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Abstract—We study the generation and visualization of residu-
als for detecting and identifying unseen faults using autoassocia-
tive models learned from process data. Least squares and kernel
regression models are compared on the basis of their ability to de-
scribe the support of the data. Theoretical results show that ker-
nel regression models are more appropriate in this sense. More-
over, experiments on vibration and current data from an asyn-
chronous motor confirm the theory and yield more meaningful
results.

Index Terms—Residual generation, visualization, novelty detec-
tion, fault identification, kernel regression

I. I NTRODUCTION

V ISUALIZATION and dimension reduction techniques
can be very powerful tools to analyze large sets of mul-

tidimensional data and have received considerable attention in
recent years [15], [13]. Particularly, in supervision and condi-
tion monitoring of complex processes, visualization methods
based on radial basis function (RBF) networks [19], the gen-
erative topographic mapping (GTM) [3] or the self organiz-
ing map (SOM) [9], [16], [1], [5] have been proposed. All
these techniques exploit the statistical information present in
the data, capturing nonlinear relationships among the variables
to build a model of the process data geometry using a low di-
mension manifold which allows to summarize its behavior in a
few dimensions (typically 2D or 3D), being in this sense gen-
eralizations of the well known linear PCA methods. They have
proven to be extremely useful in providing insightful viewsof
the process, allowing to merge in a very efficient way informa-
tion conveyed by the data with prior knowledge and experience
by means of visualizations which take advantage of preatten-
tive abilities of the human brain [7], [8].

Unfortunately, models built using these techniques only de-
scribe process behavior present in the data from which they
were learned and hence they cannot explain conditions out-
side those present in the learning data. However, the fact that
those methods explain part, maybe most, of the behavior of the
process can be thought of as “work already done”.Residuals,
or innovations, can be defined as that part of the process data
which is not explained by the model. A huge amount of liter-
ature has been devoted to the analysis and design of residuals,
specially in the field of control of dynamical systems —see

e.g. [6] for a good review. Nevertheless, most of the work in
this field has been focused on residuals generated by physical
or mathematical dynamical models, but much less work has
been devoted to residuals or innovations generated by models
learned from data. This work focuses on the latter problem.

This paper is organized as follows. In Section II we outline
general concepts of autoassociative models, which are used
subsequently for residual generation. In Sections III and IV,
we present two autoassociative approaches for residual evalua-
tion –kernel regression and a least squares version of it– which
are similar in architecture but different in their nature. We show
that the former methods take into account the support of the
process data, while the latter aim to minimize the squared error
in a global fashion, and we show how this can result in the im-
plicit assumption of an unfair joint pdf in the process data,and
hence in meaningless residuals. These ideas are illustrated with
artificial data. In Section V we describe a simple and intuitive
method to visualize the residuals and finally, in Section VI,we
discuss both approaches applying the visualization methodto
a real case study of vibration and current data from an asyn-
chronous motor.

II. A UTOASSOCIATIVE MODELS

A. General Concepts

One way to describe the behavior of a process is the use
of autoassociative models. A neural network can be trained to
generate a map from the input space on itself, in such a way that
the outputs are as close as possible to the inputs. Obviously,
the raw use of this approach often leads to trivial solutions. An
example of this arises if a linear mappingT : R

n → R
n is

chosen. In this case, the minimization of the cost functional
J(T) = ‖x − Tx‖2, leads to the trivial solutionT = I.

The usefulness of the autoassociative models, however, re-
lies in bounding the complexity of the mapping. This can be
done by imposing some restrictions on the class of functions
used to build the mapping as, e.g., a “bottleneck” layer in au-
toassociative multilayer perceptrons, or in the cost function to
be minimized. These restrictions, in general, aim to bound the
complexity of the approximation, according to the principle
of Occam’s Razor. This is further motivated by the fact that
the general principlesaccording to which a physical process



evolves are essentially simple and often far from arbitrary. In-
deed, this is a way in whichprior knowledgeis implicitly taken
into account in autoassociative models to capture the essential
physical substrate behind the data. However, despite good re-
sults [11], [2] attention is seldom paid to this in the designof
autoassociative models. In next section we describe a statisti-
cal interpretation of autoassociative mappings which can help
to deal with this problem in a more principled way.

