was not one of their

duties.

TEKES, Rautaruukki Research Center as well as Rautaruukki thin sheet di-

vision in Hämeenlinna �nanced this work and the process data was provided by

Rautaruukki. I wish to thank them for �nancing this work.

I would also like to thank my family for all the support during my studies in

Helsinki University of Technology as well as in Royal Institute of Technology in

Stockholm.

In Otaniemi, February 15, 1996

Jaakko Hollmén

5

Chapter 1

Introduction

1.1 Background

Process optimization and control are largely motivated by economic incentives.

This is especially the case when large volumes are involved in production. Small

improvements in the process can result in large gains. Also, in the competitive

market situation, continuous improvement is necessary to be able to maintain

and improve the market position.

How can a complex process be optimized? It is necessary to understand the

functioning of the process before one can proceed to optimize it. Modeling a given

process aims at understanding the functioning the process and the relationships

between the process variables. How should the system be optimized? How can

one avoid causing negative side e�ects in one part of the process (and eventually

global loss) while optimizing another, in other words, how to avoid suboptimizing?

These are some of the questions one is faced with when trying to optimize a

process.

In this study, methods are presented with which one can learn about the

process characteristics with the aid of a model created by a neural network from

process measurements. Data of the incoming raw material, process parameter

settings and end product characteristics from individual products are used for

building a non-linear regression model of the measurement data.

In particular, an arti�cial neural network called the Self-Organizing Map is

used. Neural networks have been quite promising in complex application areas

where traditional methods have failed. Due to their inherently non-linear nature,

they can handle much more complex situations than the traditional methods.

The methods presented in this work give a good starting point to a process

modeling and optimization e�ort.

6

CHAPTER 1. INTRODUCTION 7

1.2 Organization of this work

This chapter provides some background information and motivation for this study.

The rest of the report is divided roughly into two parts. Chapters 2 to 4 include

the theoretical foundation on which the case study in Chapter 5 is built on. In

Chapter 6 conclusions are presented.

Chapters on theoretical aspects of this work are not necessarily self-contained,

but should o�er the reader somewhat thorough and clear presentation of the main

principles. Especially, Chapter 2 on the Self-Organizing Map is intended to give a

thorough discussion of the basic principles. For further details, several references

are listed in the text.

Chapter 2

Self-Organizing Map

2.1 Arti�cial neural networks

Arti�cial neural networks are adaptive models that can learn from the data and

generalize things learned. They extract the essential characteristics from the

numerical data as opposed to memorizing all of it. This o�ers a convenient way

to reduce the amount of data as well as to form a implicit model without having

to form a traditional, physical model of the underlying phenomenon. In contrast

to traditional models, which are theory-rich and data-poor, the neural networks

are data-rich and theory-poor in a way that a little or no a priori knowledge of

the problem is present [8]. Neural networks can be used for building mappings

from inputs to ouputs of these kind of black boxes. The behavior of a black box

system is not usually known. This is illustrated in Figure 2.1. These kind of

systems occur often in practice.

outputsinputs ?

Figure 2.1: Black box

Neural networks are models as such. These models can be used to charac-

terize the general case of the phenomenon at hand giving us the ideas how the

phenomenon behaves in practice.

Arti�cial neural networks or shortly neural networks have been quite promis-

8

CHAPTER 2. SELF-ORGANIZING MAP 9

ing in o�ering solutions to problems, where traditional models have failed or are

very complicated to build. Due to the non-linear nature of the neural networks,

they are able to express much more complex phenomena than some linear mod-

eling techniques.

Kohonen divides arti�cial neural networks into three categories [20]:

� Signal transfer networks

� State transition networks

� Competitive learning networks

In signal transfer networks, the input signal is transformed into an output

signal. The signal traverses the network and undergoes a signal transformation of

some kind. The network has usually a set of pre-de�ned basis functions, which are

parametrized. The learning in these networks corresponds to changing parameters

of these basis functions. Some examples are the multi-layer perceptron (MLP)

networks that are taught with error back propagation algorithm (BP) and radial

basis function (RBF) networks. More about these network models can be found

in textbooks, for example in [3], [12].

In state transition networks the dynamic behavior of the network is essential.

Given an input, the network converges to a stable state, which, hopefully, is

a solution to a problem presented to it. Examples are Hop�eld networks and

Boltzmann machines. See [12] for reference.

In competitive learning networks, or self-organizing networks, all the neurons

of the network receive the same input. The cells have lateral competition and

the one with most activity �wins�. Learning is based on the concept of winner

neurons. A representative example of a network based on competitive learning is

the Self-Organizing Map. The monograph by Kohonen [20] is the most complete

book about this particular network model.

Learning in arti�cial neural networks is done in terms of adaptation of the

network parameters. Network parameters are changed according to pre-de�ned

equations called the learning rules. The learning rules may be derived from pre-

de�ned error measures or may be inspired by biological systems. An example of

an error measure in a network based on supervised learning could be the squared

error between the output of the model and the desired output. This requires

knowledge of the desired value for a given input. Learning rules are written so

that the iterative learning process minimizes the error measure. Minimization

might be performed by gradient descent optimization methods, for instance. In

the course of learning, the residual between the model output and the desired

output decreases and the model learns the relation between the input and the

output.

CHAPTER 2. SELF-ORGANIZING MAP 10

The training must be stopped at the right time. If training continues for

too long, it results in overlearning. Overlearning means that the neural network

extracts too much information from the individual cases forgetting the relevant

information of the general case.

0 50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: The model residual versus time for the training and the testing set

In the Figure 2.2 we can see two di�erent curves. The di�erence between the

network output and desired output, or the model residual is plotted as a function

of training time. We can see that the model residual decreases for the training set

marked with a solid line but starts to increase for the testing set marked with the

dashed line. When the network starts to learn the characteristics on individual

samples rather than the characteristics of the general phenomenon, the model

residual for the testing set starts to increase. The model is departing from the

general structure of the problem to learning about the individual cases instead.

Usually, the neural network performance is tested with a testing set which is

not part of the training set. The testing set can be seen as the representative

cases of the general phenomenon. If the network performs well on the testing set,

it can be expected to perform well on the general case, as well.

Cross-validation methods can also be used to avoid overlearning. In cross-

validation, we switch the places of the training set and the testing set and compare

the performance of the resulting networks.

It is essential to understand the characteristics of a particular neural network

model before using it. In this way, one can avoid many pitfalls of neural networks.

In the next section, the attention is on a particular neural network model

called the Self-Organizing Map.

CHAPTER 2. SELF-ORGANIZING MAP 11

2.2 Self-Organizing Map (SOM)

The Self-Organizing Map is one of the most popular neural network models. It

belongs to the category of competitive learning networks. The Self-Organizing

Map is based on unsupervised learning, which means that no human intervention

is needed during the learning and that little needs to be known about the char-

acteristics of the input data. We could, for example, use the SOM for clustering

data without knowing the class memberships of the input data. The SOM can

be used to detect features inherent to the problem and thus has also been called

SOFM, the Self-Organizing Feature Map.

The Self-Organizing Map was developed by professor Kohonen [20]. The SOM

has been proven useful in many applications [22]. For closer review of the appli-

cations published in the open literature, see section 2.3.

The SOM algorithm is based on unsupervised, competitive learning. It pro-

vides a topology preserving mapping from the high dimensional space to map

units. Map units, or neurons, usually form a two-dimensional lattice and thus the

mapping is a mapping from high dimensional space onto a plane. The property of

topology preserving means that the mapping preserves the relative distance be-

tween the points. Points that are near each other in the input space are mapped

to nearby map units in the SOM. The SOM can thus serve as a cluster analyzing

tool of high-dimensional data. Also, the SOM has the capability to generalize.

