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1. Introduction

The spectral analysis of signals provides a rigorous tool for modeling signals and
extracting information from them [1]. It finds applications in radar, sonar, speech
processing, and communication to mention just a few. In this thesis, advances
and new applications of spectral analysis in three specific areas are consid-
ered. These three areas are noisy autoregressive (AR) parameter estimation,
direction-of-arrival (DOA) estimation, and one-bit massive/mmWave multiple-
input multiple-output (MIMO) uplink (UL) channel estimation/data detection.
We briefly review the challenges and open research directions corresponding to
each of these three research areas in the sequel.

Employing AR model for characterizing the behavior of a random signal is a
good fit in numerous signal processing applications such as speech processing,
digital communication, spectral estimation, noise cancellation, biomedical signal
processing, and image processing to name just a few [2]– [9].

The noisy p-th order real-valued AR model is given as

x(t)= a1x(t−1)+a2x(t−2)+ . . . +apx(t− p)+ e(t)= aTxt + e(t) (1.1)

y(t)= x(t)+w(t) (1.2)

where e(t) denotes the zero mean white driving noise with variance of σ2
e ,

a = [a1,a2, . . . ,ap]T contains coefficients of the AR model, xt = [x(t− 1), x(t−
2), . . . , x(t−p)]T , and w(t) is the white observation noise with zero mean and vari-
ance σ2

w. Because of the presence of w(t) in (1.2), the zero lag autocorrelation of
the process y(t) is biased. Therfore, the noiseless conventional least-squares (LS)-
based solution leads to a biased estimation for the AR coefficients {ai}

p
i=1 [19]. To

remedy this issue, several methods have been proposed in the literature where
the bias compensation principle (BCP) is used as the key idea [20]– [24].

DOA estimation problem is another area of spectral analysis covered in this
thesis. The received signal by a uniform linear array (ULA) at the time instant t
is expressed as

x(t)=A(θ)s(t)+n(t) (1.3)

where θ ≜ [θ1,θ2, . . . ,θL]T is the vector of the source DOAs,
A(θ) ≜ [a(θ1),a(θ2), . . . ,a(θL)] is the array manifold with a(θl) =

1
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[1, e− j2πsin(θl )d/λ, . . . , e− j2π(M−1)sin(θl )d/λ]T ∈ CM being the steering vector
corresponding to DOA θl for l = 1, . . . ,L, s(t) ≜ [s1(t), s2(t), . . . , sL(t)]T ∈ CL are
the source signals, and n(t) ∈ CM denotes the complex Gaussian sensor noise
vector. Several assumptions can be regarded concerning the structure of
the second-order statistics of the observation noise in (1.3). Most common
assumptions are uniform white and nonuniform white noise. A spatially
block-correlated noise assumption may be more accurate in some applications
as well [25]. Numerous DOA estimation methods have been proposed in the
literature for the cases of uniform [26]– [53], nonuniform [54]– [66], and some
for block-correlated [67]– [72] sensor noise.

Spectral analysis also finds novel applications in communications. Due to high
propagation loss, mmWave channels can be considered to be sparse in angular
domain. Hence, the channel between a base station (BS) with a ULA containing
M antennas and the k-th user (equipped with single antenna) can be formulated
as

hk =
Lk∑︂

l=1

Mk,l
path∑︂

m=1

γk,l,ma(θk,l,m)

= [A(θk,1),A(θk,2), . . . ,A(θk,Lk )]

⎡
⎢⎢⎢⎢⎢⎣

γk,1

γk,2
...

γk,Lk

⎤
⎥⎥⎥⎥⎥⎦
=A(θk)γk (1.4)

where Lk is the number of multipath clusters, Mk,l
path denotes the num-

ber of paths existing in the l-th cluster scattered in an angular area
[73], γk,l,m and θk,l,m represent the gain and DOA the m-th path of the
l-th cluster, respectively, a(θk,l,m) ≜ [1, e− jπsin(θk,l,m), . . . , e− j(M−1)πsin(θk,l,m)]T ∈
CM×1, θk,l ≜ [θk,l,1,θk,l,2, . . . ,θk,l,Mk,l

