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Abstract—We study the generation and visualization of residu- e.g. [6] for a good review. Nevertheless, most of the work in
als for detecting and identifying unseen faults using autoassocia- this field has been focused on residuals generated by physica
tive models learned from process data. Least squares and kerhe o mathematical dynamical models, but much less work has
regression models are compared on thq basis of their ability to de- b devoted t idual . i ted b del
scribe the support of the data. Theoretical results show that ke een devoted 1o residuals or innovations generated by s100e
nel regression models are more appropriate in this sense. More- learned from data. This work focuses on the latter problem.
over, experiments on vibration and current data from an asyn- This paper is organized as follows. In Section Il we outline
ChrOEOUS motor confirm the theory and yield more meaningful general concepts of autoassociative models, which are used
results. ; : ;

Index Terms—Residual generation, visualization, novelty detec- subsequently for residual 'ge'neratlon. In Sectlons'lll and |
tion, fault identification, kernel regression we present two auto_assomatlve approaches for r_eadulglaeva

tion —kernel regression and a least squares version of itehwh

are similar in architecture but different in their naturee gthow
that the former methods take into account the support of the
process data, while the latter aim to minimize the squanet er

ISUALIZATION and dimension reduction techniquesin a global fashion, and we show how this can result in the im-

can be very powerful tools to analyze large sets of mublicit assumption of an unfair joint pdf in the process datag
tidimensional data and have received considerable aiteimi hence in meaningless residuals. These ideas are illubtratie
recent years [15], [13]. Particularly, in supervision amutdi- artificial data. In Section V we describe a simple and intaiti
tion monitoring of complex processes, visualization metho method to visualize the residuals and finally, in Sectionwé,
based on radial basis function (RBF) networks [19], the gefiiscuss both approaches applying the visualization metihod

erative topographic mapping (GTM) [3] or the self organiza real case study of vibration and current data from an asyn-
ing map (SOM) [9], [16], [1], [5] have been proposed. Allchronous motor.

these techniques exploit the statistical information @nésn

the data, capturing nonlinear relationships among thelbbes

to build a model of the process data geometry using a low di-

mension manifold which allows to summarize its behavior i General Concepts

few dimensions (typically 2D or 3D), being in this sense gen- One way to describe the behavior of a process is the use

eralizations of the well known linear PCA methods. They haws#f autoassociative model#\ neural network can be trained to

proven to be extremely useful in providing insightful vieafs generate a map from the input space on itself, in such a way tha

the process, allowing to merge in a very efficient way informahe outputs are as close as possible to the inputs. Obvjously

tion conveyed by the data with prior knowledge and expegenthe raw use of this approach often leads to trivial solutidxs

by means of visualizations which take advantage of preattexample of this arises if a linear mappifiy: R” — R"™ is

tive abilities of the human brain [7], [8]. chosen. In this case, the minimization of the cost funcliona
Unfortunately, models built using these techniques only dé(T) = ||x — Tx||?, leads to the trivial solutiom = I.

scribe process behavior present in the data from which theyThe usefulness of the autoassociative models, however, re-

were learned and hence they cannot explain conditions oli¢s in bounding the complexity of the mapping. This can be

side those present in the learning data. However, the fatt tdone by imposing some restrictions on the class of functions

those methods explain part, maybe most, of the behavioeof thsed to build the mapping as, e.g., a “bottleneck” layer in au

process can be thought of as “work already doriRésiduals toassociative multilayer perceptrons, or in the cost fiomcto

or innovations, can be defined as that part of the process dagaminimized. These restrictions, in general, aim to botned t

which is not explained by the model. A huge amount of litercomplexity of the approximation, according to the prineipl

ature has been devoted to the analysis and design of residuafl Occam’s Razar This is further motivated by the fact that

specially in the field of control of dynamical systems —sethe general principlesaccording to which a physical process

I. INTRODUCTION

Il. AUTOASSOCIATIVE MODELS



evolves are essentially simple and often far from arbitrary I1l. KERNEL REGRESSION ANDLEAST SQUARES
deed, this is a way in whicprior knowledgas implicitly taken APPROACHES
into account in autoassociative models to capture the 8akena  Kernel Regression Mapping

physical substrate behind the data. However, despite gwod r Suppose that € R? andy € R? are related by — £(x)+

sults [11], [2] attention is seldom paid to this in the destgn m, wheren is some spherical noise R¢. The kernel regression

autoassociative models. In next section we describe attati'’ . : :
X . o . . estimate, rediscovered by Specht [14], allows to estimate
cal interpretation of autoassociative mappings which @p h

to deal with this problem in a more principled way.

