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Abstract

Future wireless communications expect to experience a spectrum shortage prob-

lem. One practical solution is spectrum sharing. This thesis studies precoding

strategies to allocate communication resources for spectrum sharing in multi-user

wireless systems from a game-theoretic perspective. The approaches for the precod-

ing games are developed under different constraints. It is shown that the precoding

game with spectral mask constraints can be formulated as a convex optimization

problem and a dual decomposition based algorithm can be exploited to solve it.

However, the problem is non-convex if users also have total power constraints. This

study shows that an efficient sub-optimal solution can be derived by allocating the

bottleneck resource in the system. The sub-optimal solution is proved to be effi-

cient and can even achieve an identical performance to that of the optimal solution

in certain cases, but with significantly reduced complexity.
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Chapter 1

Introduction

Wireless communications have experienced a significant development during the

past two decades thanks to the improvements of radio and electronics technologies.

The boom of wireless cellular networks and wireless local area networks (WLANs)

has indicated a bright future of wireless communications.

In wireless cellular systems, the number of cellular users has experienced a

rapid growth over the last ten years. Currently, the third generation (3G) stan-

dards, which support more diverse applications and higher data rates, have been

launched in many countries and areas in the world. Indeed, the progress of wireless

cellular systems not only provides cellular users with better wireless services but

also creates a huge commercial success in the wireless market. In the future, the

Next-generation (NextG) wireless systems are expected to provide wireless users

with higher-quality higher-speed services and to construct a basis for ubiquitous

wireless communications. A wireless user will be able to enjoy comprehensive

and secure services including voice, data and multimedia transmission anytime and

anywhere [1].

Another huge progress appears in WLANs. The first generation of WLANs

based on the standard IEEE 802.11-1997 achieves little success in the market due

to the problem of inter-operability and high cost. On the contrary, the second gen-

eration of WLANs based on 802.11b is much more successful. Many products have
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been developed based on 802.11b and subsequent standards 802.11a, 802.11g and

802.11n [2]. These products provide higher data rate and better coverage, while at

the same time, they are competitive in price. WLANs are popular now in homes,

campuses and companies as an extension of the wired LANs. The trademark Wi-Fi

for certified products based on the IEEE 802.11 standards can be found all over the

world, and a WLAN card is deployed in almost every laptop.

There is no doubt that wireless communications, including all the technologies

and applications, have a promising future. However, many challenges still exist.

New applications, such as video-conferencing and online gaming are expected to

be accessible in future wireless networks, while existing services are expected to

be able to provide better quality of service (QoS). High data rate is a precondition

to support high-quality multimedia transmission. For example, one objective of the

NextG is to achieve data rate of 100 Mbit/s for mobile users at high velocity and

1 Gbit/s for stationary users, compared to the data rate of around 10 Mbit/s for

stationary users in 3G. These expectations and objectives lead to the requirement

of larger bandwidth. One can predict that the demand for higher QoS will always

exist. In other words, there will be an ever-growing demand for bandwidth in future

wireless networks. However, the radio spectrum resource (from 3KHz to 300GHz)

is limited. Thus, the growing demand of bandwidth will result in a spectrum short-

age problem which will become more and more severe with the explosive growth

of wireless services and applications.

In fact, the spectrum shortage already appears at the current stage. Radio spec-

trum is controlled by the regulatory organizations in different regions. The competi-

tion for spectral licenses is intense and the scarcity of the spectrum can be illustrated

by the following fact. In April 2000, the spectrum auction in the United Kingdom

for five 3G mobile wireless licenses raised around 34 billion dollars for 120 MHz

spectrum band [3]. The license-free frequency bands, for example, the 2.4-2.5 GHz

industrial scientific and medical (ISM) radio band, are also very crowded. The

WLANs based on 802.11b operate in the 2.4 GHz ISM band, and they may receive

interference from other wireless systems, such as Bluetooth devices.
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Another challenge resulted from the demand of larger bandwidth is the fre-

quency selective fading of the communication channels [4]. A signal transmitted

into a wireless channel may arrive at the receiver through different paths due to

scattering and reflection. The received signal is a sum of several delayed and atten-

uated versions of the transmitted signal from different paths. The signal from the

direct path is therefore distorted. In the time domain, the neighboring symbols in-

terfere with each other due to the delayed spread, which results in the inter-symbol

interference (ISI). In the frequency domain, different frequency components of the

received signal experience different fading. For a signal with bandwidth much less

than the channel coherent bandwidth, the fading over different frequency compo-

nents can be considered as equal and the ISI can be neglected. The channel, in this

case, is called a flat fading channel. However, for a wideband signal whose band-

width is larger than or comparable to the channel coherent bandwidth, the channel

response varies largely across the frequency domain and the resulting ISI can sig-

nificantly degrade the system performance [5]. The channel, in this case, is called

a frequency selective fading channel.

Both the spectrum shortage problem and the wideband frequency selective fad-

ing problem need to be solved to meet the demands for future wireless communica-

tions. For the spectrum shortage problem, there is no other solution but improving

spectrum efficiency because the total amount of spectrum resource is fixed. Re-

cently cognitive radio has emerged as a promising solution for the spectrum short-

age problem based on the observation that most parts of the spectrum are not uti-

lized efficiently and left idle for a large percentage of time [6], [7], [8]. Indeed, the

fixed spectrum allocation under the regulatory polices leads to the result that some

of the spectrum bands are overloaded while others may be under-utilized. In cog-

nitive radio, it is proposed that unlicensed users can sense the spectrum and detect

the idle spectrum bands, referred to as spectrum opportunities. Moreover, they can

make use of the idle spectrum bands in a manner that causes no or little interference

to the licensed users. By allowing unlicensed users to share the licensed bands, the

spectrum efficiency can be improved. However, another problem emerges. Since
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there are probably more than one unlicensed user trying to use the spectrum, they

may interfere with each other. An efficient and fair spectrum allocation is required

for multiple unlicensed users to share the idle spectrum bands, as otherwise all of

their transmissions will be degraded significantly. The unlicensed users may belong

to different systems and thus there is probably no central controller to coordinate

their transmissions. Thus, the users are driven by their own selfishness in sharing

the spectrum and they aim at maximizing their own benefits. It is obvious that every

user will try to use more spectrum resource. However, if the users are too greedy

such that everyone tries to use all spectrum opportunities, the interference can be

high and damage the benefits of all users.

Cognitive radio is only one example in which spectrum sharing is exploited to

improve the spectrum efficiency. There are many other examples in which the spec-

trum resources in wireless systems are shared by multiple users and the users may

potentially interfere with each other [9], [10]. Thus, it is important and beneficial

to study the problem of spectrum sharing among wireless users. The question is:

if the wireless users are selfish but rational, will there be stable results of the com-

petition for spectrum resources? And if yes, what it is and how to achieve the best

result for all users. Game theory is a viable candidate to deal with these issues. Ini-

tially developed in economics, game theory is recognized as a useful tool in many

science and engineering fields. Game theory studies individuals’ decision-making

strategies when their decisions affect each other. For the spectrum sharing prob-

lem, the interference among wireless users bounds them together into the situation

that everyone’s benefit depends on all users’ actions. This relationship among users

makes game theory applicable and useful.

Modeling the spectrum sharing problem as a game and the wireless users as

players of the game, the problem can be studied for different scenarios according to

whether there is a cooperation among users or not. If there is no voluntary cooper-

ation among users, spectrum sharing among unlicensed users can be studied using

the equilibrium concept in game theory. An equilibrium can be considered as a sta-

ble result of a non-cooperative game where no player can improve its benefit uni-

4



laterally. However, an equilibrium can be highly inefficient for all the players due

to the lack of cooperation. One famous example is the ‘Prisoner’s Dilemma’ [11].

Thus, we are more interested in the cases in which the users are willing to cooper-

ate with each other. Bargaining solutions in cooperative game theory can be used to

study such cases. Nash axiomatic bargaining, originally proposed in 1950s, is the

most popular bargaining solution for cooperative games. The game solution derived

by Nash axiomatic bargaining, if exists, represents a fair and efficient distribution

of benefits among game players. Thus, spectrum sharing among different users can

be investigated from a cooperative game theoretic perspective by introducing Nash

axiomatic bargaining.

The ISI problem on frequency selective fading channels also needs to be con-

sidered. Compared to spectrum shortage problem, ISI has been studied in wireless

communications for a long time. A traditional solution to mitigate ISI is using

equalizer at the receiver side. However, the equalization amplifies the channel

noise while equalizing the amplitude distortion. Moreover, it suffers from error

propagation. Therefore, orthogonal frequency-division multiplexing (OFDM) tech-

nique has been suggested and popularized as an effective method to combat the ISI

with a simple transceiver structure [12]. For example, IEEE 802.11a and 802.11n

standards adopt the OFDM technique. The essence of the OFDM technique is to

divide the wideband frequency selective fading channel into many frequency bins

with small bandwidth and to transmit data in those frequency bins so that the ISI in

the transmission on each frequency bin can be neglected.

In OFDM systems, wireless users can allocate their communication resources

such as power and data across frequency bins using precoding. The information

about how a certain user exploits its spectrum is contained in its precoding scheme.

Thus, the status of a spectrum sharing game and the interference in the game are

determined by all users’ precoding schemes. In the spectrum sharing game, a user

adjusts its precoding scheme according to precoding schemes of other users (in

the non-cooperative case) or according to a certain agreed principle of cooperation

(in the cooperative case). In the context of game theory, precoding schemes here
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are recognized as the players’/wireless users’ strategies. Modeling the precoding

schemes of users as strategies in the spectrum sharing game, one should find how

users should share the public resource (the spectrum band) and allocate the individ-

ual resources (for example, transmission power) to boost the benefits of all users.

The purpose of this thesis is to study wireless users’ precoding schemes for

sharing a wideband spectrum from a game theoretic perspective. The particular

objective is to derive precoding strategies using the cooperative Nash axiomatic

bargaining, which corresponds to a fair and efficient allocation of available com-

munication resources for the wireless users. The main contribution of this work is

threefold, as follows.

First, a general structure for precoding matrices in OFDM systems on frequency

selective fading channels is considered. It is shown that the precoding matrices

adopt a strictly diagonal form under the total power and/or spectral mask con-

straints, compared to the precoding structure of a diagonal matrix multiplied by

a non-diagonal constant matrix in multiple-input multiple-output (MIMO) systems.

Based on this result, a cooperative two-user precoding game and the extension to

M -user precoding game are studied under spectrum mask constraints, where the

users cooperate with each other based on time-division multiplexing/frequency-

division multiplexing (TDM/FDM). It is shown that the problem of finding pre-

coding strategies can be transformed to the problem of finding portions of time that

each user obtains on each frequency bin.