path
]T ∈ R

Mk,l
path×1 for l = 1,2, . . . ,Lk, A(θk,l) ≜

[a(θk,l,1),a(θk,l,2), . . . ,a(θk,l,Mk,l
path

)] ∈C
M×Mk,l

path , γk,l ≜ [γk,l,1,γk,l,2, . . . ,γk,l,Mk,l
path

]T ∈
C

Mk,l
path×1, θk ≜ [θT

k,1,θT
k,2, . . . ,θT

k,Lk
]T , A(θk) ≜ [A(θk,1),A(θk,2), . . . ,A(θk,Lk )], and

γk ≜ [γT
k,1,γT

k,2, . . . ,γT
k,Lk

]T . In (1.4), the dependency of channels on DOAs clearly
appears. The use of one-bit analog-to-digital converters (ADCs) instead of
high-resolution ADCs is considered as an elegant solution for reducing power
consumption of large-scale systems like massive/mmWave MIMO systems. Due
to preserving signs of the received signal only, the conventional algorithms
developed for high-resolution ADCs may not be suitable for the one-bit ADCs
configuration. Therefore, new methods should be devised for tasks like channel
estimation and data detection when one-bit ADCs are used. Numerous one-bit
channel estimators and data detectors have been proposed in the literature [74]–
[105]. In this thesis, we use the angular sparsity of mmWave channels in (1.4),
and also the analogy between binary classification problem and one-bit param-
eter estimation to develop one-bit channel estimators and data detectors for
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massive MIMO and mmWave systems.

1.1 Objectives

The objective of this thesis is to develop accurate yet efficient algorithms for
estimating noisy AR parameters, estimating DOAs in unknown noise fields, esti-
mating channels and detecting transmitted data in large-scale MIMO systems
when one-bit ADCs are deployed.

1.2 Contributions

• In Publication I, four methods are developed for noisy AR parameter esti-
mation. These methods exploits both low-order and high-order Yule-Walker
equations to find out the AR coefficients.

• In Publication II, a non-iterative subspace-based method for estimating noisy
AR parameters is proposed. The essence of this method is to transform the
problem into a generalized eigenvalue problem and then find the variance of
the observation noise.

• In Publication III, a non-iterative subspace-based method called NISB is
developed for the case of nonuniform sensor noise. NISB has two phases. In
the first phase an initial estimate of the noise subspace is obtained with the
help of eigendecomposition (ED) of a reduced covariance matrix (RCM), while
a refined noise subspace estimate and a noise covariance matrix estimate are
obtained in the second phase.

• In Publication IV, the enhanced standard ESPRIT (ES ESPRIT) and its
unitary extension are presented as DOA estimators for uniform sensor noise
case. These methods take into account the signal subspace perturbation and
also use a DOA selection strategy designed for picking up the final DOAs from
previously generated DOA candidates.

• In Publication V, an iterative DOA estimation method for the case of nonuni-
form sensor noise is developed. This method uses generalized eigendecom-
position (GED) and LS to update the noise subspace estimate and the noise
covariance estimate, respectively. The main advantage of this method is that
only a few iterations is sufficient for achieving proper accuracy.

• In Publication VI, we use the concept of Toeplitz matrix reconstruction along
with the sparsity of mmWave channels in the discrete Fourier transform (DFT)
domain to propose a one-bit mmWave UL channel estimator.

3



Introduction

• In Publication VII, an optimization problem for estimating one-bit mmWave
UL channels is designed that combines ℓ1 logistic regression with Toeplitz
matrix reconstruction. Then, a computationally efficient alternating direction
method of multipliers (ADMM)-based [120] solution is developed for that
optimization problem.

• In Publication VIII, a unified approach for DOA estimation in the presence
of unknown noise fields is presented. This approach has three connected
steps. In the first step, the unknown noise covariance matrix is estimated for
nonuniform and block-diagonal noise. Then, double number of DOA candidates
is generated using a rooting-based method in the second step. In the third
step, a DOA selection strategy is proposed to pick up the final DOA estimates.

• In Publication IX, adaptive boosting (AdaBoost)-based [118], [119] channel
estimator and data detector are proposed for one-bit MIMO-OFDM system op-
erating over frequency selective channels. The Gaussian discriminant analysis
(GDA) classifier/approximate GDA classifiers [117] are used as weak classi-
fiers in each iteration of the proposed AdaBoost-based algorithms. The main
advantage of those AdaBoost-based methods that use approximate versions of
the GDA classifier is that they are highly efficient.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 discusses the
noisy AR parameter estimation problem and presents the methods proposed
in Publications I and II. Chapter 3 presents the DOA estimation algorithms
proposed in Publications III, IV, V, and VIII. Chapter 4 presents the one-bit
channel estimation and data detection algorithms for large-scale MIMO systems
proposed in Publications VI, VII, and IX.
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2. Noisy Autoregressive (AR) Parameter
Estimation