B. Statistical Interpretation of Autoassociative Mappings

The problem in autoassociative computation of residuals can
be seen as the estimation ofE[x′|x]1. This quantity reduces to
the trivial solution

E[x′|x] = x, ∀x ∈ S ⊂ R
n (1)

whereS = {x ∈ R
n| p(x) 6= 0} is thesupportof the random

variablex. OutsideS, i.e. wherep(x) = 0, this quantity is
not defined, as long as no outcomes of the distribution can lie
outsideS. This expectation is given by

E[x′|x] =

∫

x′p(x′|x)dx′ =

∫

S

x′ p(x,x
′)

p(x)
dx′ (2)

wherep(x,x′) is the joint pdf of the data in the augmented
spaceRn × R

n and is given by

p(x,x′) = p(x)δ(x − x′) (3)

whereδ(.) is the Dirac delta. The support of (3) is only a
reduced subset of the augmented space given byS ⊙ S ≡
{(x,x′) ∈ R

n × R
n| x = x′, ∀x,x′ ∈ S}. Note also that the

integrand at the rightmost part of Equation (2) is not definedfor
values ofx outside the supportS. This example, however, is
an extreme case. When uncertainties as e.g. noise, arise in the
available process data, zero densities outside a given support
become unfair. A more general expression, which accounts for
observation noise and is defined along the whole augmented
spaceRn × R

n is,

p(z̄) =

∫

p(x̄)p(z̄|x̄)dx̄ =

∫

p(x̄)
1

(2π)nσ2n
e−

‖z̄−x̄‖2

2σ2 dx̄ (4)

The previous expression, wherez̄ ≡ (z, z′) is the noisy ob-
servation of the real outcome of the processx̄ ≡ (x,x′), is a
more realistic one, accounting for Gaussian observation noise
of varianceσ2, and its support being the whole augmented
space. Note also that it reduces to (3) as a special case when
σ → 0. The conditional expectationE[z′|z] obtained using
(4) is now defined for all values ofz, allowing to describe the
best expectation of points which lie outside the support of the
original distribution with the only assumption of observation
noise.

1As in autoassociative mappings the input and output space arethe same we
use the apostrophex′ to highlight the role ofx asoutputvector. In general
mappings, output vector will be denoted byy.

III. K ERNEL REGRESSION ANDLEAST SQUARES

APPROACHES

A. Kernel Regression Mapping

Suppose thatx ∈ R
p andy ∈ R

q are related by,y = f(x)+
η, whereη is some spherical noise inRq. The kernel regression
estimate, rediscovered by Specht [14], allows to estimate

f̂(x) = E[y|x] =

∫

Rq

yp(y|x)dy (5)

The computation of the previous conditional expectation re-
quires the knowledge ofp(y|x). Specht obtains it on the basis
of the Parzen kernel estimation ofp(x,y) in the augmented
spaceRp ×R

q which relies on similar noise hypothesis for the
available samples as those used in previous section for equation
(4), to come to the following expression

ŷ(x) =

∑n
i=1 exp

(

−‖x−xi‖
2

2σ2

)

yi

∑n
i=1 exp

(

−‖x−xi‖2

2σ2

) =

∑

i Φ(x − xi)yi
∑

i Φ(x − xi)
. (6)

This class of approximation is a special case of the well known
Nadaraya-Watson regression estimate [10][17], and is alsoof-
ten called generalized regression neural network (GRNN) [14].

B. Least Squares Mapping

A closely related type of mapping, which serves us for com-
parison purposes, is the following least squares interpolation
version of the GRNN,

ŷ(x) =
∑

i

ψi(x)wi where, ψi(x) ≡ Φi(x − xi)
∑

k Φ(x − xk)
(7)

where the weightswi are obtained from the input and output
data matricesX andY using a pseudoinverse approach

W = Ψ+Y = (ΨT Ψ + λI)−1ΨT Y, (8)

where(Ψ)ij = ψi(xj) andλ is a regularizing factor which
minimizes a squared error cost function penalized with a
weight decay term [12], [20].

C. Computation of Residuals

The previous approaches can be used to build an autoasso-
ciative model of the process by using the available trainingdata
both as input and output. A measure of how well the process
behavior fits to the model can be given through the evaluation
of theresidual vector, whose components are the differences or
residualsbetween the actual feature vectorx and its expected
valuex̂ according to the model

r = x − x̂. (9)

Vector r hasn componentsr1, r2, . . . , rn which can be re-
garded as individual residuals for each of the process vari-
ables or featuresx1, x2, . . . , xn in the process feature vector
x. Residualsri should be close to zero as long as the process



behaves according to the model, and different from zero, in
other cases. In order for the residuals to yield insightful infor-
mation on the process state other than a binary “fault/no-fault”
information, we also require:

1) The set of residuals which deviate significantly from zero
are in some way related to the nature of the abnormality.

2) The sign and magnitude of the deviation of each residual
are related to the severity of the abnormality.