Second, it is shown that the cooperative precoding games can be formulated as

convex optimization problems when only spectrum mask constraints are applied.

For cooperative games, all users have to exchange information in cooperation. So a

purely distributed algorithm is not applicable. However, it is shown that the problem

can be decoupled using dual decomposition, and the bargaining among users can

be physically realized using a distributed structure with a coordinator.

Last, the two-user cooperative game is considered in the case when both the

total power and spectral mask constraints are present. The problem of finding the

TDM/FDM based bargaining solution is shown to be non-convex in this case. It is
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proposed that wireless systems can be categorized into two types according to their

bottleneck resources (power or bandwidth). For each type of system, an algorithm

is found to obtain a sub-optimal solution by allocating the bottleneck resource. It

is proved that the sub-optimal solutions are efficient under mild conditions and

can even achieve, in some cases, an identical performance to that given by the

optimal solutions, while the complexity of finding such sub-optimal solutions can

be significantly less compared to the complexity of finding the optimal solutions.
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Chapter 2

Background and Related Works

2.1 Preliminaries on game theory

Mathematically, an M -player game can be modeled as

Γ =
{

Ω, {si|i ∈ Ω}, {ui|i ∈ Ω}
}

(2.1)

where Ω = {1, 2, ...,M} is the set of all players, si is the strategy of player i,

and ui is the utility (payoff) for player i as a function of {s1, s2, ..., sM}. Therefore,

Players, strategies of the players, and corresponding payoffs of the players are three

key elements of a game. The rationality and selfishness assumption suggests that

all players aim at maximizing their own utilities. The payoff for any single player

is subject to the collective strategies of all players in the game.

Depending on whether players collaborate or not, a game can be cooperative

or non-cooperative. For non-cooperative games, equilibrium is the basic concept.

An equilibrium {si}M
i=1 is a strategy set composed of the best stable strategies for

all players of the game [13]. An Nash equilibrium (NE) is a typically considered

equilibrium, which satisfies the condition

ui(si
NE, sNE

−i ) ≥ ui(si
′, sNE

−i ), ∀si
′, ∀i (2.2)

where si
NE is the strategy of player i in the NE, s−i

NE is the combination of strate-

gies of all players except player i in the NE, and si
′ stands for any possible strategy
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of player i. An NE can be viewed as a set of stable strategies under which no player

can increase its utility by unilaterally deviating from his current strategy. If there

exists a unique NE of a game, it can be used as a non-cooperative solution of the

game. One significant advantage of the NE is that it is widely applicable. How-

ever, there are also two problems with the NE. First, more than one NE may exist

for a given game, which renders difficulty in predicting the outcome of the game.

Second, the NE almost always leads to an inefficient outcome for all players.

A special case of the NE is the so-called dominant strategy equilibrium (DSE),

in which each player has a fixed best strategy regardless of the strategies of other

players. Mathematically, the DSE should satisfy the following condition

ui(si
D, s−i) ≥ ui(si

′, s−i), ∀s−i,∀si
′,∀i (2.3)

where si
D is the strategy of player i in the DSE, s−i is any combination of strategies

of all players except player i, and si
′ stands for any possible strategy for player i.

Unlike the NE, the DSE is unique if it exists, and each player has a fixed best

strategy for whatever choices other players make. Thus, it can be inferred that it is

less likely to exist than NE. Similar to the NE, the DSE may also be quite inefficient

for all players. The inefficiency of the NE and DSE is due to the fundamental reason

that there is no coordination among players.

If the players are willing to cooperate, a better outcome of the game can be

expected. Cooperative game theory deals with games in which all users cooperate

with each other. One of the most popular cooperation approaches is based on the

so-called Nash bargaining axioms [14]. The axioms propose that the solution of a

cooperative game should satisfy:

• Linearity. A linear transformation of all players’ utility functions leads to the

same transformation of the game solution.

• Symmetry. The game solution does not depend on the numbering of the play-

ers.

• Independence on irrelevant alternatives. Restricting the utility space of the

game {ui|i ∈ Ω} → RM to a subspace which still contains the solution point
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of the original game does not change the solution, i.e., this point is also the

solution of the new game.

• Pareto-optimality. The solution is not weakly dominated by any point in the

utility space.

Characterized by these four axioms, there is a unique point in a convex utility space

that maximizes the Nash function (NF) defined as

F =
∏
i∈Ω

(ui − u
′
i) (2.4)

where u
′
i is the utility obtained by user i in the non-cooperative case. The point

(u
′
1, ...u

′
M) is known as the disagreement point which all users will resort to if the

cooperation breaks up.

Nash axiomatic bargaining focuses on describing properties of the final solution

of a cooperative game. However, how to cooperate so as to reach this solution is

not specified. Thus, the Nash bargaining (NB) solution in a specific game depends

on the manner of cooperation. For example, wireless users may perform TDM or

FDM in a cooperative game. The only limitation is that the utility space should be

convex.

It has been observed that the NB solution, if exists, may provide supplemen-

tary benefits for all users as compared to the non-cooperative solution. Moreover,

the benefits among users are distributed based on the so-called proportional fair-

ness [15]. There are several other results on cooperative game theory, such as Kalai-

Smorodinsky and Egalitarian solutions which also deal with convex games [16].

The extension of the Nash axiomatic bargaining, Kalai-Smorodinsky, and Egalitar-

ian solutions to certain non-convex problems are studied in [17], [18].

2.2 Linear precoding

Precoding is a signal processing technique used to enhance the quality of wireless

transmission when the channel state information is known at the transmitter side.
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Precoding can be performed in a non-linear or linear manner. Non-linear precoding

can be viewed as a special equalization performed at the transmitter side, which in-

volves a non-linear structure to feed back the channel information. One example is

Tomlinson-Harashima precoding [19]. Linear precoding simply performs a linear

transformation of the data to be transmitted. As compared to non-linear precoding,

linear precoding has lower complexity and can be applied to systems with an arbi-

trary number of antennas. Thus, it is widely considered in the literature and it better

fits current practical applications.

Linear precoding has been extensively studied in single-user MIMO wireless

systems. Although the objective in this work is to investigate precoding strate-

gies in multi-user systems on a wideband frequency selective fading channel where

wireless users are assumed to be equipped with a single antenna at both transmit-

ter and receiver sides, there exists an equivalence between MIMO channels and

frequency selective fading channels. Thus, some results on precoding derived for

MIMO systems are first reviewed as a background for linear precoding. The equiv-

alence between MIMO channels and frequency selective fading channels will be

also explained later while deriving particular precoding techniques.

Figure 2.1: Diagram of precoding in a MIMO system.

Consider precoding for a single-user MIMO wireless system on a flat fading

channel, where the transmitter and receiver are equipped with Mt and Mr antennas,

respectively. The diagram of precoding in a MIMO system is shown in Figure 2.1.

The signal model of the communication system with precoding can be written as

[20]

y = GHFx + Gn (2.5)

where H is the Mr ×Mt channel matrix with its (i, j)th element being the channel
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gain from the jth transmit antenna to the ith receiver antenna, y is the D× 1 vector

of the received symbols with D = rank(H) being the number of data streams to

be transmitted on the MIMO channel, F is the Mt × D precoding matrix, G is

the D ×Mr decoding matrix, x is the D × 1 vector of symbols to be transmitted,

and n is the zero-mean noise vector of dimension Mr × 1. It is assumed that the

transmitted symbols on different data streams are uncorrelated and the signal and

noise are uncorrelated, i.e., E{xxH} = I and E{xnH} = 0.

The optimal F and G have been designed in many works [20], [21], [22], [23].

There are two main results on the optimal structure of F and G.

First, it has been shown that the optimal F adopts a diagonal structure in many

scenarios. Specifically, assuming that the noise covariance is Rn, the optimal pre-

coding matrix can be written as

F = VB (2.6)

where V and B are obtained from the eigenvalue decomposition of HHR−1
n H. Here

B is the D×D diagonal matrix constructed from non-zero eigenvalues of HHR−1
n H

and the Mt columns of V form a basis of the column space of HHR−1
n H. The above

structure is proved to be optimal when the transmitter has a power constraint and

the design objective is to maximize the mutual information on the MIMO chan-

nel or to minimize the weighted mean square symbol estimation error. In fact, the

same result also holds for many other precoding designs with objectives expressed

as functions of the mean square symbol estimation error or signal-to-noise ratio

(SNR). The diagonal structure of the precoding matrix decouples the MIMO chan-

nel into eigen-channels and allocates transmission power on these eigen-channels.

It is proved that such decoupling of MIMO channel combined with proper power

allocation, i.e. water-filling, on the eigen-channels is capacity achieving [24].

Second, it is proved that the Wiener filter, defined as

G = FHHH(HFFHHH + Rn)−1 (2.7)

is an optimal linear receiver which is capacity-lossless and minimizes the mean

square symbol estimation error [21]. It can be seen from (2.7) that the optimal
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decoding matrix G depends on the precoding matrix F. Particularly, given the pre-

coding matrix, channel matrix, and noise covariance, the optimal G can be found.

Thus, only F, or equivalently B, needs to be optimized in the precoding design

problem.

Frequency selective fading channels are similar to MIMO channels in some as-

pects. Specifically, on a flat fading MIMO channel, each receive antenna picks up a

combination of signals simultaneously transmitted from different transmit antennas.

Similarly, on a frequency selective fading channel, a single receive antenna receives

a combination of signals transmitted at different time instances. Thus, a frequency

selective fading channel is mathematically equivalent to a MIMO channel in time

domain.

For more details, consider a frequency selective fading channel with channel

length L (where channel length is a parameter of frequency selective fading channel

which depends on the channel delay spread and the signal symbol duration). Signal

blocks of length N are transmitted through this channel. Then, the discrete sampled

channel can be written as [25]

H =




h0 0 0 0 . . . 0

h1 h0 0 0 . . . 0

... . . . . . . . . . . . . ...

0 hL−1 . . . h0 . . . 0

... . . . . . . . . . . . . ...

0 . . . 0 hL−1 . . . h0




N×N

(2.8)

where hl (l = 0, 1, ...L− 1) are the sampled channel impulse responses. From the

channel matrix (2.8), it can be seen that this frequency selective fading channel is

mathematically equivalent to an N × N MIMO channel. The difference is that on

the frequency selective channel the N symbols in a block are transmitted in serial

while on the equivalent MIMO channel the N symbols are transmitted from N

antennas simultaneously.