Generalization capability means that the network can recognize or characterize

inputs it has never encountered before. A new input is assimilated with the map

unit it is mapped to.

The Self-Organizing Map is a two-dimensional array of neurons:

M = fm

1

; :::;m

pxq

g

This is illustrated in Figure 2.3. One neuron is a vector called the codebook

vector

m

i

= [m

i1

; :::; m

in

]

This has the same dimension as the input vectors (n -dimensional). The neurons

are connected to adjacent neurons by a neighborhood relation. This dictates the

topology, or the structure, of the map. Usually, the neurons are connected to each

other via rectangular or hexagonal topology. In the Figure 2.3 the topological

relations are shown by lines between the neurons.

One can also de�ne a distance between the map units according to their

topology relations. Immediate neighbors (the neurons that are adjacent) belong

to the neighborhood N

c

of the neuron m

c

. The neighborhood function should be

a decreasing function of time: N

c

= N

c

(t). Neighborhoods of di�erent sizes in

a hexagonal lattice are illustrated in Figure 2.4. In the smallest hexagon, there

CHAPTER 2. SELF-ORGANIZING MAP 12

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

Rectangular

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

Hexagonal

Figure 2.3: Di�erent topologies

are all the neighbors belonging to the smallest neighborhood of the neuron in the

middle belonging to a hexagonal lattice. The topological relations between the

neurons are left out for clarity.

In the basic SOM algorithm, the topological relations and the number of

neurons are �xed from the beginning. This number of neurons determines the

scale or the granularity of the resulting model. Scale selection a�ects the accuracy

and the generalization capability of the model. It must be taken into account that

the generalization and accuracy are contradictory goals. By improving the �rst,

we lose on the second, and vice versa.

Figure 2.4: Neighborhood of a given winner unit

2.2.1 Data preprocessing

The data fed to a SOM includes all the information that a network gets. If er-

roneous data is fed to the SOM, the result is also erroneous or of bad quality.

Thus, Self-Organizing Map, as well as the other neural network models, follow

CHAPTER 2. SELF-ORGANIZING MAP 13

the �garbage in - garbage out� principle. This is the motivation for data prepro-

cessing. Especially, when analyzing real-life data, preprocessing is of paramount

importance.

Focusing on a subset of data

If we are interested in a certain aspect or the subset of the input data, we should

naturally use only that portion of the data. Almost needless to say, certain

analyses focus on a totally di�erent subset than the others.

Removing erroneous data

Errors in the data must be removed. If the data is downloaded from a database

as a query, the result is likely to include erroneous data because of the lack of

database integrity. Erroneous data must be �ltered using a priori knowledge

of the problem domain and common sense. For example, in databases, missing

values are usually presented as zeros. Zeros are typical errors due to the lack

of database integrity. These kind of errors show up in the probability density

function presentation as peaks at zero possibly outside the normal range of the

variable. In the case of uncertainty, these kind of values can be replaced with

�don't care� values. In training of a SOM, input vectors with missing values

can be used [36]. Another approach is to remove the vectors from the training

set if they have missing values. This has the negative side e�ect of reducing the

training set size.

Data encoding

If the data is coded in a non-metric scale, i.e. the metric distance can not be

used as a measure of similarity, the coding must be transformed. Groupings and

class memberships are examples of this kind of coding. Having groups 1 to 10,

we can not say that the group number 9 is more similar to the group number 10

than the group number 1. N groups can be divided into one-of-n coding using N

components. For group N, the Nth component is 1, others are 0.

Measurement must be made quanti�able, because the Euclidean distance is

commonly used as a measure of similarity. Coding must be in harmony with the

similarity measure used. Symbolic data cannot be processed with the SOM as

such, but can be transformed to a suitable form. See [34] for reference.

CHAPTER 2. SELF-ORGANIZING MAP 14

Scaling

It is common that the components of the input data are scaled to have unit

variance.

V ar(X) = 1

This can be achieved by dividing the components by the square roots of their

corresponding variances. This assures that for each component, the di�erence

between two samples contribute approximately an equal amount to the summed

distance measure between an input sample and codebook vector.

Because the similarity measure usually loses identity of component di�er-

ences via a summation, or treats all components equally, the components must

contribute approximately as much to the similarity measure. Otherwise, a com-

ponent with large variance would shadow components with small variance and

thus only the components with large variance would contribute to the distance

measure used as a similarity measure.

2.2.2 Initialization

Kohonen presents three di�erent types of network initializations [20]: random

initialization, initialization using initial samples and linear initialization.

Random initialization

Random initialization means simply that random values are assigned to codebook

vectors. This is the case if nothing or little is known about the input data at the

time of the initialization.

Initialization using initial samples

Initial samples of the input data set can be used for codebook vector initialization.

This has the advantage that the points automatically lie in the same part of the

input space with the data.

Linear initialization

One initialization method takes advantage of the principal component (PCA)

analysis of the input data. Principal component analysis is discussed more closely

in Chapter 3. The codebook vectors are initialized to lie in the same input space

that is spanned by two eigenvectors corresponding to the largest eigenvalues of

the input data. This has the e�ect of stretching the Self-Organizing Map to the

same orientation as the data having the most signi�cant amounts of energy.

CHAPTER 2. SELF-ORGANIZING MAP 15

2.2.3 Training

Training is an iterative process through time. It requires a lot of computational

e�ort and thus is time-consuming. The training consists of drawing sample vectors

from the input data set and �teaching� them to the SOM. The teaching consists

of choosing a winner unit by the means of a similarity measure and updating the

values of codebook vectors in the neighborhood of the winner unit. This process

is repeated a number of times.

In one training step, one sample vector is drawn randomly from the input

data set. This vector is fed to all units in the network and a similarity measure is

calculated between the input data sample and all the codebook vectors. The best-

matching unit (BMU) is chosen to be the codebook vector with greatest similarity

with the input sample. The similarity is usually de�ned by means of a distance

measure. For example in the case of Euclidean distance the best-matching unit

is the closest neuron to the sample in the input space. The Euclidean norm of

the vector x is de�ned as

jjxjj =

v

u

u

t

n

X

i=1

x

i

2

Then, we can de�ne the Euclidean distance in terms of the Euclidean norm of

the di�erence between two vectors:

d

E

(x;y) = jjx� yjj

The best-matching unit, usually noted as m

c

, is the codebook vector that

matches a given input vector x best. It is de�ned formally as the neuron for

which

jjx�m

c

jj = min

i

fjjx�m

i

jjg

After �nding the best-matching unit, units in the SOM are updated. During

the update procedure, the best-matching unit is updated to be a little closer to the

sample vector in the input space. The topological neighbors of the best-matching

unit are also similarly updated. This update procedure streches the BMU and

its topological neighbors towards the sample vector.

In the Figure 2.5 we see an illustration of the update procedure. The codebook

vectors are situated in the crossings of the solid lines. The topological relation-

ships of the SOM are drawn with lines. The input fed to the network is marked

by an x in the input space. The best-matching unit, or the winner neuron is the

codebook vector closest to the sample, in this example the codebook vector in the

middle above x. The winner neuron and its topological neighbors are updated

by moving them a little towards the input sample. The neighborhood in this

case consists of the eight neighboring units in the �gure. The updated network

is shown in the same �gure with dashed lines.

CHAPTER 2. SELF-ORGANIZING MAP 16

x

Figure 2.5: updating the best matching unit and its neighbors

The computational e�ort consists of �nding a best-matching unit among all

the neurons and updating the codebook vectors in the neighborhood of the win-

ner unit. If the neighborhood is large, there are a lot of codebook vectors to be

updated. This is the case in the beginning of the training process, where it is

recommended to use large neighborhoods. In the case of large networks, rela-

tively larger portion of the time is spent looking for a winner neuron. All these

considerations depend on the time spent on each of these phases depending on

particular software and hardware used.