Employing AR model for characterizing the behavior of a random signal is a
good fit in numerous signal processing applications such as speech processing,
digital communication, spectral estimation, noise cancellation, biomedical signal
processing, and image processing to name just a few [2]– [9]. Among modern
data science applications, the use of AR modeling in, for example, annual popula-
tion assessment [10], climate and river flow forecasting [11], [12], and financial
time series analysis [13]– [16] is notable. In general, the AR parameter estima-
tion problem can be further sub-categorized as one-dimensional AR estimation
problem, multichannel AR estimation problem, and nonlinear AR estimation
problem [17], [18].

The AR estimation problem is conventionally solved by applying the LS method
to the low-order Yule-Walker equations. In practical scenarios, the existence
of observation noise hinders the use of the LS solution of the aforementioned
Yule-Walker equations [19]. The reason is rooted in a bias contaminating the
zero lag autocorrelation of data caused by white observation noise. The objective
of this chapter is to present five noisy AR parameter estimation algorithms.
The first four algorithms are from Publication I, whereas the fifth one has been
proposed in Publication II.

2.1 Signal Model

The noisy p-th order real-valued AR model is formulated as given in (1.1) and
(1.2). Using (1.1) and (1.2), the autocorrelation functions of y(t), rx(0), and r y(0)
are respectively obtained as

r y(k)= rx(k)+σ2
wδ(k) (2.1)

rx(0)= E{x(t)2}= rT
x a+σ2

e (2.2)

r y(0)= rT
x a+σ2

e +σ2
w (2.3)

where rx = [rx(1), rx(2), . . . , rx(p)]T . For k ≥ 1, the Yule-Walker equations are
introduced as rx(k)=∑︁p

i=1 airx(k−i) [2]. Then, the p low-order and q high-order
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Yule-Walker equations can be respectively derived as Rxa= rx and R′
xa= r′x by

considering 1≤ k ≤ p and p+1≤ k ≤ p+ q, where

Rx =

⎡
⎢⎢⎢⎢⎢⎣

rx(0) rx(−1) . . . rx(1− p)

rx(1) rx(0) . . . rx(2− p)
...

...
. . .

...

rx(p−1) rx(p−2) . . . rx(0)

⎤
⎥⎥⎥⎥⎥⎦

(2.4)

R′
x =

⎡
⎢⎢⎢⎢⎢⎣

rx(p) rx(p−1) . . . rx(1)

rx(p+1) rx(p) . . . rx(2)
...

...
. . .

...

rx(p+ q−1) rx(p+ q−2) . . . rx(q)

⎤
⎥⎥⎥⎥⎥⎦

(2.5)

r′x = [rx(p+1), rx(p+2), . . . , rx(p+ q)]T (2.6)

Exploiting (2.1) and (2.4)-(2.6), we obtain Ry =Rx +σ2
wIp, R′

y =R′
x, ry = rx, and

r′y = r′x. As a result, the p low-order and q high-order Yule-Walker equations
with respect to y(t) can be written as

Rya−σ2
wa= ry (2.7)

R′
ya= r′y (2.8)

We multiply (2.7) by R−1
y and rearrange the result to get a=R−1

y ry+σ2
wR−1

y a, in
which the term aLS =R−1

y ry is the so-called conventional LS estimate of a. This
estimate is biased though. In order to compensate the bias term σ2

wR−1
y a, σ2

w
needs to be estimated. Consequently, the objective of the noisy AR parameter
estimation task is to estimate σ2

e and σ2
w, and use the latter to correct the biased

LS solution of the noisy AR problem.