There is one more obvious difference between the two cases. Unlike the channel
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matrix of the MIMO channel, there are only L different non-zero elements in the

channel matrix of the frequency selective fading channel. Owing to this feature, the

frequency selective fading channel can be divided into flat fading frequency bins

(like in OFDM systems) by adding a cyclic prefix (CP) into the signal block.

OFDM is a multi-carrier modulation scheme used in wideband wireless systems

to eliminate the ISI. In OFDM systems, the transmitter performs an inverse fast

Fourier transform (IFFT) after the signal symbol block passes the precoder and

yields

s = DHFx (2.9)

where x = [x(1), ..., x(N)]T is the N × 1 symbol block to be transmitted, F is the

N×N precoding matrix, and DH is the N×N IFFT matrix with its (i, j)th element

given as

D(i, j) =
1√
N

e
j2π(i−1)(j−1)

N . (2.10)

Let us assume that the channel length is L. A CP consisting of the last L − 1

symbols of s is then inserted into s. The resulting vector of dimension (N+L−1)×1

is s′ = [s(N − L + 2), ..., s(N), s(1), ..., s(N)]T . The symbols in s′ are transmitted

through the frequency selective fading channel, and N+2L−2 symbols are received

at the receiver due to the delay spread of the channel. The receiver picks up the

symbols starting from the Lth received symbol to the (N + L − 1)th symbol, and

forms a received vector y′. Then, y′ can be written as [5]

y′ = H′s′ + n (2.11)

where n is the additive Gaussian noise and H′ is the channel matrix given by

H′ =




hL−1 . . . h0 0 0 . . . 0

0 hL−1 . . . h0 0 . . . 0

... . . . . . . . . . . . . . . . ...

0 . . . 0 hL−1 . . . h0 0

0 0 . . . 0 hL−1 . . . h0




N×N+L−1

. (2.12)

14



Because of the CP insertion, the first L − 1 symbols in s′ are the same as the last

L− 1 symbols. Thus, signal model (2.11) can be rewritten as

y′ = Hs + n (2.13)

where the equivalent channel matrix H is a circulant matrix. The eigen decomposi-

tion of the channel matrix H can be found as

H = DHΩD (2.14)

where Ω is a diagonal matrix with its elements being the sampled frequency re-

sponses of the channel.

The fast Fourier transform (FFT) is performed on y′ at the receiver side, fol-

lowed by the multiplication by the decoding matrix G. As a result, a new vector

y = GDy′ is obtained. Thus, the signal model for the entire transmission process is

y = GDHDHFx + GDn. (2.15)

Note that matrix D has two properties. First, it is a unitary matrix so that DDH =

I. Second, the elements of Dn are uncorrelated zero mean circularly symmetric

complex Gaussian (ZMCSCG) if n is a vector of uncorrelated ZMCSCG noises,

i.e., multiplication by D does not change the property of the noise. Then, equation

(2.15) can be rewritten as

y = GΩFx + n′ (2.16)

where n′ = GDn is the noise vector after the decoder.

Thus, the OFDM scheme decouples the frequency selective fading channel into

N flat fading frequency bins. The equivalence between MIMO channels and fre-

quency selective fading channels appears again in the channel diagonalization. The

results on precoding design for MIMO channels are, therefore, still valid for OFDM

systems on frequency selective fading channels. These results will be used as a basis

in this work. However, it will be shown in Chapter 3 that there is a slight difference

between the structures of the precoding matrices in these two cases. Moreover, in

this work, the objective is to study precoding strategies in multi-user systems, in-

stead of single-user systems. Thus, the channel resource will no longer belong to a
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single user and will be allocated as a result of user competition, which makes the

problem more complex.

2.3 Game theory in multi-user wireless systems

In multi-user wireless systems, all users compete for resources. Operating on the

same frequency band, users interfere with each other if they communicate simulta-

neously. The conflicting objectives of the users make it almost impossible for any

user to gain more profit without harming other users. There are many information-

theoretic studies on multi-user wireless systems and interference channels (see [26],

[27], [28] and the references therein). However, these information-theoretic studies

generally focus on finding the rate regions of multi-user systems and do not advise

how to actually achieve the best rates for all users simultaneously. It is, however,

clear that the performance of multi-user systems must depend on the balance among

users during the competition for resources. Moreover, the points in the achievable

rate region are not all equivalent, stable, or even feasible if the selfish nature of

users is taken into account. In such cases, it is reasonable to assume that all users

will compete for the maximum achievable benefits at all times, which may render

difficulties in the implementation of any prescribed regulations against the selfish-

ness of users. For example, although an outcome corresponding to the case when

one user is forced to sacrifice its performance for the benefits of other users can be

theoretically obtained, it is hard to make sure in practice that the sacrificed user will

not actually deviate from the strategy which is unfair for him.

For multi-user systems, the resource sharing problem can be investigated from

a game-theoretic perspective. Without coordination among users, the existence of

stable outcomes, corresponding to the so-called equilibrium, can be analyzed. On

the other hand, if there is a voluntary cooperation among users, extra benefits for all

users can be gained. These benefits can be distributed among all users. In both the

non-cooperative and cooperative cases, the efficiency of resource utilization can be

boosted and the system stability can be guaranteed.
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Focusing on the interactions among players with conflicting objectives, game

theory has found applications in various areas of signal processing and communica-

tions including OFDM, ad-hoc, and cognitive radio networks [29], [30], [31]. How-

ever, the applications of cooperative game theory for multi-user systems and inter-

ference channels are quite recent [15], [32], [33]. A popular application of game

theory is, for example, the multi-user power allocation problem [34], [35], [36]. A

two-user power allocation game on a flat fading channel is investigated in [37]. It

is argued that certain points in the utility space of the game (i.e., the information-

theoretic rate region of the interference channel) are not achievable from a game-

theoretic perspective. It is also shown that the NB solution obtained based on the

TDM scheme improves significantly the benefits of all players as compared to the

non-cooperative NE solution. The study is extended to the N -player case on a fre-

quency selective channel in [38], where spectral mask constraints are used to limit

the transmission power of each user on each frequency bin. The NB solution is

derived based on the TDM/FDM scheme. Different from the flat fading channel

case, the allocation of frequency bins becomes a major problem on the frequency

selective channels. It is shown that at most one frequency bin needs to be shared by

any two users. A similar problem is studied in [39].

A more complex game is the power allocation game on the frequency selective

channels with total power constraints which limit the total transmission power of

each user. It can be proved that the latter problem is non-convex. A water-filling

based algorithm is proposed to search for the NB solution in the case of only two

users [40]. The proposed algorithm bargains in many different convex subspaces

of the original utility space and obtains one NB solution in each subspace. Then

the largest of the NB solutions is selected as the final NB solution of the game.

However, the complexity of such an algorithm is high even for the two-user case

and the algorithm can not be extended to M -user (M > 2) games.

A matrix-valued precoding game is analyzed in [41] and [42], focusing on the

non-cooperative case. A multi-user frequency selective interference channel is con-

sidered and the optimal precoding matrix for each user in the non-cooperative case
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is derived based on the NE. It is shown that the matrix-valued precoding game can

be solved from an equivalent vector-valued non-cooperative power allocation game,

and the resulted precoding matrices adopt a diagonal structure similar to (2.6). The

existence and uniqueness of the NE is guaranteed when all communication links are

uncorrelated, i.e. they are sufficiently far away from each other. The NE is shown

to be more efficient when the interference is relatively low as compared to noise.

Similar to the aforementioned work [42], most of the research efforts in the

literature deal with the non-cooperative case and aim at finding an NE as an op-

timal solution. Corresponding non-cooperative games do not coordinate users,

and typically, allow for low-complexity and distributed solutions. However, non-

cooperative games often lead to quite inefficient results for all users due to the lack

of coordination. Different from the aforementioned work on the non-cooperative

precoding, the study in this thesis focuses on developing cooperative precoding

strategies for multi-user wireless systems using cooperative game theory. In the

following sections, the cooperative precoding strategies in multi-user systems will

be analyzed based on the NB theory. Part of this thesis has been reported in [43]

and [44], and also summarized in [45].
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Chapter 3

System Model

Consider an M -user wireless system in which all users transmit on the same wide-

band frequency selective fading channel with channel length L. Assuming block

transmission with block length N for all users, the general signal model (OFDM

modulation not assumed) for the M -user frequency selective fading channel can be

then written as

yi = GiiHiiFisi + Gii

M∑

j=1,j 6=i

HjiFjsj + Giini (3.1)

where si is the N×1 information symbol block of user i, Fi is the N×N precoding

matrix of user i, Hji is the N×N channel matrix between transmitter j and receiver

i, ni is the N × 1 additive Gaussian noise vector with covariance E{ninH
i } = σ2

i I.

The information symbols are assumed to be uncorrelated and all have unit-energy,

i.e., E{sisH
i } = I. The information symbols and the noise are also assumed to be

uncorrelated, i.e. , E{sinH
i } = 0.

If OFDM modulation is adopted for each user and the block length N is larger

than L, the signal model can be rewritten according to equation (2.16) as following

yi = GiiΩiiFisi + Giiñi (3.2)

where ñi =
M∑

j=1,j 6=i

ΩjiFjsj + Dni is the N × 1 interference plus noise vector for

user i before the decoder, Ωji is the N × N diagonalized channel matrix from the
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transmitter of user j to the receiver of user i with its kth element being the sampled

frequency response of the kth frequency bin.

It can be seen that both the desired communication channel Hii and the inter-

ference channels Hji (j = 1, ...i− 1, i + 1, ...M) are diagonalized for user i due to

the CP insertion and the multiplication by matrices DH and D at the transmitter and

receiver sides, respectively.

Let us consider the general case in which all users treat the interference as ad-

ditive noise. Then the noise covariance for user i before the decoder is

R−i = E{ñiñH
i } = σ2

i I +
M∑

j=1,j 6=i

ΩjiFjFH
j (Ωji)

H . (3.3)

As mentioned in the previous chapter, the Wiener filter is an optimal capacity-

lossless linear receiver. Thus, the decoding matrix can be found using the Wiener

filter

Gi = FH
i HH

ii (HiiFiFH
i HH

ii + R−i)
−1. (3.4)

Since the Wiener filter Gi does not affect the capacity of the channel, the max-

imum information rate that user i can achieve can be calculated before the decoder

and be written as [24]

Ri = log
(
det

(
I + FH

i (Ωii)
HR−1

−i ΩiiFi

))
. (3.5)

Considering the wireless users as players of the precoding game, the choices of

precoding matrices as players’ strategies, and the corresponding information rates

of users R′
is as players’ payoffs, the game model of the precoding problem can be

written as

Γ =
{

Ω = {1, 2, ...M}, {Fi|i ∈ Ω}, {Ri|i ∈ Ω}
}

. (3.6)

In practice, all users attempt to maximize their information rates under certain

power constrains. For the case of frequency selective fading channels, spectral mask

constraints are usually considered to limit the power that user i can allocate on each

frequency bin. These powers are denoted as pmax
i (k) (∀i ∈ Ω,∀k ∈ {1, 2, ..., N}).