ﬂ@=EMﬂ=AﬁMﬂ@w 5)

B. Statistical Interpretation of Autoassociative Map@ng  The computation of the previous conditional expectation re

The problem in autoassociative computation of residuais c@uires the knowledge of(y|x). Specht obtains it on the basis
be seen as the estimationBfx’|x]*. This quantity reduces to of the Parzen kernel estimation pfx, y) in the augmented

the trivial solution spaceR? x R? which relies on similar noise hypothesis for the
available samples as those used in previous section fotiequa
Ex'|x|=x, VxeScCR" (1) (4), to come to the following expression
whereS = {x € R"|p(x) # 0} is thesupportof the random S exp (—%) Vi Y ®(x—x;)yi
variablex. Outsides, i.e. wherep(x) = 0, this quantity is ¥(x) = — e i Bx =) (6)
not defined, as long as no outcomes of the distribution can lie Die1 €XP (_T) i !

outsideS. This expectation is given by ] o i
This class of approximation is a special case of the well kmow

. . , p(x,x') |, Nadaraya-Watson regression estimate [10][17], and isaflso
ElX'|x] = /X p(X'[x)dx" = /SX de () ten called generalized regression neural network (GRNAJ) [1

wherep(x, x’) is the joint pdf of the data in the augmented. Least Squares Mapping

spaceR™ x R™ and is given by A closely related type of mapping, which serves us for com-

N , parison purposes, is the following least squares intetipola
p(x,x) = p(x)d(x — x) ®) version of the GRNN,

whered(.) is the Dirac delta. The support of (3) is only a_ i (x — x;
reduced subset of the augmented space givesby S = Y(X) = Zwi(x)wi where, ¢;(x) = m ()
{(x,x') e R" x R"| x = x/, ¥x,x’ € S}. Note also that the i b
integrand at the rightmost part of Equation (2) is not defiioed \yhere the weightsv; are obtained from the input and output
ValueS OfX OutSide the Suppoﬁ. ThIS example, hOWeVer, iS data matriceé{ andY using a pseudoinverse approach
an extreme case. When uncertainties as e.g. noise, arise in th
available process data, zero densities outside a giverosupp W =0"Y = (070 4 A1) 1o’y (8)
become unfair. A more general expression, which accounts fo
observation noise and is defined along the whole augmenté@ere (¥);; = vi(x;) and A is a regularizing factor which
spaceR™ x R" is, minimizes a squared error cost function penalized with a
weight decay term [12], [20].
1 lz—x|?

wz) = [t = [ pE) g 5 i @

C. Computation of Residuals

The previous approaches can be used to build an autoasso-
ciative model of the process by using the available traixisig
both as input and output. A measure of how well the process
%ehavior fits to the model can be given through the evaluation
R]é t#eresidual vectoywhose components are the differences or
residualsbetween the actual feature vectoand its expected
valuex according to the model

The previous expression, wheze= (z,z’) is the noisy ob-
servation of the real outcome of the procgss (x,x’), is a
more realistic one, accounting for Gaussian observatiaseno
of variances?, and its support being the whole augmente
space. Note also that it reduces to (3) as a special case w
o — 0. The conditional expectatioR'[z’|z] obtained using
(4) is now defined for all values of, allowing to describe the
best expectation of points which lie outside the supporhef t F—x—%. 9)
original distribution with the only assumption of obsergat
noise. Vector r hasn components-, s, ..., r, which can be re-
.y o _ _ garded as individual residuals for each of the process vari-
As in autoassociative mappings the input and output spadbesame we

use the apostrophe’ to highlight the role ofx asoutputvector. In general ables O_r features,, x5, ..., z, in the process feature vector
mappings, output vector will be denoted py x. Residuals; should be close to zero as long as the process



behaves according to the model, and different from zero, i
other cases. In order for the residuals to yield insightfifbi-
mation on the process state other than a binary “fault/ot*fa
information, we also require:
1) The set of residuals which deviate significantly from zerc
are in some way related to the nature of the abnormality
2) The sign and magnitude of the deviation of each residu
are related to the severity of the abnormality. )
In following sections, we will compare approaches desdibe
sections IlI-A and IlI-B, and will attempt to demonstrate wh -2 0 2 4 6 -2 0 2 4 6
the kernel-based estimation, involving support inforormtiis
important in creating meaningful residuals.