2.2 Proposed Methods

2.2.1 The first proposed method

In the first proposed method of Publication I, we presented an iterative method
with the aim of reducing the detrimental impact of the term σ2

wa in (2.7) in
each iteration. Let c=a−∆ denote the estimate of a obtained in the previous
iteration with ∥∆∥2 ≪∥a∥2. Then, there are p−1 pair-wise orthonormal vectors
bi (i = 1,2, . . . , p−1) that span the null space of c, that is,

bT
i c= 0 , ∥bi∥2

2 = 1 , bT
i b j = 0 , i, j = 1, . . . , p−1 , i ̸= j . (2.9)

Therefore, by multiplying (2.7) by bT
i ’s we obtain

b⊺
i Rya=b⊺

i ry +σ2
wb⊺

i a , i = 1, . . . , p−1 . (2.10)

6
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placing the definition of c into (2.10) and using (2.9), we get

σ2
wbT

i a=σ2
wbT

i (c+∆)=σ2
wbT

i ∆≈ 0 , i = 1, . . . , p−1 . (2.11)

where the term σ2
wbT

i ∆ can be interpreted as a negligible error. Note that as
c approaches the actual a, the approximation of (2.11) becomes more precise.
Adding q (arbitrary integer larger than one) high-order Yule-Walker equations
of (2.8) to p−1 equations obtain by combining (2.10) and (2.11), a linear system
of equations can be formed as Ha=h with the following definitions:

H=
[︄

B(Ry −σ2
wIp)

R′
y

]︄
, B= [b1,b2, . . . ,bp−1]T , h=

[︄
Bry

r′y

]︄
. (2.12)

Thus, a new update of a in the current iteration can be derived as a =
(HTH)−1HTh.

Instead of initializing the first proposed method with aLS, which is a popular
initial vector, we developed a method in Publication I to estimate a proper
initial value for σ2

w, denoted by σ̂2(0)
w (see Publication I for details). Then, â(0)

can be constructed using (2.7) as â(0) = (R̂y − σ̂2(0)
w Ip)−1r̂y. In the lth iteration,

the updates of a and σ2
w can be expressed as â(l) = (Ĥ(l)TĤ(l))−1Ĥ(l)Tĥ(l) and

σ̂2(l)
w = â(l)T (R̂yâ(l)−r̂y)

∥â(l)∥2 , respectively. After terminating the iterations, we calculate

σ̂2
e = r̂y[0]− r̂T

y â− σ̂2
w where â and σ̂ are the output of the aforementioned

iterations. Algorithms 1 and 2 in Publication I outlines the steps of the first
proposed method.

2.2.2 The second proposed method

The essence of the second proposed method is to design a constrained opti-
mization problem, in which the LS cost function of the low-order Yule-Walker
equations is regarded as the objective function of the optimization problem, while
the first high-order Yule-Walker equation is imposed as an equality constraint.
Using (2.7) and (2.8), the aforementioned optimization problem can be written
as

minimize
a , σ2

w

(︁(︁
Ry −σ2

wIp
)︁

a−ry
)︁⊺ (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁

subject to r̄⊺a= r y(p+1) (2.13)

where r̄ represents the first row of R′
y. We adopt the Lagrangian multiplier

method here to engage the equality constraint in the updated optimization
objective function L(a,σ2

w) as

L(a,σ2
w)= (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁⊺ (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁+λ

(︁
a⊺r̄− r y(p+1)

)︁

= a⊺ (︁Ry −σ2
wIp
)︁2 a−2a⊺ (︁Ry −σ2

wIp
)︁

ry +∥ry∥2 +λ
(︁
a⊺r̄− r y(p+1)

)︁

(2.14)
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where λ is the Lagrangian multiplier. Taking partial derivative of (2.14) with
respect to a and σ2

w first, and then equating the resultants lead us to the
following relations

a= (︁Ry −σ2
wIp
)︁−1 ry − λ

2

[︂(︁
Ry −σ2

wIp
)︁2
]︂−1

r̄ . (2.15)

σ2
w = a⊺Rya−a⊺ry

∥a∥2
2

(2.16)

where (2.16) is equivalent to the result reached in the first proposed method.
To determine λ, the result of (2.15) should satisfy the constraint (2.13). Conse-
quently, plugging (2.15) into (2.13) results in

λ= 2
r̄⊺
(︁
Ry −σ2

wIp
)︁−1 ry − r y(p+1)

r̄⊺
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄
. (2.17)

At last, combining (2.15) and (2.17) together leads us to the second proposed
estimator of a, that is,

a= (︁Ry −σ2
wIp
)︁−1 ry −

⎛
⎜⎝

r̄⊺
(︁
Ry −σ2

wIp
)︁−1 ry − r y(p+1)

r̄⊺
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄

⎞
⎟⎠
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄ .

(2.18)

Analogous to the first proposed method, we employ an iterative method to
calculate a and σ2

w using (2.18) and (2.16), respectively. Note that the initial-
ization here is the same as what presented for the first proposed method (See
Publication I for details).