Without loss of generality, pmax
i (k) (∀i ∈ Ω) are assumed to be identical for all

users and equal to pmax(k). Although spectral mask constraints actually bound the
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total available power for the users, i.e.
∑
k

pmax(k), this bound might be loose. Thus,

sometimes a total power constraint is also needed on the top of the spectral mask

constraints.

The aforementioned two power constraints for the users can be mathematically

written as follows [42].

Constraint 1 on spectral mask:

E{|[Fisi]k|2} = [FiFH
i ]kk ≤ pmax(k). (3.7)

Constraint 2 on total transmission power Pmax
i :

E{‖Fisi‖2} = Tr{FiFH
i } ≤ Pmax

i . (3.8)

The sets of precoding matrices which satisfy (3.7) and (3.8) are denoted as F1

and F2, respectively.

For further developments, three general assumptions need to be made:

1 . All wireless users treat the interference from other users as noise.

2 . The channel information of the desired channel Hii is known at both the

transmitter and receiver sides of user i.

3 . The total power constraints are tight when they are taken into account, i.e.,

Pmax
i <

∑
k

pmax(k).

In the following chapters, the users are assumed to cooperate with each other in

the precoding games based on different manners of cooperation, i.e., TDM/FDM or

FDM/time sharing. These two manners of cooperation have one common ground

that they are both orthogonal signaling schemes. The main reason for consider-

ing orthogonal signaling is that the capacity region of a general communication

channel on which users interfere with each other is not derived yet in the literature.

Moreover, the users may need to exchange the interference information to achieve a

desirable performance if they are allowed to interfere with each other. This will add

to the overhead in the communication system and will significantly complicate the
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transmitter and receiver designs. Therefore, orthogonal signaling, which is simple

and practical, is a reasonable choice for users to perform cooperation.

The following proposition regarding the structure of the precoding matrices pro-

vides the basis for the discussion in the next two chapters.

Proposition 3.1: The precoding matrix for each user adopts a strictly diago-

nal structure Fi = Λi in the precoding games under constraints 1 and/or 2 if the

cooperation among users is based on orthogonal signaling.

Proof: The noise covariance in (3.3) is equivalent to R−i = σ2
i I when the

cooperation among users is based on orthogonal signaling. Thus, Ri is simplified

to

Ri = log

(
det

(
I +

1

σ2
i

FH
i (Ωii)

HΩiiFi

))
. (3.9)

The Hadamard’s inequality (which is used in [42] to prove the optimality of a simi-

lar structure for precoding matrices in the non-cooperative games) suggests that the

determinant in (3.9) is maximized when Fi is diagonal.

Moreover, the power constraints given in (3.7) and (3.8) are irrelevant to the

non-diagonal elements of Fi. Therefore, the optimal structure for precoding matri-

ces is the diagonal structure. ¥
Note that the structure suggested by Proposition 3.1 is different from the mul-

tiplication of a constant non-diagonal matrix and a diagonal matrix for precoding

in MIMO channels. Recall that precoding on MIMO channels adopts a diagonal

structure F = VB, as given in (2.6). Then, Proposition 3.1 states that precoding

in OFDM systems on frequency selective fading channels does not have the non-

diagonal multiplier V under constraints 1 and 2. The fundamental reason is that

precoding contributes to the channel diagonalization on MIMO channels. Indeed,

for the case of MIMO channel, the non-diagonal multiplier V in the precoding ma-

trix is derived from the singular value decomposition (SVD) of the channel and is

used to diagonalize the channel, while the diagonal matrix B is used to allocate

transmission resources. On a frequency selective fading channel, the channel diag-

onalization is realized by the CP insertion, IFFT and FFT operations. Thus, there

is no need to have a non-diagonal multiplier in precoding matrices. Therefore,
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precoding in OFDM systems on the frequency selective fading channel based on

orthogonal signaling is equivalent to the allocation of transmission resources, such

as power allocation and channel allocation.

In Chapter 4, precoding strategies under spectral mask constraints will be in-

vestigated and the NB solution will be derived. In Chapter 5, both total power

constraints and spectral mask constraints will be considered and sub-optimal solu-

tions will be studied instead of the optimal solutions, which have unacceptably high

complexity.
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Chapter 4

Precoding Games with Spectral

Mask Constraints

4.1 Cooperative precoding strategies: two-user game

We study the precoding games with spectral mask constraints in this chapter, be-

ginning from a simplified two-user game 1. First consider the disagreement point of

the two-user cooperative game. Particularly, the NE of the non-cooperative game is

a typical choice of the disagreement point. It is straightforward to see that the NE

solution of the two-user game with spectral mask constraints is

FNE
i =

√
diag(pmax), i = 1, 2 (4.1)

where pmax = [pmax(1), ..., pmax(N)] and pmax(k) (∀k) are the spectral mask con-

straints. It shows that each user exploits maximum allowable power on all frequency

bins to maximize its rate. In fact {FNE
1 , FNE

2 } constitutes a DSE here.

After the disagreement point is fixed, the manner for cooperation between users

needs to be specified. A joint TDM/FDM approach is one of the desirable choices.

1A version of this chapter has been published in proceedings of the IEEE Global Telecommuni-
cations Conference 2008 (GLOBECOM’08) [43]. Related results and further extensions have been
published in proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing 2009 (ICASSP’09) [44].
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Although the TDM/FDM rate region is not the capacity region of the interfer-

ence channel, it is convex and can be implemented with low complexity. Joint

TDM/FDM prescribes that any frequency bin can be used by only one user at any

time instant but it may be shared by different users throughout the operation time.

The following proposition on the structure of the NB solution for precoding

matrices in the TDM/FDM cooperative game is in order.

Proposition 4.1: The NB solution for precoding strategies for the two-player

TDM/FDM cooperative precoding game on the frequency selective fading channel

can be obtained through time sharing of at most two sets of diagonal precoding

matrices denoted as {F1
1, F1

2} and {F2
1, F2

2}. The following conditions should be

satisfied
Fl

1 + Fl
2 =

√
diag(pmax)

Fl
1F

l
2 = 0

|Tr{F1
1 − F2

1}|2 = |Tr{F1
2 − F2

2}|2 ∈ P

(4.2)

where l ∈ {1, 2} and P = {pmax(1), pmax(2), ..., pmax(N)} is the set of spectral

mask constraints on the frequency bins.

Proof: The diagonal structure of Fl
1 and Fl

2 (l ∈ {1, 2}) follows from Propo-

sition 3.1. The three conditions in (4.2) are based on the TDM/FDM assumption.

First consider the FDM part. Given any division of the frequency bins, both users

will use maximum allowable power on all frequency bins allocated to them. Thus,

the first condition is derived. The second condition is based on the fact that only

one user is allowed on any given frequency bin at any time. Thus, there must be

one user which allocates zero power on any given frequency bin at any time. The

third condition is based on the fact that the NB solution can be achieved by sharing

at most a single frequency bin between the two users, which has been also observed

in [38].

The proof can be given by contradiction using the optimality of the NB solu-

tion. Assume that the NB solution can be achieved only by sharing two or more

frequency bins between the two users and consider the case when two frequency

bins m and n are shared. In the sharing scheme, user 2 uses a fraction α1 of
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the time in frequency bin m and a fraction α2 of the time in frequency bin n.

Let Ri(m) and Ri(n) be the rates that user i can obtain by exclusively using fre-

quency bins m and n, respectively. Without loss of generality, we assume that

R2(m)/R1(m) ≥ R2(n)/R1(n). Then either of the following cases must happen:

i) If α1R2(m)+α2R2(n) ≥ R2(m), there exists γ ∈ [0, 1) such that α1R2(m)+

α2R2(n) = R2(m) + γR2(n);

ii) If α1R2(m)+α2R2(n) < R2(m), there exists γ ∈ [0, 1) such that α1R2(m)+

α2R2(n) = γR2(m).

Case (i) corresponds to a new sharing scheme according to which only fre-

quency bin n is shared between both users, and user 2 exploits a fraction γ of time

on frequency bin n. In the new scheme, user 2 obtains the same rate on frequency

bins m and n as that in the original scheme. Then the rate that user 1 can obtain on

frequency bins m and n in the new scheme is

(1− γ)R1(n) =

(
1− (α1 − 1)R2(m) + α2R2(n)

R2(n)

)
R1(n)

= (1− α1)
R1(n)R2(m)

R2(n)
+ (1− α2)R1(n)

≥ (1− α1)R1(m) + (1− α2)R1(n). (4.3)

The last inequality follows from the assumption that R2(m)/R1(m) ≥ R2(n)/R1(n).

It can be seen from (4.3) that the rate that user 1 can obtain in the new scheme is

equal to or larger than that in the original scheme. This contradicts the assumption

that the NB solution can be achieved only by sharing two frequency bins between

both users.

A similar result can be derived in case (ii). Moreover, for the case that more than

two frequency bins are shared, the above proof can be used iteratively to obtain the

same result.