Update rule

By this update procedure described above, the net forms an elastic net that

during learning folds onto the �cloud� formed by the input data. The codebook

vectors tend to drift there where the data is dense, while there tends to be only

a few codebook vectors where data is sparsely located. In this manner, the net

tends to approximate the probability density function of the input data [20].

The Self-Organizing Map update rule for a unit m

i

is the following:

m

i

(t+ 1) =m

i

(t) + h

ci

(t)[x(t)�m

i

(t)]

where t denotes time. This is, as mentioned above, a training process through

time. The x(t) is the input vector drawn from the input data set at time t. h

ci

is a non-increasing neighborhood function around the winner unit m

c

. More on

the subject of the neighborhood function in the next section.

CHAPTER 2. SELF-ORGANIZING MAP 17

Neighborhood function

The neighborhood function includes the learning rate function �(t) which is a

decreasing function of time and the function that dictates the form of the neigh-

borhood function. The form of the latter function also determines the rate of

change around the winner unit. The neighborhood function can be written as

h

ci

(t) = �(t) � exp(�

kr

i

� r

c

k

2

2�(t)

2

)

in the case of the Gaussian neighborhood function around the winner neuronm

c

.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 2.6: Neighborhood function values

A variety of neighborhood functions can be used. We can constrain the neig-

bourhood function to be non-increasing around the winner unit m

c

. Thus, the

neighborhood function can also be constant around the winner unit. One choice

for a neighborhood function is to use a Gaussian kernel around the winner neu-

ron as described above. This is computationally demanding as the exponential

function has to be calculated, but can well be approximated by the �bubble�

neighborhood function. The bubble neighborhood function is a constant func-

tion in the de�ned neighborhood of the winner neuron, that is, every neuron in

the neighborhood is updated the same proportion of the di�erence between the

neuron and the presented sample vector. The bubble neighborhood function is a

good compromise between the computational cost and the approximation of the

Gaussian.

In the Figure 2.6 the two used forms of the neighborhood function are illus-

trated. In the left, we see the form of a Gaussian (a), on the right the bubble

function (b).

CHAPTER 2. SELF-ORGANIZING MAP 18

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

Figure 2.7: Learning rates as functions of time

Learning rate

Learning rate is a decreasing function of time. Two forms that are commonly

used are a linear function of time and a function that is inversely proportional

to the time t. These are illustrated in the Figure 2.7. Linear alpha function

(a) decreases to zero linearly during the learning from its initial value whereas

the inverse alpha function (b) decreases rapidly from the initial value Both the

functions in the Figure have the initial value of 0.9. The initial values for � must

be determined. Usually, when using a rapidly decreasing inverse alpha function,

the initial values can be larger than in the linear case. The learning is usually

performed in two phases. On the �rst round relatively large initial alpha values

are used (� = 0:3; :::; 0:99) whereas small initial alpha values (� = 0:01; :::; 0:1)

are used during the other round. This corresponds to �rst tuning the SOM

approximately to the same space than the inputs and then �ne-tuning the map.

There are several rules-of-thumb for picking suitable values. These have been

found through experiments and can be found in the monograph by Kohonen [20].

Alpha values are de�ned to be

�(t) = �(0)(1:0� t=rlen)

for the linear case and

�(t) = C�(0)=(C + t)

for the inverse function. C can be, for example C = rlen=100. rlen is the running

length of the training, or number of samples fed to the network. These are the

values used in the programming package SOM_PAK [21].

By choosing a suitable initial learning rate and a suitable form for the learning

rate function, we can considerably a�ect the result.

CHAPTER 2. SELF-ORGANIZING MAP 19

2.2.4 Visualization

The Self-Organizing Map is an approximation to the probability density function

of the input data [20]. It can be used in visualization [13]. In the next sections,

we present common ways to visualize the Self-Organizing Map.

U-matrix

U-matrix (uni�ed distance matrix) representation of the Self-Organizing Map [39]

visualizes the distances between the neurons. The distance between the adjacent

neuons is calculated and presented with di�erent colorings between the adjacent

nodes. A dark coloring between the neurons corresponds to a large distance and

thus a gap between the codebook values in the input space. A light coloring

between the neurons signi�es that the codebook vectors are close to each other in

the input space. Light areas can be thought as clusters and dark areas as cluster

separators. This can be a helpful presentation when one tries to �nd clusters in

the input data without having any a priori information about the clusters.

Figure 2.8: U-matrix representation of the Self-Organizing Map

In the Figure 2.8 we can see the neurons of the network marked as black dots.

The representation reveals that these are a separate cluster in the upper right

corner of this representation. The clusters are separated by a dark gap. This re-

sult was achieved by unsupervised learning, that is, without human intervention.

Teaching a SOM and representing it with the U-matrix o�ers a fast way to get

insight of the data distribution.

Sammon's mapping

Sammon's mapping [27] is a non-linear mapping that maps a set of input points on

a plane trying to preserve the relative distance between the input points approx-

imately. It can be used to visualize a SOM by mapping the values of codebook

CHAPTER 2. SELF-ORGANIZING MAP 20

vectors on a plane. Furthermore, the topological relations can be drawn using

lines between neighboring neurons to enhance the net-like look. Sammon's map-

ping can be applied directly to data sets, but is computationally very intensive.

The SOM quantizes the input data to a small number of codebook vectors, so

the burden of computation is not so heavy.

Figure 2.9: Sammon's mapping of the codebook vectors of SOM

The Figure 2.9 is an illustration of the Sammon's mapping. The form of the

Sammon's mapping can be considered as a hint of the form of the set of codebook

vectors and thus the input data.

Component plane representation

By component plane representation we can visualize the relative component dis-

tributions of the input data. Component plane representation can be thought as a

sliced version of the Self-Organizing Map. Each component plane has the relative

distribution of one data vector component. In this representation, dark values

represent relatively small values while white values represent relatively large val-

ues. By comparing component planes we can see if two components correlate. If

the outlook is similar, the components strongly correlate.

This is a clear visualization of correlation between the vector components.

For example, there is correlation between the components (j), (k) and (l), for

example. By picking a same neuron in each plane (in the same location), we

could assemble the relative values of a codebook vector of the network.

2.2.5 Validation

We can create models as we like, but before a model can be reliably used, it must

be validated. Validation means that the model is tested so that we can be sure

that the model gives us reasonable and accurate values. What we mean by this

depends largely on the application and our requirements.

CHAPTER 2. SELF-ORGANIZING MAP 21

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 2.10: The component plane representation of the SOM

CHAPTER 2. SELF-ORGANIZING MAP 22

The validation must be done by using an independent test set. The indepen-

dent test set is a set similar to the input set but not a part of the training set.

The testing set can be seen as a representative of the general case.

Quantization error of an input vector is de�ned as the di�erence between the

input vector and the closest codebook vector. For a set of input vectors, we can

re�ect on the similarity of the input data set and the SOM by investigating the

distribution of the quantization errors. The range of quantization error tells the

smallest and the largest amount of error.

2.3 Applications

Self-Organizing Map has proven useful in many technical applications. Many

applications have been published in the open literature. Representative examples

can be found in an article by Kohonen et al. [22].

In an industrial setting, the SOM has been applied, for example, in process

and machine state monitoring [1] [2] [4] [7] [11] [18], fault identi�cation [41] and

in robot control [35].