In following sections, we will compare approaches described in
sections III-A and III-B, and will attempt to demonstrate why
the kernel-based estimation, involving support information, is
important in creating meaningful residuals.

IV. COMPARISON OFMODELS

A. Underlying Distributions

If we arrange models (6) and (7) together

GRNN: ŷ(x) =
∑

i

ψi(x)yi (10)

LS-GRNN: ŷ(x) =
∑

i

ψi(x)wi (11)

we see that the models are identical except for the fact that
the GRNN uses the output sample vectorsyi while the least
squares version uses vectorswi computed by (8) in weighting
the kernel activations. However, while the former has been
derived from within a density estimation framework, the latter
comes from the minimization of a cost function. This allows us
to view the least squares approach in terms of the underlying
joint distribution that it implicitly assumes. From this point of
view, it can be seen as a GRNN estimation of the conditional
expectation which assumes a different underlying joint pdf. In
Fig. 1 we show for both approaches the underlying pdf’s and
the autoassociative mapping in the augmented spaceR

1 × R
1

for the following bimodal uniform distribution

p(x) =







0.25, −1 ≤ x ≤ 1
0.25, 2 ≤ x ≤ 4

0, in other case
(12)

It can be noticed that, while the kernel regression (by defini-
tion) takes an estimation of the original joint pdf in the aug-
mented space, the LS method placesad hocoutput points on
convenience to achieve the minimum squared error goal. This
results in generalizations of the underlying joint pdf which al-
ter the geometrical information on the support of the data and
can lead to meaningless residuals as will be shown later.

B. 2-D Artificial Data

A simple example was designed to better illustrate the dif-
ferences between the approaches in terms of the interpretabil-
ity of the residuals. For the example we chose a set of137
pointsxi ∈ R

2 grouped in four clusters with different sizes
and shapes. Autoassociative mappings were developed using
both approaches. The same bandwidth parameterσ = 1 was
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Fig. 1. Comparison in the augmented spaceR
1 × R

1 of kernel (left) and
LS (right) approaches for an autoassociative mapping on dataof a bimodal
uniform inR

1. Note how the LS approach gets a functional mapping closer to
the trivial solutionf(x) = x at the expense of an artificial underlying pdf.

chosen for both methods, and a small value for the regularizing
parameterλ = 10−7 was chosen in the LS approach to avoid
degenerate solutions, while preserving the least squares nature
of the approximation.

Residual vectors for pointsui in a regular grid of50 × 50
points covering the region[−10, 10]× [−10, 10] were obtained
using both methods to compute their best expectationsûi.
Residualsri were evaluated according to (9)

ri = ui − ûi (13)

A qualitative judgment of the nature of residuals can be made
by looking at the results shown in Figs. 2 and 3. In Figs.
2(a) and 2(b), the residual vectors for each point in the grid
are shown. For the sake of clarity, the norm of the residuals
was codified using gray levels and contour lines. It can be no-
ticed that the norms of the residuals evaluated using the kernel
approach fit quite well to the joint pdf of the data. The LS ap-
proach, in turn, yields residuals closer to zero, due to its better
ability to approximate the identity mapping, but the valuesgive
no fair indication for the likelihood of the test pointsui.

In Figs. 3(a) and 3(b), residuals have been normalized to unit
length to allow comparison of their directions. In the kernel ap-
proach, arrows reflect quite well the sense of the deviation of
each point with respect to its best expectation according tothe
pdf of the training sample. Note also that clusters of arrows
emerge, revealing the areas of influence of each cluster of data.
On the other hand, the LS model gives rise to areas in which
the residuals take apparently arbitrary directions. Thus,for in-
stance, in the area around(x, y) = (2,−10), residual vectors
produced by the LS method are almost horizontal and pointing
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Fig. 2. Residual vectorsri and contour lines of the norms‖ri‖ for the kernel
and LS approaches.
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Fig. 3. Normalized residualsri

‖ri‖
for the kernel and LS approaches.

towards the nearby cluster. This means that residuals tell that
theu points lying in this area, are to the left of their expected
value, while it can be seen that they lie to the right of the clos-
est cluster. While we could try to find explanations to these
artifacts, it is clear that they give us a nonintuitive idea of the
direction of the deviation.