2.2.3 The third proposed method

The aim of the third proposed method is to reduce the dimension of the origi-
nal noisy AR parameters estimation problem from p to only two. We exploit
this observation here that σ2

w is usually much smaller than the p−2 largest
eigenvalues of Ry. First, we write a as a linear combination of the eigenvectors
of Ry, and then show that different values of σ2

w have negligible impact on
p−2 of unknown parameters. Using the eigenvectors of Ry denoted by vm for
m = 1, . . . , p, we write

a=
p∑︂

m=1

αmvm . (2.19)

Note that we represent the eigenvalues of Ry by λm for m = 1, . . . , p where
λ1 < λ2 < . . . < λp. Plugging (2.19) into (2.7) and also taking into account the
characteristic equations Ryvm =λmvm (for m = 1, . . . , p), we have

Ry

p∑︂

m=1

αmvm = ry +σ2
w

p∑︂

m=1

αmvm =⇒
p∑︂

m=1

αmλmvm = ry +σ2
w

p∑︂

m=1

αmvm .

(2.20)
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Consequently, by multiplying (2.20) by vT
m for m = 1, . . . , p, we obtain

αmλm = v⊺
mry +σ2

wαm =⇒ αm = v⊺
mry

λm −σ2
w

, m = 1, . . . , p . (2.21)

Given the fact that 0 < σ2
w < λ1, (2.21) implies that varying σ2

w does not sub-
stantially change the values of αm for m ≥ 3 as λm is usually much larger than
σ2

w for m ≥ 3. In other words, updating αm for m ≥ 3 is not necessary in each
iteration since changes are negligible. Therefore, only initializing αm (m ≥ 3) via
selecting a proper σ2

w is sufficient which results in having to update only α1, α2,
and σ2

w in each iteration. Using this approximation, (2.19) can be reformulated
as

a=α1v1 +α2v2 + x̄, x̄=
p∑︂

m=3

αmvm . (2.22)

Lastly, by exploiting (2.8), and (2.21)-(2.22), the following system of linear equa-
tions can be formed:

H2α=h2 (2.23)

where

α=
[︄
α1

α2

]︄
, H2 =

[︄
Λ̄

R′
yV

]︄
, h2 =

[︄
V⊺ry

r′y −R′
yx̄

]︄

Λ̄=
[︄
λ1 −σ2

w 0

0 λ2 −σ2
w

]︄
, V=

[︂
v1 v2

]︂
. (2.24)

Here, the LS solution of (2.23) is α= (HT
2 H2)−1HT

2 h2. Analogous to previously
proposed methods, an iterative procedure can be used to update α and σ2

w via
(2.23) and (2.16), respectively. Note that initialization is carried out similarly as
in the previously proposed methods.

2.2.4 The fourth proposed method

Contrary to three previously proposed methods, the fourth one is a non-iterative
method. The objective of this method is to estimate σ2

w as the minimum eigen-
value of a properly enlarged autocorrelation matrix. In doing so, we write

Ry(m)=Rx(m)+σ2
wIm , m ≥ 1 (2.25)

where

Ry(m)≜

⎡
⎢⎢⎢⎢⎢⎣

r y[0] r y[−1] . . . r y[1−m]

r y[1] r y[0] . . . r y[2−m]
...

...
. . .

...

r y[m−1] r y[m−2] . . . r y[0]

⎤
⎥⎥⎥⎥⎥⎦

. (2.26)
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We show in Publication I that the minimum eigenvalues of Ry(m + 1) and
Rx(m+ 1) are smaller than the minimum eigenvalues of Ry(m) and Rx(m),
respectively, for m ≥ p. Since the minimum eigenvalue of Ry(m) is equal to the
minimum eigenvalue of Rx(m) plus σ2

w according to (2.25), it can be concluded
that as m increases, the minimum eigenvalue of Ry gets closer to σ2

w. Thus,
the minimum eigenvalue of Ry(2p), for example, is a better estimate for σ2

w
than the minimum eigenvalue of Ry(p). Increasing m beyond a certain number
is not always beneficial though, as it makes the computational complexity of
calculating the minimum eigenvalue of Ry(2p) prohibitive. We used m = 2p in
generating results in Publication I.