B O B N W A O O

IV. COMPARISON OFMODELS
A. Underlying Distributions
If we arrange models (6) and (7) together

GRNN: y(x) = Z Yi(x)yi (10)

-2 0 2 4 6 -2 0 2 4 6

LS-GRNN: y(x) = Z Yi(x)wW; (11) Fig. 1. Comparison in the augmented sp&ex R! of kernel (left) and
i LS (right) approaches for an autoassociative mapping on afagabimodal
uniform inR!. Note how the LS approach gets a functional mapping closer to

we see that the models are identical except for the fact thig trivial solutionf(x) = = at the expense of an artificial underlying pdf.
the GRNN uses the output sample vectgfswhile the least

Squares Version uses vectors comput_ed by (8) in weighting chosen for both methods, and a small value for the regutayizi
the kernel activations. However, while the former has beep%rametep\ _ 10~7 was chosen in the LS approach to avoid
derived from within a density estimation framework, thedat q i luti hil ing the least af
comes from the minimization of a cost function. This allowss L"c9c cate SOlUtons, while preserving the feast squatasen

. . .of the approximation.
to view the least squares approach in terms of the underly|r01 ) . . .
joint distribution that it implicitly assumes. From thisipbof gReS|dua| vectors for points; in a regular grid 060 x 50

view, it can be seen as a GRNN estimation of the condition@;\?.Ints covering the regiop-10, 10] x [-10, 10] were obtained

expectation which assumes a different underlying joint jbralf using both methods to compute .thelr best expectations
Fig. 1 we show for both approaches the underlying pdf's ar%emdualsn were evaluated according to (9)

the autoassociative mapping in the augmented sBace R! Y (13)
for the following bimodal uniform distribution e
A qualitative judgment of the nature of residuals can be made
by looking at the results shown in Figs. 2 and 3. In Figs.

2(a) and 2(b), the residual vectors for each point in the grid
are shown. For the sake of clarity, the norm of the residuals

It can be noticed that, while the kernel regression (by defin/@s codified using gray Ievels. and contour lines. Itcan be no-
tion) takes an estimation of the original joint pdf in the augtlced that the norms of the residuals evaluated using theeker

mented space, the LS method plaaeshocoutput points on approach fit quite well to the joint pdf of the data. The LS ap-

convenience to achieve the minimum squared error goal. TRAch, in turn, yields residuals closer to zero, due tostseb
results in generalizations of the underlying joint pdf whig-  2Pility to approximate the identity mapping, but the valgae

ter the geometrical information on the support of the dath aR® fair indication for the likelihood of the test points. _
can lead to meaningless residuals as will be shown later. In Figs. 3(a) and 3(b), residuals have been normalized to uni
length to allow comparison of their directions. In the kéaye

o proach, arrows reflect quite well the sense of the deviatfon o

B. 2-D Artificial Data each point with respect to its best expectation accordirigeo

A simple example was designed to better illustrate the difdf of the training sample. Note also that clusters of arrows
ferences between the approaches in terms of the interfiretabmerge, revealing the areas of influence of each clustettaf da
ity of the residuals. For the example we chose a set3Gf On the other hand, the LS model gives rise to areas in which
pointsx; € R? grouped in four clusters with different sizeshe residuals take apparently arbitrary directions. Tfarsp-
and shapes. Autoassociative mappings were developed ustance, in the area arouifd, y) = (2, —10), residual vectors
both approaches. The same bandwidth parameter1 was produced by the LS method are almost horizontal and pointing

025, —-1<z<1
p(x) = 0.25, 2<x<4 (12)
0, inother case



a noise model in the observation of inputs as long as, given a
fixed outcome of the process the observed value of is a
random variable defined by(z|x). It can be easily seen that

the kernel regression method (GRNN) is a special case of it
{' where the noise model is a spherical Gaussian distribution:

o)

plalx) = bz ) = oo e (< la - xI) @)
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So, the kernel based methods, minimize