These results show that the optimal solution can be obtained by sharing at most

a single frequency bin between the users. Thus, F1
i , i ∈ {1, 2} can be obtained by

adding/deleting a single diagonal element of F2
i , i ∈ {1, 2} and the third condition

in (4.2) follows. ¥
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Proposition 4.1 states that the TDM/FDM based cooperation on N frequency

bins can be realized by the time sharing of two diagonal precoding matrices under

spectral mask constraints. From the proof of Proposition 4.1, it can be seen that

only one frequency bin needs to be shared. Denote this frequency bin as k? and

assume that F1
1(k

?, k?) =
√

pmax(k?) (therefore F2
1(k

?, k?) = F1
2(k

?, k?) = 0 and

F2
2(k

?, k?) =
√

pmax(k?)). Assuming that user 1 shares frequency bin k? for α

portion of time (0 ≤ α ≤ 1), the information rate of user i (i = 1, 2) can be written

as

Ri = α log

(
det

(
I +

1

σ2
i

F1
i
H

(Ωii)
HΩiiF1

i

))

+ (1− α) log

(
det

(
I +

1

σ2
i

F2
i
H

(Ωii)
HΩiiF2

i

))
. (4.4)

The problem is now converted to finding k? and α which maximize the Nash

function (2.4). The problem can be simplified as follows. The information rate for

user i given in (4.4) is the summation of user i’s information rates on all frequency

bins. Denoting the set of frequency bins allocated to user i exclusively as Bi, the

sum rate can be rewritten as

Ri =
(
(i− 1) + (−1)i+1α

)
Ri(k

?) +
∑
m∈Bi

Ri(m), ∀i (4.5)

where

Ri(m) = log(1 + |Ωii(m)Fi(m)|2/σ2
i ), ∀i (4.6)

is the information rate that user i can obtain on frequency bin m by using precoding

strategy Fi. Note that (4.5) and (4.6) can be further rewritten as

Ri =
N∑

k=1

αk
i Ri(k), ∀i (4.7)

where

Ri(k) = log(1 + |Ωii(k)|2pmax(k)/σ2
i ), ∀i (4.8)

is the information rate that user i can obtain on frequency bin k by using it exclu-

sively for all the times, and αk
i is the time portion during which the frequency bin k
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is allocated to user i. Then the NB solution can be found from solving the following

convex optimization problem

max
{αk

i },∀i,∀k
log(R1 −RNE

1 ) + log(R2 −RNE
2 )

subject to : 0 ≤ αk
i ≤ 1, ∀i ∈ {1, 2},∀k ∈ {1, 2, ..., N}

αk
1 + αk

2 ≤ 1, ∀k

Ri > RNE
i , ∀i (4.9)

where RNE
i is the utility that user i can obtain in the non-cooperative game.

Note that the objective function of problem (4.9) is derived by taking logarithm

of the NF function. The property of the log function that it does not change the

maximum of a function to which it applies is used. The third constraint in (4.9)

guarantees that both users can achieve higher rates through the TDM/FDM based

cooperation. Otherwise the users resort to the disagreement point and the coopera-

tion breaks up. Note that in the solution of the above problem 0 < αk
i < 1 only for

k = k?.

4.2 Cooperative precoding strategies: an extension

to M -user game

The TDM/FDM scheme is still assumed here as the cooperation scheme for the

M -user game. Unlike the two-user case, where the NB solution of the precoding

game can be simply formulated as a time sharing between two sets of precoding

matrices, it is much more complex to coordinate the users’ precoding matrices in

the M -user game. The structure used for the two-user game can hardly be applied

here, especially when the number of users is large. To solve this problem, we first

partition the time into time slots each of length T to make it easier for the users to

perform time sharing. Moreover, considering the case when the number of users or

the channel states change over time, the partitioning of time slots enables a timely

update of the bargaining solution if time slots are small enough.
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The cooperative solution in this case can be obtained through the following

steps:

• Step 1 -Initialization: users are in non-cooperative state and the NE solution

for precoding matrices is obtained.

• Step 2 -Computation: the cooperative NB solution for the precoding matrices

is calculated.

• Step 3 -Implementation: Implement the NB solution for one time slot. If any

changes of the number of users or the channel states are detected during this

time slot, go back to step 1 in the next slot; otherwise, repeat step 3.

As an extension of Proposition 4.1, the following proposition is in order.

Proposition 4.2: Precoding matrices corresponding to the NB solution of the

M -player TDM/FDM cooperative game on the frequency selective fading channel

have the form

Fi = Γi(t)
√

diag(pmax), ∀i ∈ {1, 2, ..., M} (4.10)

where Γi(t) is a diagonal matrix with its kth diagonal element

Γk
i (t) =





1, if t ∈ [bk
i , e

k
i ]

0, if t /∈ [bk
i , e

k
i ]

, ∀i (4.11)

with bk
i and ek

i representing, respectively, the starting and ending time moments

between which frequency bin k is allocated to user i in a time slot [0, T ]. The

following conditions are then satisfied

∑
i

Γi(t) = I, ∀t ∈ [0, T ]

Γi(t)Γj(t) = 0, ∀i, ∀j 6= i, ∀t ∈ [0, T ]

(4.12)

where t ∈ [0, T ] is the time instant in a current slot.

The proof is similar to the proof of Proposition 4.1 and is omitted here. As

compared to the three conditions for precoding in the two-user game given by (4.2),
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we find that there are only two conditions required in this problem. The reason is

that the sharing of frequency bins among multiple users is more complex. Unlike

the two-user game in which at most one frequency bin needs to be shared, different

groups of users may share different frequency bins in the M -user game. Thus, the

third condition in (4.2) no longer holds for M -user game. However, the other two

conditions for the two-user game are inherited here. The first condition in (4.12)

states that no frequency bin should be vacant at any time, while the second one

requests that no frequency bin be used by more than one user at any time.

It is the length of [bk
i , e

k
i ], denoted as αk

i = ek
i − bk

i , rather than the specific

values of bk
i and ek

i , that affects the payoffs of the users. Once the time portions αk
i

are fixed, the order of using frequency bins is not important to the users. Thus, the

key problem is to calculate the fractions of time αk
i (∀i, ∀k) that user i obtains on a

frequency bin k. Mathematically, this problem can be formulated as the following

optimization problem

max
{αk

i }

∏
i

(Ri −RNE
i )

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,

∑
i

αk
i ≤ 1, ∀k,

Ri > RNE
i , ∀i (4.13)

where

Ri =
∑

k

log(1 + |Ωii(k)Fii(k)|2/σ2) =
∑

k

αk
i log(1 + |Ωii(k)|2pmax(k)/σ2)

(4.14)

is the sum of information rates that user i can obtain on all frequency bins.

To avoid a centralized channel estimation and information exchange overhead

among users on the cooperation stage, we next develop a distributed algorithm for

solving (4.13). In Chapter 6 we will show by simulations that the algorithm con-

verges to the optimal solution.
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4.3 Distributed algorithm for finding the NB solution

From practical point of view, it is preferable to decompose the original problem

(4.13) and solve it in a distributed manner. To achieve that, first note that the prob-

lem (4.13) can be rewritten as

max
{αk

i }

∑
i

log(Ri −RNE
i )

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,

∑
i

αk
i ≤ 1, ∀k,

Ri > RNE
i , ∀i (4.15)

which is a convex optimization problem with a coupling constraint. Therefore, it

can be solved through dual decomposition.

The Lagrange dual problem to the problem (4.15) is given as

max
{αk

i }

∑
i

log(Ri −RNE
i )−

∑

k

λk(
∑

i

αk
i − 1)

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,

Ri > RNE
i , ∀i,

λk ≥ 0, ∀k. (4.16)

The problem (4.16) can be further converted to a two-level optimization problem

with the lower level subproblems given as

max
{αk

i }
log(Ri −RNE

i )−
∑

k

λkαk
i

s.t 0 ≤ αk
i ≤ 1, ∀k,

Ri > RNE
i (4.17)

for each user i ∈ {1, 2, ..., M}, and the higher level master problem given as

min
{λk}

∑
i

Ui(λ) +
∑

k

λk

s.t. λk ≥ 0, ∀k (4.18)
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where Ui(λ) is the maximum value of the objective function in (4.17) given λ =

[λ1, λ2, ..., λN ].

The dual problem (4.17) and (4.18) can be solved based on a distributed struc-

ture with a coordinator. Since the original problem is convex, the strong duality

holds and the solutions of the dual problem (4.16) and the original problem (4.15)

are the same if Slater’s condition is satisfied [46]. For our specific problem, we

have the following proposition.

Proposition 4.3: The Slater’s condition is guaranteed to be satisfied as long as

the NB solution exists.

Proof: Since the constraints of the problem (4.15) are all linear, the Slater’s

condition reduces to two parts with the first part requiring that the feasible domain

of f =
∑
i

log(Ri − RNE
i ) be open and the second part requiring that the feasible

domain of the whole problem be non-empty.

It is straightforward to verify that the first part is satisfied. The second part is

equivalent to the requirement of the existence of the NB solution. Thus, the Slater’s

condition is guaranteed to be satisfied if the NB solution exists. ¥
Note that Proposition 4.2 can be used to further simplify the dual problem

(4.17). Substituting (4.10) into the objective function of the sub-problem (4.17)

and assuming, for simplicity but without loss of generality, that T=1, the lower

level subproblems can be rewritten as

max
αk

i

log(
N∑

k=1

αk
i R

k
i −RNE

i )−
∑

k

λkαk
i

s.t. 0 ≤ αk
i ≤ 1, ∀k,

N∑

k=1

αk
i R

k
i > RNE

i (4.19)

where Rk
i = log(1 + |Ωii(k)|2pmax

i (k)/σ2) is the rate on frequency bin k for user i.

The lower level subproblems are solved distributively by the corresponding

users. The Hessian of the objective function fi = log

(
N∑

k=1

αk
i R

k
i −RNE

i

)
−∑

k

λkαk
i
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Table 4.1: Dual decomposition algorithm for NB.

1. The coordinator initializes λ=λ0=[λ0
1, λ

0
2, ..., λ

0
N ] and broadcasts it to all

users.

2. Each user solves (4.19) according to the present value of λ

and transmits its solutions for αk
i , k ∈ {1, .., N} to the coordinator.

3. The coordinator updates λ according to the gradient of the

master problem (4.18) as λ̂k = [λk − δ(1−∑
i

αk
i )]+ (∀k).

4. If |λ̂k − λk| ≤ ξ (∀k), stop; otherwise broadcast λ̂ and go to

step 2.

can be written as

∇2fi = − 1(
N∑

k=1

αk
i R

k
i −RNE

i

)2 rrT (4.20)

where r = [R1
1, ..., R

N
1 , ..., R1

i , ..., R
N
i , ..., R1

M , ..., RN
M ]T . It is straightforward to see

that ∇2fi is negative definite since Rk
i > 0(∀i,∀k). Thus, each Lagrange problem

(4.19) is guaranteed to be strictly convex and a unique solution exists. More impor-

tantly, the information required for solving the ith subproblem, i.e., Rk
i and RNE

i , is

local to user i.

A coordinator is needed to solve the higher level master problem. Since the

overhead of the information exchange and computation is not significant, one user

may be, for example, selected as the coordinator, or all users may perform the

functions of the coordinator in a round-robin manner.

The complete process of solving the dual problem is summarized in the imple-

mentation algorithm shown in Table 4.1, where δ and ξ are the step length and the

stopping threshold, respectively. The complexity of finding the bargaining solution

using the proposed algorithm is O(N3), which is determined by solving the lower

level subproblems (4.17).

Note that the coefficients λk (k = 1, 2, ..., N) have specific physical meanings.