In process and systems analysis, the use of SOM is well motivated [22]. The

number of state variables may exceed the number of measurements by an order

of magnitude. Also, the state variables may be non-linearly related. In this case,

the analystical model of the plant in question would not be identi�able from the

measurements.

In fault diagnosis, the SOM has two functions. Firstly, the SOM can be used

in detecting the fault and in identifying it. One can detect faults even if there

are no measurements of the faulty states by investigating the quantization error

between the SOM and the measurements. If the quantization error exceeds a

pre-de�ned limit, a faulty state has occurred. If one needs also to identify faults,

representative examples of the faulty situations must have been recorded.

In an application, measurements were made from a computer system in a

network environment. The system was measured in terms of utilization rates of

the central processing unit and tra�c volumes in the network. It was not known

a priori what the characteristic states in the operation of the system would be.

The SOM was used in clustering data measured from the system, or to form a

representation of the characteristic states. Such a representation would be useful

in monitoring the current state of the system.

In the Figure 2.11 the U-matrix representation and the Sammon's mapping

of the SOM is presented. These representations reveal the characteristic states of

the system. The SOM can in this way be used in monitoring the current state of

the system. This kind of monitoring application is based on the ability of SOM

to represents the density function of input data on a low-dimensional display [22].

CHAPTER 2. SELF-ORGANIZING MAP 23

Figure 2.11: U-matrix and Sammon's mapping of the SOM

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12: Relative distributions of the measurements in planes representation

The component plane representation in 2.12 shows the relative component

distribution of the measurements. If something is known about the characteristic

states of the system, the component planes can help in giving states descrip-

tions, or labels. Then, a mapping from the measurement space to map units is a

mapping to a name describing the state.

Chapter 3

Principal component analysis

3.1 Principal component analysis

Principal component analysis (PCA) is a classical statistical method. This linear

transform has been widely used in data analysis and compression. The following

presentation is adapted from [9]. Some of the texts on the subject also include

[30], [31]. Principal component analysis is based on the statistical representation

of a random variable. Suppose we have a random vector population x, where

x = (x

1

; :::; x

n

)

T

and the mean of that population is denoted by

�

x

= Efxg

and the covariance matrix of the same data set is

C

x

= Ef(x� �

x

)(x� �

x

)

T

g

The components of C

x

, denoted by c

ij

, represent the covariances between the

random variable components x

i

and x

j

. The component c

ii

is the variance of

the component x

i

. The variance of a component indicates the spread of the

component values around its mean value. If two components x

i

and x

j

of the

data are uncorrelated, their covariance is zero (c

ij

= c

ji

= 0). The covariance

matrix is, by de�nition, always symmetric.

From a sample of vectors x

1

; : : : ;x

M

, we can calculate the sample mean and

the sample covariance matrix as the estimates of the mean and the covariance

matrix.

From a symmetric matrix such as the covariance matrix, we can calculate an

orthogonal basis by �nding its eigenvalues and eigenvectors. The eigenvectors e

i

and the corresponding eigenvalues �

i

are the solutions of the equation

C

x

e

i

= �

i

e

i

; i = 1; :::; n

24

CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS 25

For simplicity we assume that the �

i

are distinct. These values can be found, for

example, by �nding the solutions of the characteristic equation

jC

x

� �Ij = 0

where the I is the identity matrix having the same order than C

x

and the j:j

denotes the determinant of the matrix. If the data vector has n components,

the characteristic equation becomes of order n. This is easy to solve only if n is

small. Solving eigenvalues and corresponding eigenvectors is a non-trivial task,

and many methods exist. One way to solve the eigenvalue problem is to use a

neural solution to the problem [30]. The data is fed as the input, and the network

converges to the wanted solution.

By ordering the eigenvectors in the order of descending eigenvalues (largest

�rst), one can create an ordered orthogonal basis with the �rst eigenvector having

the direction of largest variance of the data. In this way, we can �nd directions

in which the data set has the most signi�cant amounts of energy.

Suppose one has a data set of which the sample mean and the covariance

matrix have been calculated. Let A be a matrix consisting of eigenvectors of the

covariance matrix as the row vectors.

By transforming a data vector x, we get

y = A(x� �

x

)

which is a point in the orthogonal coordinate system de�ned by the eigenvectors.

Components of y can be seen as the coordinates in the orthogonal base. We can

reconstruct the original data vector x from y by

x = A

T

y + �

x

using the property of an orthogonal matrix A

�1

= A

T

. The A

T

is the transpose

of a matrixA. The original vector x was projected on the coordinate axes de�ned

by the orthogonal basis. The original vector was then reconstructed by a linear

combination of the orthogonal basis vectors.

Instead of using all the eigenvectors of the covariance matrix, we may represent

the data in terms of only a few basis vectors of the orthogonal basis. If we denote

the matrix having the K �rst eigenvectors as rows by A

K

, we can create a similar

transformation as seen above

y = A

K

(x� �

x

)

and

x = A

K

T

y + �

x

This means that we project the original data vector on the coordinate axes

having the dimensionK and transforming the vector back by a linear combination

CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS 26

of the basis vectors. This minimizes the mean-square error between the data and

this representation with given number of eigenvectors.

If the data is concentrated in a linear subspace, this provides a way to compress

data without losing much information and simplifying the representation. By

picking the eigenvectors having the largest eigenvalues we lose as little information

as possible in the mean-square sense. One can e.g. choose a �xed number of

eigenvectors and their respective eigenvalues and get a consistent representation,

or abstraction of the data. This preserves a varying amount of energy of the

original data. Alternatively, we can choose approximately the same amount of

energy and a varying amount of eigenvectors and their respective eigenvalues.

This would in turn give approximately consistent amount of information in the

expense of varying representations with regard to the dimension of the subspace.

We are here faced with contradictory goals: On one hand, we should simplify

the problem by reducing the dimension of the representation. On the other hand

we want to preserve as much as possible of the original information content. PCA

o�ers a convenient way to control the trade-o� between loosing information and

simplifying the problem at hand.

As it will be noted later, it may be possible to create piecewise linear models

by dividing the input data to smaller regions and �tting linear models locally to

the data.

Now, consider a small example showing the characteristics of the eigenvectors.

Some arti�cial data has been generated, which is illustrated in the Figure 3.1.

The small dots are the points in the data set.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.1: Eigenvectors of the arti�cially created data

Sample mean and sample covariance matrix can easily be calculated from

the data. Eigenvectors and eigenvalues can be calculated from the covariance

matrix. The directions of eigenvectors are drawn in the Figure as lines. The �rst

CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS 27

eigenvector having the largest eigenvalue points to the direction of largest variance

(right and upwards) whereas the second eigenvector is orthogonal to the �rst one

(pointing to left and upwards). In this example the �rst eigenvalue corresponding

to the �rst eigenvector is �

1

= 0:1737 while the other eigenvalue is �

2

= 0:0001.

By comparing the values of eigenvalues to the total sum of eigenvalues, we can get

an idea how much of the energy is concentrated along the particular eigenvector.

In this case, the �rst eigenvector contains almost all the energy. The data could

be well approximated with a one-dimensional representation.

Sometimes it is desirable to investigate the behavior of the system under

small changes. Assume that this system, or phenomenon is constrained to a n-

dimensional manifold and can be approximated with a linear manifold. Suppose

one has a small change along one of the coordinate axes in the original coordinate

system. If the data from the phenomenon is concentrated in a subspace, we can

project this small change �

x

to the approximative subspace built with PCA by

projecting �

x

on all the basis vectors in the linear subspace by

�

y

= A

K

�

x

where the matrix A

K

has the K �rst eigenvectors as rows. Subspace has then a

dimension of K. �

y

represents the change caused by the original small change. This

can be transformed back with a change of basis by taking a linear combination

of the basis vectors by

�

x

= A

K

T

�

y

Then, we get the typical change in the real-world coordinate system caused

by a small change �

x

by assuming that the phenomenon constrains the system to

have values in the limited subspace only.