(a) Kernel approach. (b) LS approach. / Hf(x) — g(Z)H2<I>(Z — x)p(x)dxdz (18)
Fig. 2. Residual vectons; and contour lines of the nornjis:; || for the kernel . . . .
and LS approaches. The previous cost function represents the error in the agppro

mation weighted by a smoothed version of the probability dis
tribution p(x) achieved by convolution with spherical noise

t

T
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50 = [ @z~ x)plx)dz (19)

so, the above cost function can be shortened to

NN\ \ | |}

[ 11869 - g(a)*px)ax (20)
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If we envisagei(x) as a measure of belongingness to the input
data support5, expression (20) shows up clearly the support-
(a) Kernel approach. (b) LS approach. based nature of kernel based regression estimators fdugdsi
computation. However, the pure least squares methods dypas
the support kernel(x) in (20).

=

Fig. 3. Normalized residualﬁ{:f—u for the kernel and LS approaches.

towards the nearby cluster. This means that residualshial t V. VISUALIZATION OF RESIDUALS

theu points lying in this area, are to the left of their expected In previous sections we suggest that kernel based autoasso-
value, while it can be seen that they lie to the right of thes¢locjative mappings yield residuals which are more plausitdmf

est cluster. While we could try to find explanations to thesgstatistical point of view, as they take into account thepsup
artifacts, it is clear that they give us a nonintuitive idéah® of the input data. We also showed through a simple experiment

direction of the deviation. how this also results in more sensible and interpretabldues
als, both with respect to their norm and direction. If residu
C. Statistical interpretation are considered componentwise,

A strong motivation for the use of kernel approaches can be
given through some theoretical results. In [18], Webb shows
that the problem of minimizing the following cost function interpretability in norm and direction means also intetgiod-

ity in the magnitude and the sign of deviation for each compo-
vV = /Hf(x) — g(2)|1?p(z, x)dxdz = (14) hentr;. Under normal (training) conditions, the residual vector
will yield values close to zero as long as data input to theehod
2 come from the same distribution of training data. When an ab-
(x) — g(2)["p(zlx)p(x)dxdz (15) normal state occurs, process data lie outside the supptiré of

) ) training set, and some residuals deviate significantly freno.
where p(x) denotes_ the.pdf of the input data lemSg(_X) With a suitable visualization, kernel based residual vecto
denotes the approximation functionftex) gandz is a noise- can result in a very useful tool, not only for fault detection

corrupted version ok with probability p(z|x) is equivalent to ¢ also for fault identification. Preattentive capalsitiof the

r=(ry,...,m)" (21)

Il
—

obtaining human visual system can notice very quickly, in fractions of
second changes in colors and shapes [7], [8]. This sugdmests t
g(z) = /f(x)p(x|z)dx = E[f(x)|z] (16) following visualization procedure:

i.e. the expected value ¢fx) given the noisy input observa- Step 1: For each time, compute the residual vectoft) =
tion z. The conditional probability(z|x) represents indeed x(t) — x(¢)



Step 2: Build a matrix with thek last residual vectors 25 Hz and 100 Hz i@pcq- (), a2 (t), a, (t) were computed. For
Ut)=[r(t—k+1),...,r(t)] the analysis of currents we used the Park vector approach [4]
Step 3: At each timet, visualize the elements of matrixallows to summarize in a single complex sequence the behavio
U(t) in an image, using a color scale for the valuesf the three phase supply currents
of the elements oJ

Z(t) = ir(t) +a- Z's(t) + 3.2 : (_ir(t) - Z's(t)) (22)
In this visualization, color scales are preferable to geagls

from a perceptual point of view. Good choices for color ssalgvherea = exp(j%”) andj = +/—1. A total of eight features

are rainbow scales (e.g. a smooth hue transition througd blwere taken in order to visualize the motor’s condition:

cyan, green, yellow and red). This simple visualizationhmdt

has the following advantages: x = (z1,...,28)" =
« While the process works in normal condition, all the win-  — (25Hz) (100Hz) ~(25Hz) (100Hz) (25Hz) (100Hz)
bear  “bear » Y s Y s Yy s Yy )

dow has the same color, e.g. green. This allows to re-
move from the representation possible states of the pro-
cess which are considered normal.