2.2.5 The fifth proposed method

In Publication II, another non-iterative method for estimating noisy AR parame-
ters is developed. First, we combine (2.7) and (2.8) to write

Aa=b+σ2
wc (2.27)

where

A=
[︄

Ry

R′
y

]︄
, b=

[︄
ry

r′y

]︄
, c=

[︄
a

0q

]︄
. (2.28)

As b ∈R(p+q)×1, a matrix D with p+ q−1 orthonormal rows can be found that
satisfies Db= 0p+q−1. As a result, by multiplying (2.27) by D and reorganizing
terms, we obtain

(DA−σ2
wE)a= 0p+q−1 (2.29)

where E is composed of the first p columns of D. Note that (2.30) is in the form of
a generalized eigenvalue problem with a and σ2

w being a generalized eigenvector
and the corresponding generalized eigenvalue, respectively. One can multiply
(2.29) by (DA−σ2

wE)T to build the following quadratic eigenvalue problem:

(G0 +σ2
wG1 + (σ2

w)2G2)a= 0p (2.30)

where

G0 =ATDTDA, G1 =−(ATDTE+ETDA),

G2 =ETE . (2.31)

Although multiple methods can be found in the literature for solving (2.31) ,
we selected the method that transforms (2.31) into a generalized eigenvalue
problem (now with squares matrices) as

(P−σ2
wQ)ā= 02p (2.32)

where

P=
[︄

G0 0

0 Ip

]︄
, Q=

[︄
−G1 −G2

Ip 0

]︄
, ā=

[︄
a

σ2
wa

]︄
. (2.33)
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With respect to the observation noise, we propose to recognize the absolute value
of the eigenvalue that has the minimum imaginary component, as the estimated
σ2

w. Finally, a can be estimated as the LS solution of (2.27).

2.3 Experimental Results

In this section, in addition to simulation examples in Publication I and Publica-
tion II, two numerical examples are considered for evaluating the performance
of the proposed noisy AR estimators. The normalized root mean squared error
(NRMSE) is used here for comparing the accuracy of the methods tested, which
is defined as

NRMSE=

√︂
((
∑︁M

m=1 ∥âm −a∥2)/M)

∥a∥
where âm is the estimate of a in the m-th trial. The hyperparameters used in this
section are the same as in Publication I and Publication II. In the first example,
a fourth-order noisy AR process with a = [0.55,0.1550,−0.5495,0.6241]T and
σ2

e = 1 is considered. Fig. 2.1 compares the performance of the proposed methods
when the number of data points varies from 200 to 2000 for SNR = 20 dB. It
can be observed that the first and third proposed methods outperform other
methods. Moreover, the use of the constraint in the optimization problem of
(2.13) is crucial for improving the performance of the second proposed method.
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Figure 2.1. NRMSE vs. the number of data points for the first example.
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In the second example, a fourth-order noisy AR process with a =
[1.6771,−1.6875,0.9433,−0.3164]T and σ2

e = 1 is considered. The number of
trials and the number of data points are set to M = 4000 and N = 1000, re-
spectively. Table 2.1 shows the means and standard deviations obtained from
implementing the proposed noisy AR estimators. It can be seen that all proposed
methods provide good results in this scenario.

Table 2.1. Computed results of estimated parameters for SNR= 1 dB for the second example.

True value Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV Proposed method V

a1 = 1.6771 1.5039±0.1547 1.5879±0.1589 1.6298±0.1604 1.6442±0.1446 1.5224±0.1777 1.6088±0.1445

a2 =−1.6875 −1.3542±0.3379 −1.5241±0.2721 −1.5967±0.2682 −1.6138±0.2548 −1.5094±0.2967 −1.5638±0.2456

a3 = 0.9433 0.6325±0.3721 0.8030±0.2258 0.8621±0.2180 0.8698±0.2175 0.7967±0.2412 0.8369±0.2035

a4 =−0.3164 −0.1840±0.2103 −0.2654±0.0816 −0.2850±0.0770 −0.2842±0.0795 −0.2654±0.0848 −0.2772±0.0745

σ2
w = 4.6 4.5279±0.2342 4.5666±0.1992 4.6360±0.2017 4.5986±0.1818 4.5652±0.1921 4.5783±0.1892

σ2
e = 1 1.3014±0.3862 1.1722±0.2934 1.0502±0.2740 1.0487±0.2498 1.2207±0.3478 1.1369±0.2546

NRMSE(%) 29.4308 17.9332 15.9501 15.1377 19.4546 15.5602
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3. DOA Estimation in the Presence of
Uniform, Nonuniform, and
Block-diagonal Sensor Noise