Indeed, the coefficient λk represents the risk that cooperation among users breaks up
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due to a conflict on sharing frequency bin k. Thus, in the lower level subproblems,

the objective for each user consists of two parts. Taking user i as an example,

it can be described as follows. On one hand, a larger αk
i is preferred to increase

the total information rate of user i. On the other hand, if αk
i becomes too large,

the cooperation may break up and the payoff of user i will return to the inferior

competitive solution.
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Chapter 5

Precoding Games with Total Power

and Spectral Mask Constraints

5.1 Bandwidth-dominant and power-dominant sys-

tems

The games investigated in the preceding chapter consider spectral mask constraints

only. Thus, the diagonal elements of the precoding matrices Fi(∀i) satisfy Fi(k, k) =
√

pmax(k) when frequency bin k is allocated to user i and Fi(k, k) = 0 otherwise.

The corresponding optimization problem for finding the NB solution for the pre-

coding matrices/strategies is convex due to the inherent structure of Fi and can be

transformed to the problem of finding coefficients αk
i (∀i,∀k). The objective of

this chapter is to investigate the precoding strategies with both spectral mask and

total power constraints in the cooperative games. First, it can be shown that the

problem of finding the NB solution for the precoding matrices/strategies based on

TDM/FDM cooperation is non-convex in this case. The optimization problem can
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be formulated then by modifying (4.15) as

max
{αk

i ,pi}

∑
i

log(Ri −RNE
i )

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,

∑
i

αk
i ≤ 1, ∀k,

∑

k

αk
i pi(k) ≤ Pmax

i ,∀i

Ri > RNE
i , ∀i (5.1)

where

Ri =
∑

k

log(1 + |Ωii(k)Fii(k)|2/σ2
i ) =

∑

k

αk
i log(1 + |Ωii(k)|2pi(k)/σ2

i ) (5.2)

is the sum information rate that user i can obtain. It is easy to see that the above opti-

mization problem is non-convex. Specifically, the Hessian matrix Hfi
of fi(αi,pi) =

∑
k

αk
i pi(k) can be written as

Hfi
= ∇2fi(αi,pi) =


 0 I

I 0


 (5.3)

where αi = [α1
i , ..., α

N
i ]. Thus, the Hessian matrices Hfi

of fi(αi,pi) (∀i) are

orthogonal matrices, i.e., they satisfy Hfi
HT

fi
= I (∀i). The eigenvalues of orthog-

onal matrices can only be 1 or −1. Moreover, it is known that the summation of

all eigenvalues of Hfi
equals Tr{Hfi

}, which is zero for any i. Therefore, Hfi
(∀i)

must have both eigenvalues 1 and −1, and the number of eigenvalues 1 is equal to

the number of eigenvalues −1. Thus, Hfi
(∀i) are indefinite and the constraints

∑
k

αk
i pi(k) ≤ Pmax

i (∀i) are non-convex. The non-convexity of the optimization

problem 5.1 follows.

The third constraint in (5.1) is the total power constraint. Unlike the case in

(4.13), power allocation vectors pi (∀i) are also optimization variables to be found

here. However, Fi is still diagonal according to Proposition 3.1 and can be written

as

Fi = diag(
√

pi). (5.4)
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Thus, the problem of finding pi (∀i), which is equivalent to finding Fi (∀i), is

considered below.

For simplicity, the two-user case is considered throughout this chapter, and the

disagreement point is chosen at the origin of the utility space instead of the NE

point because finding the NE solution, in this case, is itself a complicated problem

currently under research.

To find the optimal solution of the corresponding precoding game, each user

should consider both the power allocation and the frequency bin allocation in (5.1).

The complexity of solving the problem(5.1) is high even for the simple two-user

case, especially when the number of frequency bins N is large. Therefore, it is nec-

essary to resort to sub-optimal solutions. Moreover, the total power constraints for

all users will render the TDM/FDM based cooperation inefficient for some system

configurations while in other system configurations efficient results can still be ob-

tained using TDM/FDM. Thus, this thesis suggests to categorize wireless systems

into two classes according to their bottleneck resources, which can be the avail-

able bandwidth or power. Such a classification allows us to develop different sub-

optimal precoding strategies for each class of systems. Such sub-optimal strategies

will guarantee that the sub-optimal solutions are efficient or even the same as the

optimal solutions, while at the same time the corresponding algorithm for finding

such solutions has low complexity.

In order to do the classification, two definitions need to be given first.

Definition 5.1. Pareto-optimality. A point x (indexed by its elements) is Pareto-

optimal, or equivalently, Pareto-efficient in a space S if and only if y = x for all y

satisfying y º x in S.

The NB solution is one of the Pareto-optimal points in the utility space. For the

two-user cooperative precoding game, there is a well known algorithm for obtaining

the TDM/FDM based NB solution if only spectral mask constraints are present [37],

[39]. According to this algorithm, one first arranges the frequency bins such that

R1(k)/R2(k) ≥ R1(j)/R2(j) (∀j, ∀k < j), where Ri(k) is the information rate

that user i can achieve in frequency bin k by allocating pmax(k) on it (and allowing
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no interference from other users). Given any integer k̂ ∈ [1, N ], let

αk
1 = 1, αk

2 = 0, p1(k) = pmax(k), p2(k) = 0,∀k < k̂

αk
1 = 0, αk

2 = 1, p2(k) = pmax(k), p1(k) = 0,∀k > k̂

αk̂
1 = β, αk̂

2 = 1− β, p1(k̂) = pmax(k̂), p2(k̂) = pmax(k̂). (5.5)

Then the corresponding result, i.e., the point R = [R1, R2], is guaranteed to be

Pareto-optimal in the game’s utility space for any 0 ≤ β ≤ 1. Varying k̂ and β, all

Pareto-optimal points can be obtained including the NB solution of the game.

Definition 5.2. Pareto-boundary. The set of all Pareto-optimal points in a con-

vex space S forms the Pareto-boundary of S.

Thus, the NB solution for the two-user cooperative precoding game with only

spectral mask constraints can be found by searching on the Pareto-boundary (in-

stead of the entire utility space) of the game. The above algorithm is based on the

principle that frequency bins which are “better” for a certain user should be allo-

cated to this user prior to the other frequency bins which are “inferior”.

However, the aforementioned principle may fail and lead to highly inefficient

solutions if the total power constraints are also imposed. Consider the following

simple example. Assume that there are four frequency bins and [R1(k), R2(k)] are

[0.5, 0.1] for k = 1, [2, 1] for k = 2, [1, 3] for k = 3, and [0.3, 1] for k = 4.

Assume also that pmax = [1, 1, 1, 1] and Pi = 1.5 for both users. Then according

to the aforementioned principle, we obtain the following resource allocation α1
1 =

α4
2 = 1, α2

1 = α3
2 = 0.5, α3

1 = α4
1 = α1

2 = α2
2 = 0 and p1(1) = p1(2) =

p2(3) = p2(4) = 1,p1(3) = p1(4) = p2(1) = p2(2) = 0. Note that the total

power constraints
∑
k

αk
i pi(k) ≤ Pmax

i (i = 1, 2) are used to derive the TDM/FDM

coefficients (α2
1 =

P1−pmax(1)α1
1

pmax(2)
= 0.5 and α3

2 =
P2−pmax(4)α4

2

pmax(3)
= 0.5). The resulting

utilities are R1 = 1.5 and R2 = 2.5, and (1.5, 2.5) is obviously not Pareto-optimal

in the utility space of the game. For example, the strategies according to which

frequency bin 2 is allocated to user 1 and frequency bin 3 is allocated to user 2

for the whole time provide higher rates than the allocation performed according to

the aforementioned principle. It is because this principle assumes unlimited total
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power and considers only comparative advantage on each frequency bin, but not the

absolute advantage.

Thus, the total power constraints render a different bargaining problem since

there is a need to coordinate between the power allocation and the frequency bin

allocation. However, the problem can be viewed from another perspective. Particu-

larly, we can first consider the solutions for the bargaining game with only spectral

mask constraints (denoted as game G1), and then add the total power constraints to

the game (denoted as game G2).

Observation 5.1. The total power constraints do not enlarge the utility space

of the game. The Pareto-optimal solutions for G1 are still Pareto-optimal for G2 if

they are achievable.

Denote the Pareto-boundary of the TDM/FDM utility space of G1 as P . Then,

the following proposition is in order.

Proposition 5.1: Assume that the frequency bins are ordered such that R1(k)
R2(k)

≥
R1(j)
R2(j)

if k < j. A non-empty subset of P can be achieved in G2 under constraints

on Pi and pmax
i (note that the spectral mask constraints pmax

i can be different for the

two users here) if and only if there exist 1 ≤ k̃ ≤ N and 0 ≤ α̃ ≤ 1 such that

P1 −
k̃−1∑
k=1

pmax
1 (k)

pmax
1 (k̃)

≥ α̃ ≥

N∑
m=k̃

pmax
2 (k)− P2

pmax
2 (k̃)

. (5.6)

Proof: First note that in G1 any resource allocation scheme satisfying (5.5)

will result in a Pareto-optimal point of the utility space, and vice versa. Thus, it

is equivalent to prove that (5.6) is the sufficient and necessary condition to satisfy

(5.5) under total power constraints. Assuming that (5.6) is satisfied and letting

k̂ = k̃ and β = α̃ in (5.5), the resulting total powers actually used by the two users

are P
′
1 =

k̃−1∑
k=1

pmax
1 (k)+α̃pmax

1 (k̃) for user 1 and P
′
2 =

N∑
k=k̃+1

pmax
2 (k)+(1−α̃)pmax

2 (k̃)

for user 2. Using (5.6), it is easy to verify that P1 ≥ P
′
1 and P2 ≥ P

′
2. Therefore, the

sufficiency is proved. The necessity can be proved similarly using contradiction. ¥
Observation 5.2. Given a two-user wireless communication system, L fre-

quency bins, and power constraints for both users, we add C frequency bins into
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the system. Then, the larger C is, the smaller the chance that a non-empty subset of

P can be achieved in G2.

The above observation follows straightforward from the expression (5.6). There-

fore, if we categorize the wireless systems into bandwidth-dominant systems and

power-dominant systems according to whether condition (5.6) is satisfied, then

Observation 5.2 states that a wireless system gradually changes from bandwidth-

dominant (in which the available bandwidth is the bottleneck for improving the

performance of the system) to power-dominant (in which the limited power of the

users is the bottleneck for improving the performance of the system) as the number

of available frequency bins increases.

5.2 Bandwidth-dominant systems: TDM/FDM based

bargaining

In wireless communications practice, most systems are bandwidth-dominant. De-

note the Pareto-boundary of the TDM/FDM utility space of G2 as P2. Then for

the bandwidth-dominant systems, the bargaining can be restricted in P ′
= P2 ∩ P .