Chapter 4

Models

4.1 General

The instinct of survival of man has driven him to investigate his surroundings.

Intelligence and the ability to reason and to adapt have been crucial to the survival

of man. Models can be thought of as explicit expressions of the surrounding world.

Models can help us to understand our surroundings and to answer questions about

it. A general de�nition of a model could be presented: �Model is an object (or

an abstraction) that facilitates the processing of another object�.

Kohonen states in his book [20]: Model, especially an analytical one, usu-

ally consists of a �nite set variables and their quantitative interactions that are

supposed to describe, e.g., states and signals in a real system, often assumed to

behave according to known, simpli�ed laws of nature.

Many kinds of models exist. The model that is best suited for a speci�c

purpose must be chosen carefully taking into account the following considerations:

� View-point on the problem

� Scale (or resolution or granularity)

� Domain of applicability

First, view-point must be decided. It is impossible to create a model that

could answer all the questions. An accurate model has a restricted view on the

problem. A more general model can exist on higher abstraction levels. Generality

and the level of detail are contradictory: a detailed model cannot be general and

a general model can not contain small details.

Secondly, scale of the model must be chosen. The problem itself does not

contain any information on the scale in which the observer considers relevant, so

28

CHAPTER 4. MODELS 29

the scale selection remains a problem of the observer. Some heuristics can be

developed to pick a suitable scale, but these always contain assumptions of the

observer.

Thirdly, the domain of applicability must be understood. Every model has

its limitations and the model is not valid outside its scope. This restricts the use

of a model.

Numerous modeling techniques have been used. These tend to be speci�c to a

certain discipline and constrained by tradition. All model-making seem to su�er

from the previously named problems.

Neural networks have been quite promising in modeling complex real-life phe-

nomena. As mentioned earlier, they are data-rich and theory-poor [8] models in

a sense that a few assumptions must be made to form such a model.

In the next two sections, we study ways of modeling with the SOM. First, a

way to create regression models is presented. Secondly, a method is described to

expand this kind of model to �t local models directly to the data.

4.2 SOM as a regression model

The SOM is a nonparametric regression model. This provides a data-driven

abstraction method of the phenomenon described by input data. It is possible

to study the general case by building this kind of model from many individual

cases.

The codebook vectors of the SOM represent the general form of the data and

quantize the input space. Along with the training, the elastic net is streched

to cover the cloud of data in the input space. We can use this representation

as a model or build models on this abstraction. We can visualize the SOM

by drawing a U-matrix or a component plane representation described earlier

in section 2.2.4. These provide us information about the correlations between

components, division of data in the input space and relative distributions of the

components.

The problem of scale selection must be tackled. The scale selection is the

problem of determining the smallest level of detail, or the granularity. This

corresponds, in a plain SOM representation, to picking a suitable number of

codebook vectors. Heuristics can be developed to do this, but this always requires

that assumptions are made by the observer. Training a SOM with a large number

of neurons requires a lot of computational e�ort and one may end up modeling

small details. A SOM with a small number of neurons might not in turn grasp

the essential.

Suppose we train a SOM with input vectors of dimension n. SOM is then

a representation of the general case with no regard to which components of the

CHAPTER 4. MODELS 30

input vector are independent variables and which are dependent variables. We

have not committed us to a certain relationship between the vector components

or named any components as the �inputs� or the �outputs� of this relationships.

We can constrain any component of the input vector to be constant and to

fetch the rest of the vector values with the aid of known values. The forecasted

values are then the values of the BMU with regard to the known values of the

input vector.

The credibility measure of the predicted values can be approximated by the

di�erence between the codebook vector and the input vector.

SOM

Missing values

winner search BMU

Predictions

Figure 4.1: Fetch the unknown variables

A prediction can be created by seeking the best-matching unit for the a vector

with unknown components with regard to the known components. The winner

unit is searched with regard to the known components only. The predicted values

can be fetched from the best-matching unit.

A same kind of approach was used in robot control by Ritter et al. [35]. The

SOM was used as an adaptive look-up table for fetching suitable output variable

values for given input variable values. Output values correspond to control ac-

tions with given input values. Output values were taught with a di�erent learning

rule. This corresponds to �picking the most suitable question for our question,

and �nding the corresponding answer and considering that for a �nal answer�.

Kohonen suggests that this might be the way brain operates, namely by fusing

di�erent kinds of data together [20]. In the second application in time series

prediction by Walter et al. [42] the SOM was used to partition the state-space of

a time-dependent system. Each state of the system was mapped to a codebook

vector, and the next state was predicted by an autoregressive model of the pre-

vious values of the system. The autoregressive models were speci�c to a certain

CHAPTER 4. MODELS 31

state-space.

This method is indeed very simple. It is not committed to any �inputs� or

�outputs�, but can be used to predict any wanted �input-output� relationship. It

would be desirable that the number of known components would be larger than

the number of unknown components.

4.3 SOM and local model �tting

The SOM representation is a generalization of the underlying data [19]. It can

be used as a basis for further processing. The SOM representation is a lattice

of discrete points in the n-dimensional input space. The SOM can be used to

partition the input data to smaller regions by associating input data with their

best-matching units. Each data point in input space has, by de�nition, one best

matching unit. The area in the input space for which the codebook vector is the

BMU is called Voronoi tesselation. Voronoi tesselations partition the input space

into disjoint sets.

Figure 4.2: Voronoi tesselations in the input space

A model can be created by �tting a model to the data in the Voronoi tesse-

lation. By way of doing this, one can create models that are local to the speci�c

Voronoi tesselation. These models desrcibe the behavior of the system in this

local space only. One could also combine data coming from a neuron and its

neighboring units to form a larger amount of data covering a larger amount of

input space thus enlarging the area of interesting operation points.

Whereas the SOM codebook vectors are local averages of the training data,

PCA represents also the �rst-order terms of the data. By restricting the input

space of PCA to one Voronoi tesselation only, one can take advantage of the

CHAPTER 4. MODELS 32

non-linear elasticity of SOM and its capability to partition the input space and

building linear regression models with PCA.

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: The training data used to train a SOM

In the Figure 4.3 5000 thousand arti�cially created codebook vectors are illus-

trated. These are used in training a SOM. In addition to replacing the 5000 data

vectors with 10 codebook vectors that describe the original data, it partitions the

input space.

The one-dimensional SOM in the Figure 4.4 quantizes the input space. Data

is associated to neurons by the similarity criterion. One could build a model

based on data belonging to one of the Voronoi tesselations. This kind of model

would be local in nature. Neurons of the SOM are marked with small circles in

the �gure. The topological relationships are drawn as lines.

If the data clearly resided in a linear subspace, these local linear models could

be interpreted as �rst derivative rules and thus be used for sensitivity analysis.

Often one would like to study the behavior of a system under small changes.

The goal here is to develop methods with which one could understand the

structure of the multidimensional data manifold by applying SOM to the training

data and PCA to each of the Voronoi tesselations in the input space. Similar work

has been reported in [5], [14], [15], [16], [17].

CHAPTER 4. MODELS 33

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: The SOM with 10 codebook vectors

Chapter 5

Case study: Rautaruukki

5.1 Problem domain

Process optimization is largely motivated by the economic incentive. Because of

the large volumes involved in production, even small improvements can result

in large productivity gains. Under competition, continuous improvement is also

necessary to maintain and to improve a market position.

Arti�cial neural networks have been applied in monitoring and control of

industrial processes in [1], [2], [4], [7], [10], [11], [18], [23], [24], [25], [26], [28],

[29], [32], [33], [37], [38], [40], [41], [43].