3.1 Signal Model

Considering a ULA composed of M sensors and L narrowband signals emitted
by L sources located in the far-field, the signal received by the ULA at the time
instant t is given by (1.3). For notation convenience, we use A instead of A(θ)
throughout this chapter.1 Exploiting (1.3), the array covariance matrix can be
formed as

R≜ E{x(t)xH(t)}=APAH +Q (3.1)

where P ∈ CL×L is the signal covariance matrix, and Q ∈ CM×M is the noise
covariance matrix. These matrices are defined as

P≜ E{s(t)sH(t)}, Q≜ E{n(t)nH(t)}. (3.2)

In this chapter, the problem of DOA estimation for the cases of uniform,
nonuniform, and block-diagonal noise covariance matrices is solved. The
uniform, nonuniform, and block-diagonal noise covariance matrices are re-
spectively represented as Quni = σ2IM , Qnonuni = diag

{︁
σ2

1,σ2
2, . . . ,σ2

M
}︁

, and
Qbdiag = bdiag

{︁
Q1,Q2, . . . ,Qq

}︁
. In the latter, it is worth noting that Q j ∈Cn j×n j

for j = 1, . . . , q.
The sample covariance matrix (SCM) calculated as R̂ = 1

N
∑︁N

t=1 x(t)xH(t) =
1
N XXH is typically used instead of R, as the latter is unknown in practical
scenarios. Note that X is expressed as

X=AS+N (3.3)

where X≜ [x(1),x(2), . . . ,x(N)], S≜ [s(1),s(2), . . . ,s(N)], N≜ [n(1),n(2), . . . ,n(N)],
and N is the number of snapshots.

1Note that we use the complete notation wherever the parameter of A is not θ.
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3.2 Proposed Methods

3.2.1 ES ESPRIT and EU ESPRIT

We have developed ES ESPRIT and EU ESPRIT DOA estimators in Publication
IV for the uniform sensor noise case. These methods first transform the shift
invariance equation (SIE) equations into the DFT domain, and then generate
2L DOA candidates by solving two different systems of linear equations. These
two systems of linear equations are solved using a generalized least-squares
(GLS)-based method which takes into account the second-order statistic of the
signal subspace perturbation. Afterwards, a properly designed DOA selection
strategy is introduced for selecting the final L DOA estimates from 2L DOA
candidates produced previously.

The noiseless SIE is given as

J1UsΨ=J2Us . (3.4)

where J1 = [IM−1, 0M], J2 = [0M , IM−1], Us ∈CM×L is the actual signal subspace
obtained by applying the truncated singular value decomposition (SVD) on X,
and Ψ ∈ CL×L is a matrix whose eigenvalues λl ’s are related to θl ’s through
λl = e− jπsin(θl ) for l = 1, . . . ,L. As a result, the aim is to first estimate Ψ, and then
obtain θl ’s from its eigenvalues. Multiplying (3.4) by first the DFT matrix WD

and then the selecting matrix ZI ∈R|I |×M−1, we have

ZI WDJ1UsΨ=ZI WDJ2Us (3.5)

where members of the set I are the indices of the selected equations. Note
that all entries of the i-th row of ZI are zero except one entry which is set to
1. The index of this nonzero entry is specified by the i-th member of I . The
main reason of multiplying (3.4) by the DFT matrix WD is rooted in the relation
Us = AT−1, which indicates that the columns of Us can be formed by linear
combinations of the columns of A. Therefore, multiplying (3.4) by WD is a proper
choice as the columns of WD are structurally matched to the columns of J1Us.
Inserting Us = Ûs +∆Us into (3.5) and reorganizing the terms, we obtain

ZI WDJ1ÛsΨ+E=ZI WDJ2Ûs (3.6)

where Ûs denotes the estimated signal subspace by applying truncated SVD on
the received data, ∆Us is the signal subspace estimation error caused by the
observation noise, and E≜ZI WDJ1∆UsΨ−ZI WDJ2∆Us. Vectorizing (3.6), we
have

f̂S ≜ vec
{︁

ZI WDJ2Ûs
}︁= F̂Sψ+e= F̂Sψ+ ĜS∆us (3.7)

with F̂S ≜ IL ⊗ZI WDJ1Ûs ∈C|I |L×L2
, ĜS ≜ (ΨT ⊗ZI WDJ1)− (IL ⊗ZI WDJ2) ∈

C|I |L×ML, ψ≜ vec{Ψ} ∈CL2×1, and ∆us ≜ vec{∆Us} ∈CML×1. Analogous to [41],
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the covariance matrix of ∆us can be employed in a GLS-based approach [41],
[109], [110] to find the optimal solution of (3.7) as