The resulted NB solution can be sub-optimal for the cooperative TDM/FDM NB

game because the power allocation (which is not the dominant factor for bandwidth-

dominant systems) is not optimized jointly. Denote the NB solution of G2 derived

by bargaining only in P ′ as S
′
NB, and the optimal NB solution of G2 as Sopt

NB. Also

denote the TDM/FDM utility spaces of G1 and G2 as U1 and U2, respectively. Then,

the following proposition regarding the optimality of S
′
NB is in order.

Proposition 5.2: S
′
NB = Sopt

NB if Sopt
NB ∈ P

′ . If S
′
NB 6= Sopt

NB , then Sopt
NB /∈ P but

S
′
NB ∈ P , which means that Sopt

NB is not Pareto-optimal in U1 but S
′
NB is Pareto-

optimal in U1.

Proof: The first part of the proposition follows from the independence on ir-

relevant alternatives property of the NB as discussed in Chapter 2. This property

states that bargaining in a convex subset which contains the NB solution of the orig-
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inal set results in the same NB solution. Thus, it is clear that if S
′
NB 6= Sopt

NB, then

Sopt
NB /∈ P ′ . Since P ′ is the achievable subset of P in G2, it is, thus, impossible

that Sopt
NB ∈ P , but Sopt

NB /∈ P ′ . Combining these two points, the second part of the

proposition is proved. ¥
Proposition 5.2 leads to the following two conclusions about the optimality of

S
′
NB in the bandwidth-dominant systems:

1. S
′
NB can be identical to the optimal TDM/FDM based NB solution.

2. S
′
NB is guaranteed to be Pareto-optimal in U1 (which is larger than U2) even

if the optimal NB solution is not Pareto-optimal.

5.3 Power-dominant systems: FDM/sampled time shar-

ing based bargaining

Let us now consider the case of the power-dominant wireless communication sys-

tems. The numeric example at the beginning of this chapter is, in fact, an example

of a power-dominant system.

In the power-dominant systems, the bandwidth is over-supplied and the fre-

quency bin allocation is no longer the dominant factor in the problem. Instead,

the importance of power allocation increases significantly. Thus, power allocation

according to (5.5) using maximum power on all allocated frequency bins is not

reasonable in such systems.

Observation 5.3. The use of maximum allowable power on all allocated fre-

quency bins generally results in non-optimal solution for G2.

It is straightforward to verify Observation 5.3. Specifically, denote the set of

all frequency bins as B, the set of frequency bins which user 1 occupies using

maximum allowable power as Bm
1 , the set of frequency bins which user 2 occupies

using maximum allowable power as Bm
2 . Then, the first user may improve its utility

by water-filling on B − Bm
2 (instead of using maximum allowable power on Bm

1 ),

41



while the second user’s utility is kept the same. Note that the general term ‘water-

filling’ is used here to represent the meaning of finding the solution of the following

convex problem

max
pj

∑
j

log(1 + εjpj)

s.t.
∑

j

pj = P,

pj ≤ pmax(j), ∀j (5.7)

which is a single-user multi-channel power allocation problem with constant εj =

|Ω(j)|2
σ2 being a measure of channel j which depends on the channel gain and channel

noise.

Thus, power-dominant games will be played in a different way. First, the man-

ner of cooperation is assumed to be the FDM/time sharing scheme instead of the

TDM/FDM scheme. Given any two sets of strategies sx, sy and the corresponding

points x and y in the utility space, time sharing can achieve any point in the line

section between x and y by playing sx for a time portion of ξ and playing sy for

a time portion of 1 − ξ (where 0 ≤ ξ ≤ 1). Thus, time-sharing is always used to

obtain the convex hull of a non-convex utility space.

FDM/time sharing scheme considers time-sharing between points correspond-

ing to different frequency bin allocation schemes, and one frequency bin can be

allocated to only one user in any of the two allocation schemes. However, users’

power allocation schemes on the frequency bins are changed. The power allocation,

which is the dominant problem in the power-dominant systems, is then based on

the water-filling procedure. To obtain the optimal solution based on the FDM/time-

sharing scheme, water-filling should first be performed for all allocation schemes of

the frequency bins between the users, and the resulted 2N points in the utility space

are recorded. Then the time-sharing is used to obtain a minimum convex space

containing all these points (where the complexity is O(4N)) and the NB solution

can be derived. The associated high complexity is not reasonable for the two-user

game. Instead, we consider the FDM/sampled time sharing and find a sub-optimal
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Table 5.1: Algorithm for the power-dominant system.

1. User i performs water-filling on B and obtains a set of frequency bins

B̃i. Then Bc = B̃1

⋂ B̃2 is the set of frequency bins under competition.

2. In the first round, user 1 is allocated B̃1, and user 2 performs water-

filling on B − B̃1. In round j (j goes from 2 to L = |Bc|), user 1

selects j − 1 frequency bins with smallest channel gains in Bc (denoted

as Bj
s) and performs water-filling on B − Bj

s. Then user 2 performs

water-filling on the other frequency bins. After the Lth round, there will

be L points in the utility space.

3. Perform L rounds of the aforementioned step 2 for user 2. Starting

from the state that user 2 is allocated B̃2, and user 1 performs water-

filling on B − B̃2. Obtain another L points in the utility space.

4. Denote the 2L points as a set T . Find the Pareto-boundary PT
of ST , where ST is the minimum convex space containing T .

5. Bargain on PT and obtain the solution S
′
NB which maximizes (2.4)

on PT .

solution which can be derived using the algorithm described in Table 5.1.

Let WF i(X ) be the water-filling operator for user i on the set of frequency

bins X . It returns the maximum rate that user i can obtain by optimizing its power

allocation scheme on X . Then, the following proposition is in order.

Proposition 5.3: The difference |d| between the logarithm of the NF for the

optimal solution Sopt
NB based on the FDM/time sharing scheme and the logarithm of

the NF for the solution S
′
NB based on FDM/sampled time sharing obtained using

the above algorithm in Table 5.1 is bounded by

|d| ≤ min

(
log

( WF2(Bopt2
2 )

WF2(B − B̃2)

)
, log

( WF1(Bopt1
1 )

WF1(B − B̃1)

))
(5.8)

where Bopt1
1 and Bopt2

2 correspond to the frequency bin allocations in the optimal

solution as defined in details in the following proof.
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Proof: Assume that the optimal solution Ropt = (λRopt1
1 +(1−λ)Ropt2

1 , λRopt1
2 +

(1−λ)Ropt2
2 ) is obtained by time sharing of two points, which are (Ropt1

1 , Ropt1
2 ) and

(Ropt2
1 , Ropt2

2 ) in the utility space, and the time sharing coefficients are λ and 1− λ,

respectively. Also denote the corresponding frequency bins allocated to the users

as (Bopt1
1 ,Bopt1

2 ) and (Bopt2
1 ,Bopt2

2 ). Assume that Ropt1
1 > Ropt2

1 (then Ropt1
2 < Ropt2

2

due to the Pareto-optimality). Two points can be found, which are R1 = (R1
1, R

1
2)

and R2 = (R2
1, R

2
2) generated by the first and the last L rounds, respectively, where

R1
1 > Ropt1

1 and R2
2 > Ropt2

2 . Denote the corresponding frequency bin allocation

sets as (B1
1,B1

2) and (B2
1,B2

2).

The difference between the logarithm of the NF in (2.4) for Ropt and R1 is then

|d1| = log(λRopt1
1 + (1− λ)Ropt2

1 )

+ log
(
λRopt1

2 + (1− λ)Ropt2
2 )− log(R1

1)− log(R1
2

)

= log

(
λ

Ropt1
1

R1
1

+ (1− λ)
Ropt2

1

R1
1

)

+ log

(
λ

Ropt1
2

R1
2
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Ropt2

2

R1
2

)

< log

(
λ

Ropt1
1

R1
1

+ (1− λ)
Ropt1

1

R1
1

)

+ log

(
λ

Ropt2
2

R1
2

+ (1− λ)
Ropt2

2

R1
2

)

< log

(
λ

Ropt2
2

R1
2

+ (1− λ)
Ropt2

2

R1
2

)
= log

(
Ropt2

2
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2

)

(5.9)

where the two inequalities follow from the assumptions Ropt1
1 > Ropt2

1 , Ropt1
2 <

Ropt2
2 and R1

1 > Ropt1
1 , respectively.

A further relaxation can be made using the fact that

Ropt2
2 = WF2(Bopt2

2 ) (5.10)

and

R1
2 = WF2(B − Bj

1) ≥ WF2(B − B̃2) (5.11)

where 1 ≤ j ≤ L denotes the index of the round in which R1
2 is obtained by user 2.
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Thus, we have

|d1| < log

( WF2(Bopt2
2 )

WF2(B − B̃2)

)
. (5.12)

Similarly, the difference between the logarithm of the NF for Ropt and R2 satisfies

|d2| < log

( WF1(Bopt1
1 )

WF1(B − B̃1)

)
. (5.13)

Note that neither R1 nor R2 is assumed to be the sub-optimal solution returned by

the algorithm. Instead, R1 and R2 are only two of the 2L points generated in the

first and the last L rounds, respectively. Thus, the sub-optimal solution returned

by the algorithm is expected to be superior than both of the two points. Therefore,

|d| ≤ min(|d1|, |d2|). ¥
Although the solution can be sub-optimal, it may coincide with the optimal

solution. One example is when Bc is empty. From the expression of |d|, it can be

seen that if the channel gains in B − B̃i do not drop seriously compared to those in

B̃i for at least one user, the sub-optimal solution is efficient. In fact, the sub-optimal

solutions derived are the same with the optimal solutions for most of the cases, as

will be shown in the simulations.

5.4 The two-user algorithm

The overall algorithm combining both cases of the bandwidth-dominant and power-

dominant systems for the two-user cooperative game is given in Table. 5.2.

In the bandwidth-dominant case, the complexity of searching on P ′ is O(N). In

the power-dominant case, the complexity of the algorithm is determined by the time

sharing part, which is O(L2). In the latter case, the advantage in the complexity,

i.e., O(L2) compared to O(4N) for the optimal solution (where the time consumed

on water-filling is neglected in both cases) becomes obvious, especially when N

becomes larger. At the same time, the sub-optimal solutions are efficient and are

identical to the optimal solutions for most of the cases, as will be shown in the

simulations in the next chapter.
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Table 5.2: Two-user algorithm for finding the sub-optimal solution of the NB game.

1. Check condition (5.6):

Condition satisfied, go to step 2.

Otherwise, go to step 3.

2. System is bandwidth-dominant:

Search on the Pareto-boundary P ′
, return S

′
NB .