Rautaruukki produces steel coils to be used, for instance, by the construction

industry. The process consists of rolling operations and an annealing process.

The steel rolls may also be coated with plastic or zinc.

Process

Final productRaw material

Figure 5.1: An oversimpli�ed model of the process (black box approach)

The products leave the production line one by one. Each of these products has

attributes associated with it. These attributes are the raw material charcteristics

in the form of element concentrations, the process parameter settings during

34

CHAPTER 5. CASE STUDY: RAUTARUUKKI 35

the processing and the end product characteristics in the form of the quality

parameters. The quality parameters re�ect the mechanical properties of the steel.

The quality parameters are determined through standard procedures.

After steel strips have been hot rolled the strips are pickled. The strip goes

through a pickling process. A pickling process is an acid bath, which removes an

oxide layer from the surface of the strip. After pickling, the strip are rolled in

four consecutive roll stands to make the steel strip thinner.

After rolling, the strip is coiled and warmed up to a hot temperature in a bell-

shaped oven. The roll is warmed and then let to cool up during a long period of

time. This part of the process is called annealing. Annealing process improves the

microstructure of the steel: on a microlevel, the steel particles become ordered.

After annealing, the coils are rolled with a temper mill to improve formability.

The material chain in the process is illustrated in the Figure 5.2. The incoming

raw material consists of the hot rolled coils from suppliers.

Tandem Mill

Pickling Line

Hot rolled coils

Shipping

Customers

Batch Annealing

Temper Mill

Finishing

Packaging

Figure 5.2: The material �ow in the process

After the treatments described above, the coils are ready to be packed and

shipped to the customer. The coils may also be coated with zinc or plastic. The

coating process was not a part of this analysis.

CHAPTER 5. CASE STUDY: RAUTARUUKKI 36

5.2 Process data

The production system stores all the necessary information to identify the oper-

ations done on a per product basis. Data of the products can be retrieved from

the factory database with a database query. This data is used in modeling the

process.

As in the Figure 5.3 the process data describes attributes of individual prod-

ucts. These attributes are the attributes of the incoming raw material in the form

of element concentrations, the process parameter settings during the producing

of a coil and the quality parameters of the �nal product shipped to the customer.

The model variables from the process measurements can by summed in following:

� The raw material characteristics in terms of element concentrations

� The process parameter settings during the production of a product

� The quality characteristics of a particular product

A process model is constructed using these measurements. Model can be

utilized to predict quality parameter values with given raw material and process

parameter settings. In this way, we can study how di�erent process settings

contribute to the end product quality.

Product attributes
-raw material
-process settings
-quality parameters

Figure 5.3: attributed product

The above mentioned parameters are gathered in a 28-dimensional vector

x = [x

1

; :::; x

28

]

T

describing the product and its attributes. This vector is used to train a Self-

Organizing Map. The approach is similar to that used in [2] in a process moni-

toring application. The di�erence is that in this case the measurement vector is

a measurement of one particular product, whereas in [2] the measurement vector

CHAPTER 5. CASE STUDY: RAUTARUUKKI 37

consists of the corresponding attributes of a sampled process state at a given

time.

In this particular case study, passive data is used. Passive data is data col-

lected during the normal operation of the plant. This kind of data does not cover

all the possible operation points, but only those points already encountered in

practice during the normal operation.

Data preprocessing

This case study focused on a particular product grade. The data re�ecting these

products was �ltered from the database. The data with missing values were

removed. The data was scaled so that each component had variance one. The

training set had approximately 3000 training vectors.

Training a SOM

Several Self-Organizing Maps were trained with a di�erent number of codebook

vectors and varying teaching parameters. Of all these SOMs, the one with the

smallest quantization error was picked. This was the SOM with 25 times 15

codebok vectors. Bubble neighborhood was used as the neighborhood function.

The learning rate was chosen to decrease linearly as a function of time. Training

was done in two phases. During the �rst cycle, the initial alpha value � = 0:4,

the map was taught with 35000 samples and the initial neighborhood had the

value 15. The respective parameter values for the second cycle were 0.04, 150000

and 6.

The U-matrix representation

In this case, the U-matrix representation can be used to see if the SOM quantizes

the input space evenly.

Figure 5.4: The U-matrix representation of the SOM

CHAPTER 5. CASE STUDY: RAUTARUUKKI 38

If there are no visible clusters, as is the case in Figure 5.4, the SOM quantizes

the input space evenly, that is, the distances between the codebook vectors are

approximately the same.

Sammon mapping of the SOM

Figure 5.5: Sammon mapping of the SOM

Sammon's mapping is used to visualize the relative distances between the code-

book vectors of the SOM. As the SOM approximates the probability density

function to some extent, there are a lot a codebook vectors, where the data is

dense. This can be seen in the Figure 5.5.

5.3 Using SOM as a regression model

5.3.1 Predicting quality parameters

We predict the quality parameters by fetching direct copies of the missing compo-

nents of the best-matching unit in the SOM. The best-matching unit is searched

CHAPTER 5. CASE STUDY: RAUTARUUKKI 39

with regard to the known components only. In this case, we are interested in

predicting the quality parameter values with given incoming raw material and

process parameter settings. We thus map vectors with known components to

the Self-Organizing Map and fetch the values of quality parameters from the

best-matching unit of the input vector.

The choice of the missing components are up to the user. No committment

to which components are inputs and which are outputs is made.

To validate the model, we removed a random sample of 500 vectors from the

input data to form an independent testing set. This set was not used during

training. For these vectors, the quality parameters were known.The quality pa-

rameters were omitted from the testing set vectors and the SOM was used to

predict the values of the quality parameters by fetching direct copies of the qual-

ity parameters of the best-matching unit with regard to the known components.

The predicted values for the quality parameter values can be compared with the

corresponding known values.

180 200 220 240 260 280 300 320 340
210

220

230

240

250

260

270

280

290

300

Figure 5.6: The real values versus the predicted values of the quality parameter

The points in Figure 5.6 are the pairs of real values and predicted values.

Ideally, these should be on a line where both are equal. It can be seen that the

predicted values lie around this line and are most accurate in the middle of the

quality parameter range.

The Figure 5.7 shows the sorted real values of the quality parameter as points,

and the predicted values of the respective quality parameters as a connected line.

CHAPTER 5. CASE STUDY: RAUTARUUKKI 40

0 50 100 150 200 250 300 350 400 450 500
180

200

220

240

260

280

300

320

340

Figure 5.7: The predicted values and the sorted, real values

This shows that the predicted values for small values of the quality parameter are

consistently above the real value. Predictions for the large values of the quality

parameter are consistently below the right value.

The Figures above show that this method, despite its relative simplicity, can

produce predictions with good accuracy. This method predicts well on average.

The expected value of the prediction error is 0.6 and the standard deviation for

the prediction error is 19 MPa.

5.3.2 Sensitivity analysis

By doing instantaneous or consecutive predictions under small changes made

in the process parameter space we can investigate the leverage e�ects of the

parameter changes. This is crucial for two reasons. Firstly, random variation

causes small perturbations in the process parameters. This kind of noise is always

present in a production process. Secondly, one can make improvements in the

process by changing standard operating procedures in a directions that result in

products of better quality.

In the Figure 5.8 the mechanism behind the tool is shown. A small change

along one of the coordinates in the measurement space is made. The new vector

of all components is mapped to the SOM. If the best-matching unit changes, the

values of that unit are shown to the user. The interpretation of this is that the

CHAPTER 5. CASE STUDY: RAUTARUUKKI 41

a small change

SOM

Measurement space

Figure 5.8: The leverage e�ect

the small change in one of the measurement space axes caused the other values

to change. In the Figure 5.8 the component value on the axis pointing upward

decreased a little caused by the small increase in the measurement on the axis

pointing to the right. The third component remained the same.