« When one or more residuals deviate from zero, user c@n Residual Evaluation
assess in fractions of second the sign of each deviation
e.g. blue for negative, and red for positive.

7:(750HZ) ; i(SOHZ) )T

To assess the performance of the methodsfarence set
' ! was built using both data from normal condition and mechan-
« Also magnitude can be assessed instantaneously, €.9. y&li asymmetry. This can correspond, for example, to a mo-
low, orange, red from low to high positive changes. 5 meant to work with different asymmetric loads. tést set
« Visual information of all the residuals and their history, < puilt using normal condition, mechanical asymmetrg, an
within the selected time window is deployed in a singlgeyeral unseen states such as a combination of electridal an
image. The technician can quickly assess the situatigfl,chanical asymmetry, and different degrees of power guppl
using his prior knowledge about the process. _unbalance —see Fig. 4. Whereas the reference set was used to
- Recent history of the process is displayed within the wijiq 5 process model, the test set was used to calculaté resi
dow. This can provide useful time-related information, s in order to characterize the novel process states.
such as periodicities, trends, etc. Feature vectors(k) at each data window, were normal-
ized to zero mean and unit standard deviation. Autoassocia-
VI. EXPERIMENTAL RESULTS tive mappings using the kernel based approach (6) and the lea
A. Experimental Setup squares approach (7) were used. For both methods, a value of
To demonstrate the ideas exposed in this work, an expe‘?i-lz 1 V\ﬁ\s Cholf)er; to cover ‘Z" fthethpt;pdf atﬂd;‘ reRguI%rizi?g
value of A\ = 10~ was used for the LS method. Residuals

ment Was_carrled outona 4 kW, 2 pc_JIe-palr asyr?chronous Miere computed according to (9) as the difference between the
tor. Two kind of faults were induced in the motor:

A trv in th Nhis fault dition i actual feature vector and its approximation.
* Asymmetry in the power supplyt IS Tault condition 1S 4 facts. On the presence of an electrical asymmetry, a
provoked by the inclusion of a variable resista¢en

h i Thi d bal in th eneral increase in th®0 Hz vibration energy appears as a re-
a phase lin€. 1his produces an unbaiance in theé PoWgi, ¢\, nhajanced magnetic forces. Also, under ideal lzaldn
supply modifying gradually the vibration and current pa

terns téonditions, the complex Park vector defined in (22) shouletha

Mechanical tvThis fault dition i ked a single+50 Hz harmonic. On the onset of an unbalance, a
+ Viechanical asymmetryrnis fautt condition IS provoked g, 1y, component appears, while th&0 Hz component de-
by the presence of an asymmetric massn the axis.

- ; creases. In turn, mechanical asymmetry mainly increages th
The combination of both types of faults yields several operg;ipration level at the rotating spee#; Hz. However, as we
ing conditions. Five sensors were installed in the motaeeh 1,56 considered mechanical asymmetries withirréfierence
vibration accelerometers,.. (t), a.(t), a, (t) and two current . qitionthis increase should not be shown up as a fault.
sensors,(t),is(t). Data acquisition of the five channels was Reagyit& are shown in Fig. 4. As seen, KR residuals yield
carried out at 5000 Hz using an acquisition board, afterresig pigh (red tones) values for the three 100 Hz vibration fea-
conditioning stage. tures when an electrical unbalance appears. This is not ob-
served in the LS residuals which yield near zero values for th
B. Feature Extraction same conditions and a strong negative (dark blue) residual i

Data were grouped into overlapped windows of 4096 elgheal "™ for simultaneous mechanical and electrical asym-
ments to allow for FFT computation of the harmonics. It isetries. Similarly, a decrement #°°H2) and an increment
known that mass asymmetries in rotating machinery aresetlai(~>°"? should yield positive (red tones) and negative (blue

to the frequency content &k the rotating frequency26 Hz) in  tones) residuals respectively. This is clearly observeth@n

the acceleration signals. Also, under power supply unlgalan _ o _
2Note: A color map was used in the original electronic hardcopy. Blaud

harmonics at t\{Vice .the power supply _frequency are_mOdiﬁe\ghite printed version may hide information on the sign of deizs. However
Thus, for the vibration feature extraction, spectral eigsr@t we have tried to remove ambiguities through the text of the pape
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