C. Statistical interpretation

A strong motivation for the use of kernel approaches can be
given through some theoretical results. In [18], Webb shows
that the problem of minimizing the following cost function

V =

∫

‖f(x) − g(z)‖2p(z,x)dxdz = (14)

=

∫

‖f(x) − g(z)‖2p(z|x)p(x)dxdz (15)

wherep(x) denotes the pdf of the input data pointsx, g(x)
denotes the approximation function tof(x) qandz is a noise-
corrupted version ofx with probabilityp(z|x) is equivalent to
obtaining

g(z) =

∫

f(x)p(x|z)dx = E[f(x)|z] (16)

i.e. the expected value off(x) given the noisy input observa-
tion z. The conditional probabilityp(z|x) represents indeed

a noise model in the observation of inputs as long as, given a
fixed outcome of the processx, the observed value ofz is a
random variable defined byp(z|x). It can be easily seen that
the kernel regression method (GRNN) is a special case of it
where the noise model is a spherical Gaussian distribution:

p(z|x) = Φ(z − x) =
1

(2πσ2)n/2
exp

(

− 1

2σ2
‖z − x‖2

)

(17)

So, the kernel based methods, minimize
∫

‖f(x) − g(z)‖2Φ(z − x)p(x)dxdz (18)

The previous cost function represents the error in the approxi-
mation weighted by a smoothed version of the probability dis-
tributionp(x) achieved by convolution with spherical noise

p̂(x) =

∫

Φ(z − x)p(x)dz (19)

so, the above cost function can be shortened to
∫

‖f(x) − g(z)‖2p̂(x)dx (20)

If we envisagêp(x) as a measure of belongingness to the input
data supportS, expression (20) shows up clearly the support-
based nature of kernel based regression estimators for residual
computation. However, the pure least squares methods bypass
the support kernel̂p(x) in (20).

V. V ISUALIZATION OF RESIDUALS

In previous sections we suggest that kernel based autoasso-
ciative mappings yield residuals which are more plausible from
a statistical point of view, as they take into account the support
of the input data. We also showed through a simple experiment
how this also results in more sensible and interpretable residu-
als, both with respect to their norm and direction. If residuals
are considered componentwise,

r = (r1, . . . , rn)T (21)

interpretability in norm and direction means also interpretabil-
ity in the magnitude and the sign of deviation for each compo-
nentri. Under normal (training) conditions, the residual vector
will yield values close to zero as long as data input to the model
come from the same distribution of training data. When an ab-
normal state occurs, process data lie outside the support ofthe
training set, and some residuals deviate significantly fromzero.

With a suitable visualization, kernel based residual vectors
can result in a very useful tool, not only for fault detection,
but also for fault identification. Preattentive capabilities of the
human visual system can notice very quickly, in fractions of
second changes in colors and shapes [7], [8]. This suggests the
following visualization procedure:

Step 1: For each timet, compute the residual vectorr(t) =
x(t) − x̂(t)



Step 2: Build a matrix with thek last residual vectors
U(t) = [r(t− k + 1), . . . , r(t)]

Step 3: At each timet, visualize the elements of matrix
U(t) in an image, using a color scale for the values
of the elements ofU

In this visualization, color scales are preferable to gray levels
from a perceptual point of view. Good choices for color scales
are rainbow scales (e.g. a smooth hue transition through blue,
cyan, green, yellow and red). This simple visualization method
has the following advantages:

• While the process works in normal condition, all the win-
dow has the same color, e.g. green. This allows to re-
move from the representation possible states of the pro-
cess which are considered normal.

• When one or more residuals deviate from zero, user can
assess in fractions of second the sign of each deviation,
e.g. blue for negative, and red for positive.

• Also magnitude can be assessed instantaneously, e.g. yel-
low, orange, red from low to high positive changes.

• Visual information of all the residuals and their history
within the selected time window is deployed in a single
image. The technician can quickly assess the situation
using his prior knowledge about the process.

• Recent history of the process is displayed within the win-
dow. This can provide useful time-related information,
such as periodicities, trends, etc.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the ideas exposed in this work, an experi-
ment was carried out on a 4 kW, 2 pole-pair asynchronous mo-
tor. Two kind of faults were induced in the motor:

• Asymmetry in the power supply. This fault condition is
provoked by the inclusion of a variable resistanceR on
a phase line. This produces an unbalance in the power
supply modifying gradually the vibration and current pat-
terns.

• Mechanical asymmetry. This fault condition is provoked
by the presence of an asymmetric massm on the axis.

The combination of both types of faults yields several operat-
ing conditions. Five sensors were installed in the motor: three
vibration accelerometersabear(t), ax(t), ay(t) and two current
sensorsir(t), is(t). Data acquisition of the five channels was
carried out at 5000 Hz using an acquisition board, after a signal
conditioning stage.