A software tool was developed to help in the mentioned goals. In the Figure

5.9 the di�erent functions of the tool are described.

SOM

load a SOM

exit program

and exit

save a SOMleveragestraining
load data

Figure 5.9: Functions of the tool program

One can perform all the parts needed to train a SOM from pre-processed data.

First, data is read to the program. With the aid of the tool, the training process

of the Self-Organizing Map can be handled. Instead of training a SOM, one can

also load in a SOM and also save a SOM for later inspection and use.

CHAPTER 5. CASE STUDY: RAUTARUUKKI 42

This representation is used in giving instantaneous predictions under small

changes made by the user. This reveals the leverage e�ects in a given operation

point under small changes. It must be remembered that same changes can have

di�erent e�ects in di�erent operations points.

The parameters settings are controlled by the user. The user has the choice of

locking one or several parameters, thus limiting the operating point to a certain

location in the measurement space. The tool updates only those components

which are not locked. If no parameters are locked, the shown values are the

direct copies of the values in the codebook vector.

As the user changes one of the parameters, the best-matching unit is con-

stantly searched for. If the best-matching unit changes, all the other parameter

settings are changed according to the values in that particular codebook vector.

This corresponds to a kind of a projection from the parameter space to the SOM

codebook vectors.

The user can then investigate the leverage e�ects caused by the small param-

eter changes. In this way, the operator can �play-along� with the process and

learn about the dynamic behavior of the process.

Figure 5.10: The interface of the tool for analyzing the leverage e�ects

The graphical interface of the leverage analyzer tool is illustrated in Figure

5.10. A static picture of the tool does not reveal much of its function or the

purpose, but hands-on experience has proven it useful.

Besides the prediction, a measure of reliability is shown. The measure of

reliability used is the quantization error between the codebook vector and the

input vector set by the user. Locking parameters can have negative side-e�ects:

we can drift away from the surface de�ned by the SOM. The quantization error

provides a way to detect this.

No commitment is made to which parameters are independent and which are

CHAPTER 5. CASE STUDY: RAUTARUUKKI 43

independent parameters. Naturally, one is interested in �nding a combination of

raw material characteristics and process parameter setting that produce the best

possible quality, but one could as well predict best possible incoming raw material

given the quality characteristics of the end product and the process parameter

settings.

5.4 Using SOM and local model �tting

As explained in section 4.3, the SOM partitions the input space into Voronoi

tesselations, which are disjoint areas in the input space. One may try to �t local

models to the data belonging to one of these Voronoi tesselations. At the simplest

form, these models would be linear. We could also �t a model to adjacent, neigh-

boring Voronoi tesselations thus enlarging the area of interest. The locality of the

data set is dependent on the division made by the SOM. Division is determined

by the number of codebook vectors and the teaching process.

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

Figure 5.11: The training data projected on the two �rst eigenvectors

In the Figure 5.11 the training data used in prediction in the previous section

was projected on the �rst two eigenvectors having the largest eigenvalues. Only

about 22.6 % of the energy was concentrated around this linear subspace. The

CHAPTER 5. CASE STUDY: RAUTARUUKKI 44

eigenvalues decreased rather slowly which indicated that there was a lot of energy

in all the directions. This seems quite natural taking into account that there was

no partitioning of the input space and that the phenomenon at hand is relatively

complex. Also, moderate measurement noise may have part in this.

An e�ort was made to build local linear models of the data. The training data

was divided into Voronoi tesselations based on the best-matching unit of input

samples. The covariance matrix and the sample mean were calculated based on

the data belonging to the Voronoi tesselations under interest. By investigating

the eigenvalues in descending order, it was noted that there was no rapid decrease

indicating that the data would reside in a linear subspace. Despite partitioning,

the eigenvalues decreased slowly indicating that there was energy in essentially

all the directions of the original coordinate system.

Scale selection seems to be the key problem in �nding proper partitionings for

the input space.

It may be argued that the failure to describe the data set in terms of local

subspaces was due to small data set size after partitioning, moderate noise in the

measurements and improper partitioning of the input space. Further work has to

be done in order to develop better solutions for this problem.

Chapter 6

Conclusions

In this work, way to model a production process from the process measurements

is presented. The arti�cial neural network, with which the process model is built,

is the Self-Organizing Map (SOM). The model is based on the capability of the

SOM to build non-linear regression models of the data.

The attributes of individual products were used as process measurements.

These attributes were used in training the Self-Organizing Map.

The model's ability to describe the process depends also on the attributes'

capability to describe the behavior of the process. In case there are missing

model variables, that is, some essential process variables not a part of the model,

the model cannot be expected to give good results.

These attributes used in modeling include the element concentrations of the

incoming raw material, the process parameter settings during the production of

a particular product and quality characteristics of the end product.

With the aid of the model one can predict quality parameters and study the

leverage e�ects of the process parameter changes. A software tool is presented to

facilitate this. The method is applicable if there is a lot of data from the process.

These results serve best if only a little is known about the behavior of the process.

In this way, the model serves the process specialist in the learning of the essential

from large amounts of measurement data.

The quality of the model itself will decrease as the the amount of noise in the

measurements increases. Before any modeling technique can produce meaningful

results, the inputs, that is, the measurements from the process must be consistent.

Making the inputs consistent should be the �rst phase in any process improvement

scheme [6]. It must be remembered that no modeling technique can compensate

the lack of good data.

45

Bibliography

[1] Jarmo T. Alander, Matti Frisk, Lasse Holmström, Ari Hämäläinen, and Juha

Tuominen. Process error detection using self-organizing feature maps. In

T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Arti�cial Neu-

ral Networks, volume II, pages 1229�1232, Amsterdam, Netherlands, 1991.

North-Holland.

[2] Esa Alhoniemi. Monitoring of complex processes using the self-organizing

map. Master's thesis, Helsinki University of Technology, 1995.

[3] Christopher M. Bishop. Neural Networks for Pattern recognition. Oxford

University Press, 1995.

[4] Simon Cumming. Neural networks for monitoring of engine condition data.

Neural Computing & Applications, 1(1):96�102, 1993.

[5] Pierre Demartines and Jeanny Hérault. CCA: "curvilinear component anal-

ysis. In Proc. of 15th workshop GRETSI. sep 1995, Juan-Les-Pins France,

1995.

[6] Norman M. Edelson, Melinda L. Ellis, Anil N. Kharkar, Brian E. Stutts, and

Suzanne deTreville. A sequential 3-phase process improvement strategy. In

ASQC Quality Congress Transactions - Nashville, 1992.

[7] F. Firenze, L. Ricciardiello, and S. Pagliano. Self-organizing networks: A

challenging approach to fault diagnosis of industrial processes. In Maria

Marinaro and Pietro G. Morasso, editors, Proc. ICANN'94, Int. Conf. on

Arti�cial Neural Networks, volume II, pages 1239�1242, London, UK, 1994.

Springer.

[8] Neil A. Gershenfeld and Andreas S. Weigend. The future of time series:

Learning and understanding. In Time Series Prediction: Forecasting the

Future and Undestanding the Past, 1993.

[9] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Addison

Wessley Publishing Company, 1992.

46

BIBLIOGRAPHY 47

[10] K. Goser, S. Metzen, and V. Tryba. Designing of basic integrated circuits

by self-organizing feature maps. Neuro-Nimes, 1989.