3. System is power-dominant:

Derive B̃1, B̃2, Bc. Play the 2L rounds and obtain T and PT .

Search on PT , return S
′
NB .
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Chapter 6

Simulations

6.1 Precoding with spectral mask constraints

In the first example, assume that two users have four available frequency bins to

share. The noise power σ2 is 0.01 for both users on all frequency bins. The channel

gains of the desired channels Ω11 and Ω22 are generated as Rayleigh random vari-

ables with mean 1. The channel gains of the interference channels Ω12 and Ω21 are

generated as Rayleigh random variables both with means 0.7 and 0.2, respectively.

The spectral mask constraint pmax is also generated as a random vector with mean 1.

In Fig. 6.1, the NB solution computed according to Propositions 4.2 is shown, while

the NE solution is also shown for comparison and the boundary of the TDM/FDM

rate region is indicated in the figure. Fig. 6.2 displays the values of the NF under

different FDM/TDM frequency bin allocation schemes, where k is the frequency

bin being shared and α is the fraction of time that user 1 uses the frequency bin

k. The largest value of the NF in Fig. 6.2 corresponds to the optimal scheme that

provides the NB solution.

In the second example, the distributed algorithm for the M -user game devel-

oped in Section 4.3 is tested. Four users are assumed in the system to share six

frequency bins. For a given step length δ = 0.2 and stopping threshold ξ = 10−5,

the iterations of bargaining process are shown in Fig. 6.3. The four curves on the
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Figure 6.1: The FDM/TDM rate region, and the NE and NB solutions on the fre-

quency selective channel.
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Figure 6.2: The NF under different FDM/TDM frequency bin allocation schemes.
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Figure 6.3: Instantaneous information rates of users and the corresponding values

of NF versus number of iterations.

Table 6.1: Comparisons between NE and NB

User NE Solution NB solution Increased by

1 1.1296 2.2707 101.02%

2 1.4014 2.4906 77.72%

3 1.2952 2.3992 85.24%

4 1.6957 2.4175 42.56%
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upper side of the figure show the instantaneous information rates that the corre-

sponding users can achieve, and the curve at the bottom is the corresponding value

of the NF, i.e., the objective function of the optimization problem (4.13). The NB

and NE solutions and the comparisons between them in one simulation are shown

in Table 6.1. It can be seen that all users obtain supplementary benefit from coop-

eration. The corresponding final allocation of time portions on each frequency bin

for each user is shown in Fig. 6.4. It can be seen that frequency bins 1, 2, 3, and 4

are occupied exclusively by users 3, 4, 1, and 2, respectively. Frequency bins 5 and

6 are shared by users 1 and 4, and users 2 and 3, respectively.

1
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5
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0
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1

i (user)
k (bin)

α ik

Figure 6.4: Allocation of time portions on frequency bins {αk
i }.

Fig. 6.5 depicts the effect of the step length on the convergence speed of the

algorithm. With the values of δ ∈ {0.1, 0.2, 0.3}, the values of the NF are shown

in the corresponding sub-figures. It can be seen that the algorithm is time-efficient

with a good choice of step length.
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Figure 6.5: The NF versus number of iterations under different step lengths, δ ∈
{0.3, 0.2, 0.1}.

6.2 Precoding with total power and spectral mask con-

straints

The multi-user wireless systems in which users have both the total power and spec-

tral mask constraints are categorized to power-dominant and bandwidth-dominant

systems in Chapter 5. For the bandwidth-dominant systems, the algorithm for

finding the sub-optimal NB solution inherits the algorithm for finding the optimal

TDM/FDM based NB solution in the precoding games without total power con-

straints. This case is, thus, simpler as compared to the case in the power-dominant

systems, where a different algorithm is proposed to find the sub-optimal NB solu-

tion. Therefore, the simulation for the precoding with total power and spectral mask

constraints mainly focuses on the power-dominant case.

Fig. 6.6 shows the system classification versus users’ total power constraints

and the number of frequency bins N in the system. The total power values P max
i for

both users are set to be the same and vary from 1 to 51. The number of frequency

bins increases from 1 to 256. A simplified case is simulated where the spectral
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Figure 6.6: System classification versus values of total power constraints and num-

ber of frequency bins.

mask constraints are set to be ps = 1 on all frequency bins for both users. The

total bandwidth bi that user i can cover is calculated as bi = min(ki + αi, N),

where ki (ki ∈ {0, 1, ...N − 1}) and αi (0 ≤ αi < 1) satisfy P max
i = (ki + αi)ps.

Then, the variable τ = 1− (α1 + k1 + α2 + k2)/N stands for the system property

according to Proposition. 5.6. The system is bandwidth-dominant if −1 ≤ τ ≤ 0

and is power-dominant if 0 < τ < 1. From the figure it can be seen that the

system changes from bandwidth-dominant to power-dominant when new frequency

bins are added into the system if the total power constraints of the users are fixed.

On the other hand, given the number of frequency bins, the system changes from

power-dominant towards bandwidth-diminant when the total power constraints of

the users are relaxed.

Two samples of the optimal and sub-optimal NB solutions in power-dominant

systems are demonstrated in Figs. 6.7 and 6.8. Two users are assumed to share

eight frequency bins and the total power constraints are set to be P max = 4 for both
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Figure 6.7: The optimal versus sub-optimal solutions and rate regions:sample 1.

users. The channel gains on all frequency bins are randomly generated. Fig. 6.7

demonstrates the case when the optimal and sub-optimal NB solutions are the same

while Fig. 6.8 depicts the case when the sub-optimal solution is different from the

optimal one.

Fig. 6.9 shows the accuracy of the sub-optimal solutions in 300 simulation,

where the number of frequency bins varies from 4 to 9 (50 simulations for each

case). The total power constraints of the users are set to P max = 2 for each user,

and the spectral mask constraints are set to 1 + x(k) (where x(k) is a random vari-

able in the internal [0.2, 0.25] for frequency bin k) to guarantee that the system is

power-dominant. The channel gains on the frequency bins are randomly generated

for both users. It can be seen from the figure that the sub-optimal solutions are iden-

tical to the optimal solutions for most of the cases. Note that although, for some

cases, the difference between the optimal and sub-optimal solutions may appear

large in the utility space as shown in Fig. 6.9, the difference between the values of

the NF for the optimal and sub-optimal solutions is very small.
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Figure 6.8: The optimal versus sub-optimal solutions and rate regions:sample 2.
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Chapter 7

Conclusions and Future Works

Spectrum shortage and wideband frequency selective fading are two major prob-

lems in wireless communications. Spectrum sharing is a practical and effective

solution to improve the spectrum efficiency and, thus, alleviate the spectrum short-

age problem. Allowing different users to share the same spectrum resource, the

users may potentially interfere with each other and all of their transmissions can be

degraded. Since the users are driven by their selfishness, game theory is a power-

ful tool to study the spectrum sharing problem. On the other hand, the problem of

wideband frequency selective fading, can be dealt with by using OFDM. In OFDM

systems, precoding is used to allocate the available transmission resources for the

users. Modeling the precoding schemes as strategies in a game, the spectrum shar-

ing problem is solved by finding efficient precoding game strategies.

In this thesis, the cooperative precoding strategies on frequency selective fad-

ing channels are derived. It is found that the precoding matrices adopt a strictly

diagonal structure if OFDM modulation is exploited in the wireless system. Based

on this structure, the optimal precoding matrices for the two-user cooperative game

with spectral mask constraints are obtained by using the NB approach. The results

are extended to the M -user game as well. It is shown that the problem of finding

precoding strategies can be transformed to the problem of finding the time portions

that each user obtains on each frequency bin. Formulated as a convex optimization
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problem, this problem can be solved in a distributed manner using the dual decom-

position method, which physically realizes the process of bargaining among users.

The simulation results demonstrate the superiority of the NB solution over the NE

solution for precoding strategies. The impact of the spectrum allocation schemes

on the system performance is also studied. The convergence of the distributed al-

gorithm for the M -user game is demonstrated.

The precoding strategies are also studied for the two-user game with both spec-

tral mask and total power constraints. It is shown that the problem is non-convex

in this case. Finding the optimal solution requires joint optimization of the allo-

cation of frequency bins (which is the public resource in the wireless system) and

each user’s transmission power (which is the individual resource). The complex-

ity of finding the optimal solution is unacceptably high. Therefore, it is proposed

that such systems be categorized into two classes according to their bottleneck re-

sources, i.e., bandwidth or power. Based on such classification, the sub-optimal

algorithms are derived for each class of the systems by concentrating on the alloca-

tion of the key resource. The classification guarantees that the solutions obtained by

the sub-optimal algorithms are efficient or even identical to the optimal solutions,

while the complexity of the sub-optimal algorithms is significantly reduced.

This work can be extended in three directions. First, cooperation without or-

thogonal signaling can be considered. Orthogonal signaling, such as TDM and/or

FDM, is a simple and practical manner for users to cooperate. However, it is in-

efficient when the interference among the users is weak as compared to the noise

power. For example, the TDM/FDM utility region is a subset of the general utility

region when the interference among users is low. If we do not limit the cooperation

to be based on orthogonal signaling, larger utility region can be achieved. However,

it again comes with a tradeoff between complexity and optimality. The problem of

finding the NB solution of the precoding matrices without orthogonal signaling is

non-convex even when only spectral mask constraints are applied. Moreover, time

sharing must be used to obtain the convex hull of the general utility region which

is not convex in most cases. The complexity of finding the optimal solution is then
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unacceptably high, especially when the number of users is large. For example, each

user needs to calculate three precoding matrices to perform time sharing and obtain

the optimal solution if there are three users in the game. Nevertheless, efficient

sub-optimal solutions with reduced complexity can be considered.

Second, the two-user game with total power and spectral mask constraints can

be extended to multi-user games. For bandwidth-dominant systems, the extension

is straightforward. The dual decomposition based algorithm in Section 4.3 can

be used to find the NB solution for precoding strategies in multi-user bandwidth-

dominant systems. Power-dominant systems are more complex since the complex-

ity of frequency bin allocation (and also time sharing) grows fast with the number

of users.

Last but not least, new constraints can be added into the problem. The games

investigated in this thesis only consider power constraints. In fact, other constraints,

such as interference constraints can be incorporated into the problem. For example,

considering the case when there exist limitations of the maximum interference that

any user can generate to other users, the structure of precoding matrices will no

longer be diagonal and the problem becomes more complex. Specifically, allowing

limited interference among users means that there is no orthogonal signaling in the

system. Therefore, the problem of cooperation without orthogonal signaling must

be solved first to proceed with this problem.
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