B. Feature Extraction

Data were grouped into overlapped windows of 4096 ele-
ments to allow for FFT computation of the harmonics. It is
known that mass asymmetries in rotating machinery are related
to the frequency content at1× the rotating frequency (25 Hz) in
the acceleration signals. Also, under power supply unbalance,
harmonics at twice the power supply frequency are modified.
Thus, for the vibration feature extraction, spectral energies at

25 Hz and 100 Hz inabear(t), ax(t), ay(t) were computed. For
the analysis of currents we used the Park vector approach [4]. It
allows to summarize in a single complex sequence the behavior
of the three phase supply currents

i(t) = ir(t) + a · is(t) + a2 · (−ir(t) − is(t)) (22)

wherea = exp(j 2π
3 ) andj =

√
−1. A total of eight features

were taken in order to visualize the motor’s condition:

x = (x1, . . . , x8)
T =

= (a
(25Hz)
bear , a

(100Hz)
bear , a(25Hz)

x , a(100Hz)
x , a(25Hz)

y , a(100Hz)
y ,

i(−50Hz), i(50Hz))T

C. Residual Evaluation

To assess the performance of the methods areference set
was built using both data from normal condition and mechan-
ical asymmetry. This can correspond, for example, to a mo-
tor meant to work with different asymmetric loads. Atest set
was built using normal condition, mechanical asymmetry, and
several unseen states such as a combination of electrical and
mechanical asymmetry, and different degrees of power supply
unbalance —see Fig. 4. Whereas the reference set was used to
build a process model, the test set was used to calculate resid-
uals in order to characterize the novel process states.

Feature vectorsx(k) at each data windowk, were normal-
ized to zero mean and unit standard deviation. Autoassocia-
tive mappings using the kernel based approach (6) and the least
squares approach (7) were used. For both methods, a value of
σ = 1 was chosen to cover all the input pdf and a regularizing
value ofλ = 10−9 was used for the LS method. Residuals
were computed according to (9) as the difference between the
actual feature vector and its approximation.
Known facts. On the presence of an electrical asymmetry, a
general increase in the100 Hz vibration energy appears as a re-
sult of unbalanced magnetic forces. Also, under ideal balanced
conditions, the complex Park vector defined in (22) should have
a single+50 Hz harmonic. On the onset of an unbalance, a
−50 Hz component appears, while the+50 Hz component de-
creases. In turn, mechanical asymmetry mainly increases the
vibration level at the rotating speed,25 Hz. However, as we
have considered mechanical asymmetries within thereference
conditionthis increase should not be shown up as a fault.

Results2 are shown in Fig. 4. As seen, KR residuals yield
high (red tones) values for the three 100 Hz vibration fea-
tures when an electrical unbalance appears. This is not ob-
served in the LS residuals which yield near zero values for the
same conditions and a strong negative (dark blue) residual in
thea(100Hz)

x for simultaneous mechanical and electrical asym-
metries. Similarly, a decrement ini(+50Hz) and an increment
i(−50Hz) should yield positive (red tones) and negative (blue
tones) residuals respectively. This is clearly observed inthe

2Note: A color map was used in the original electronic hardcopy. Black and
white printed version may hide information on the sign of deviations. However
we have tried to remove ambiguities through the text of the paper.
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Fig. 4. Visualization of residuals for both methods. The 8 features are rep-
resented in the vertical axis. Horizontal axis represents time and color scale
represents the magnitude of each residual.

KR residuals but not in the LS. Moreover, for gradual transi-
tions (5Ω to 20Ω), the KR method shows gradual increments in
the inverse sequence harmonic and in the100 Hz components,
while the LS method gives near zero residuals values. This
can also be noticed in the last two records, where continuous
modifications ofR (down-up-downanddown-up) were done.

VII. C ONCLUSIONS

In this paper it transpires that a suitable residual generation
can yield meaningful residuals which can be correlated with
prior knowledge in a natural way through efficient visualiza-
tion methods, also allowing for fault identification. We show
that the kernel based approaches are more justifiable than least
squares approaches for residual computation. While the for-
mer ones take into account the support of the data, the latter,
in looking for a global cost minimization, develop an “ad-hoc”
data joint distribution which allows for optimum least squares
fitting but often lead to meaningless residuals.

Our analysis is also qualitatively plausible, and similar dif-
ferences could be established in a more general context be-
tween methods withsupport nature, such as k-means, SOM or
Gaussian mixture models (GMM), and others with plain least
squares cost functions such as multilayer perceptrons, widely
used for autoassociative mappings in industrial applications.

Questions such as the computational effort for training sets
of considerable size, or the effect of outliers in the training set
can arise using nonparametric methods, which have been used
here only for comparison purposes. Using alternative density
modeling methods, such as GMM, one can sacrifice accuracy
in pdf estimation to reduce significantly the computationalbur-
den while being less sensitive to outliers. We are currentlyin-
vestigating these issues.
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