[11] Tom Harris. A Kohonen S.O.M. based, machine health monitoring system

which enables diagnosis of faults not seen in the training set. In Proc. IJCNN-

93-Nagoya, Int. Joint Conf. on Neural Networks, volume I, pages 947�950,

Piscataway, NJ, 1993. IEEE Service Center.

[12] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1989.

[13] Jukka Iivarinen, Teuvo Kohonen, Jari Kangas, and Sami Kaski. Visualizing

the clusters on the self-organizing map. In Christer Carlsson, Timo Järvi,

and Tapio Reponen, editors, Proc. Conf. on Arti�cial Intelligence Res. in

Finland, number 12 in Conf. Proc. of Finnish Arti�cial Intelligence Soci-

ety, pages 122�126, Helsinki, Finland, 1994. Finnish Arti�cial Intelligence

Society.

[14] Jyrki Joutsensalo. Nonlinear data compression and representation by com-

bining self-organizing map and subspace rule. In Proc. ICNN'94, Int. Conf.

on Neural Networks, pages 637�640, Piscataway, NJ, 1994. IEEE Service

Center.

[15] Jyrki Joutsensalo and Antti Miettinen. Self-organizning operator map for

nonlinear dimension reduction. In 1995 IEEE Int. conf. on Neural Networks

proc., 1995.

[16] Jyrki Joutsensalo, Antti Miettinen, and Martin Zeindl. Nonlinear di-

mension reduction by combining competitive and distributed learning. In

F. Fogelman-Soulié and P. Gallinari, editors, Proc. ICANN'95, Int. Conf.

on Arti�cial Neural Networks, volume II, pages 395�400, Nanterre, France,

1995. EC2.

[17] Nandakishore Kambhatla and Todd K. Leen. Fast non-linear dimension

reduction. In 1993 IEEE Int. conf. on Neural Networks proc., volume III,

1993.

[18] Mika Kasslin, Jari Kangas, and Olli Simula. Process state monitoring using

self-organizingmaps. In I. Aleksander and J. Taylor, editors, Arti�cial Neural

Networks, 2, volume II, pages 1531�1534, Amsterdam, Netherlands, 1992.

North-Holland.

[19] Teuvo Kohonen. What generalizations of the Self-Organizing Map make

sense. In Maria Marinaro and Pietro G. Morasso, editors, Proc. ICANN'94,

Int. Conf. on Arti�cial Neural Networks, volume I, pages 292�297, London,

UK, 1994. Springer.

BIBLIOGRAPHY 48

[20] Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995.

[21] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, and Jorma Laaksonen.

SOM_PAK: The Self-Organizing Map Program Package. Helsinki Uni-

versity of Technology, Laboratory of Computer and Information Science,

1995. Available via anonymous ftp at internet address cochlea.hut.�

(130.233.168.48).

[22] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas. Engi-

neering applications of the self-organizing map. Manuscript submitted to a

journal.

[23] Jouko Lampinen and Ossi Taipale. Optimization and simulation of quality

properties in paper machine with neural networks. In Proc. ICNN'94, Int.

Conf. on Neural Networks, pages 3812�3815, Piscataway, NJ, 1994. IEEE

Service Center.

[24] Thomas Martinetz, Peter Protzel, Otto Gramckow, and Gunter Sorgel. Neu-

ral network control for steel rolling mills. In Bert Kappen and Stan Kielen,

editors, Proceedings of the Third Annual SNN Symposium on Neural Net-

worksNijmegen, pages 281�286, September 1995.

[25] C. P. Matthews and K. Warwick. Practical application of self organising

feature maps to process modeling. In Proc. of the Int. Conf. on Engineering

Applications on Neural Networks, 1995.

[26] Gary S. May. Manufacturing ics the neural way. IEEE Spectrum, 1994.

[27] John W. Sammon, Jr. A nonlinear mapping for data structure analysis.

IEEE Transactions on Computers, C-18(5):401�409, May 1969.

[28] Pietro Morasso, Alberto Pareto, Stefano Pagliano, and Vittorio Sanguineti.

Self-organizing neural network for diagnosis. In Stan Gielen and Bert Kap-

pen, editors, Proc. ICANN'93, Int. Conf. on Arti�cial Neural Networks,

pages 806�809, London, UK, 1993. Springer.

[29] D. Niebur and A. J. Germond. Unsupervised neural net classi�cation of

power system static security states. Int. J. Electrical Power & Energy Sys-

tems, 14(2-3):233�242, April-June 1992.

[30] Erkki Oja. Subspace methods of pattern recognition, volume 6 of Pattern

recognition and image processing series. John Wiley & Sons, 1983.

[31] Erkki Oja. Neural networks, principal components, and subspaces. Interna-

tional Journal of Neural Systems, 1(1):61�68, 1989.

BIBLIOGRAPHY 49

[32] Thomas Poppe, Dragan Obradovic, and Martin Schlang. Neural networks:

Reducing energy and raw materials requirements. Siemens Review, 1995.

[33] Jose C. Principe and Ludong Wang. Non-linear time series modeling with

Self-Organization Feature Maps. In Proc. NNSP'95, IEEE Workshop on

Neural Networks for Signal Processing, pages 11�20, Piscataway, NJ, 1995.

IEEE Service Center.

[34] Helge Ritter and Teuvo Kohonen. Self-organizing semantic maps. Technical

report, Helsinki University of Technology, Faculty of Information Technology,

Laboratory of Computer and Information Science, 1989.

[35] Helge Ritter, Thomas Martinetz, and Klaus Schulten. Neural Computation

and Self-Organizing Maps. Addison-Wesley Publishing Company, 1992.

[36] T. Samad and S. A. Harp. Self-organization with partial data. Network:

Computation in Neural Systems, 3(2):205�212, May 1992.

[37] Olli Simula and Jari Kangas. Neural Networks for Chemical Engineers, vol-

ume 6 of Computer-Aided Chemical Engineering, chapter 14, Process mon-

itoring and visualization using self-organizing maps. Elsevier, Amsterdam,

1995.

[38] Viktor Tryba and Karl Goser. Self-Organizing Feature Maps for process

control in chemistry. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas,

editors, Arti�cial Neural Networks, pages 847�852, Amsterdam, Netherlands,

1991. North-Holland.

[39] A. Ultsch and H.P. Siemon. Kohonen's self organizing feature maps for

exploratory data analysis. In Proc. INNC'90, Int. Neural Network Conf.,

pages 305�308, Dordrecht, Netherlands, 1990. Kluwer.

[40] Alfred Ultsch. Self organized feature maps for monitoring and knowledge

acquisition of a chemical process. In Stan Gielen and Bert Kappen, editors,

Proc. ICANN'93, Int. Conf. on Arti�cial Neural Networks, pages 864�867,

London, UK, 1993. Springer.

[41] Mauri Vapola, Olli Simula, Teuvo Kohonen, and Pekka Meriläinen. Rep-

resentation and identi�cation of fault conditions of an anaesthesia system

by means of the Self-Organizing Map. In Maria Marinaro and Pietro G.

Morasso, editors, Proc. ICANN'94, Int. Conf. on Arti�cial Neural Networks,

volume I, pages 350�353, London, UK, 1994. Springer.

[42] Jörg Walter, Helge Ritter, and Klaus Schulten. Non-linear prediction with

self-organizing maps. In Proc. IJCNN-90-San Diego, Int. Joint Conf. on

BIBLIOGRAPHY 50

Neural Networks, volume 1, pages 589�594. IEEE Service Center, Piscataway

NJ, 1990.

[43] X.Yao, A.K.Tieu, X.D.Fang, and D.Frances. Neural network application to

head & tail width control in a hot strip mill. In Proc. ICNN'95, Int. Conf.

on Neural Networks, 1995.