ψ̂GLS =
(︂

F̂H
S ŴSF̂S

)︂−1
F̂H

S ŴSf̂S (3.8)

where as shown in [41] ŴS = [︁ĜS

(︂
Σ̂

−2
s ⊗IM

)︂
ĜH

S
]︁−1 with Σ̂s ∈RL×L being a di-

agonal matrix that contains the L principal singular values of X (for more detail,
see [41] and Publication IV). The DOA’s can be extracted from the arguments of
the L eigenvalues of Ψ̂GLS = unvec

{︁
ψ̂GLS

}︁
. Due to the dependency of ĜS on Ψ,

it is natural to use an iterative method to estimate ŴS and Ψ̂GLS. Based on our
observations, few iterations are sufficient to reach accurate results.

The unitary extension of (3.5) is given as

ZI WDK1EsΥ=ZI WDK2Es (3.9)

where K1 ≜ 2ℜ{QH
M−1J2QM} ∈R(M−1)×M , K2 ≜ 2ℑ{QH

M−1J2QM} ∈R(M−1)×M , and
the columns of Es are the L principal left singular vectors of ϕ(X)=QH

MXQ2N ∈
RM×2N with QM and Q2N being left Π-real matrices [35]. Similar to the steps
presented for solving (3.5), a GLS-based solution of (3.9) is obtained as

ν̂GLS =
(︂

F̂H
U ŴUF̂U

)︂−1
F̂H

U ŴUf̂U (3.10)

where ν̂GLS ≜ vec{Υ̂GLS}, F̂U ≜ (IL ⊗ZI WDK1Ês), f̂U ≜ vec{ZI WDK2Ês}. More-

over, it is showed in [41] that ŴU ≜
[︂
ĜU(Σ̂

−2
s ⊗IM)ĜH

U

]︂−1
with ĜU ≜ (Υ̂T ⊗

ZI WDK1)− (IL ⊗ZI WDK2), and Σ̂s ∈ RL×L denoting a diagonal matrix which
contains the principal singular values of ϕ(X).

In Publication IV, we propose to select members of I in (3.5) as those indices
associated with |I | largest absolute values of WDJ1u1. Here, u1 denotes the
left singular vector of X which corresponds to the largest singular value.

DOA Selection Strategy
For improving DOA estimation accuracy, we first generate 2L DOA candidates
by implementing the proposed ESPRIT-based methods twice with |I | = M−1
and |I | = M−2, and then select the best L DOAs from 2L DOA candidates.

The first DOA selection strategy is to employ the deterministic ML (DML) cost
function analogous to papers such as [39], [40], [114]. In this method, the final L
DOA estimates are a subset of 2L DOA candidates that minimizes the following
DML cost function:

Θ̂DML = argmin
Θi

trace((IM −A(Θi)(A(Θi)HA(Θi))−1A(Θi)H)R̂)

∀ i = 1, . . . ,PESE(EUE) (3.11)

where Θi represents the i-th DOA subset, and PESE(EUE) ≜ 2L!
L!L! is the total

number of different subsets.
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The second DOA selection strategy relies on a generalized likelihood ratio
(GLR) method presented in [115]. We propose in Publication IV that the final L
DOA estimates are recognized one by one in a sequential manner. Towards this
end, we select the l-th (for l = 1, . . . ,L) DOA estimate as the member of the set of
2L− (l−1) remaining DOAs that maximizes the GLR cost function [115], that is,

θ̂l = argmax
θi

a(θi)HP⊥
l−1R̂P⊥

l−1a(θi)
a(θi)HP⊥

l−1a(θi)

for i = 1, . . . ,2L− (l−1) , l = 1, . . . ,L (3.12)

where

P⊥
l−1 ≜

{︄
IM −Al−1(AH

l−1Al−1)−1AH
l−1 l > 1

IM l = 1
(3.13)

with Al−1 ≜ [a(θ̂1),a(θ̂2), . . . ,a(θ̂l−1)] ∈CM×(l−1). The advantage of the GLR-based
DOA selection strategy over the DML-based one is that the former requires
considerably less computations for selecting the final DOA estimates.

3.2.2 NISB

In Publication III, we develop the NISB method for DOA estimation in the
presence of nonuniform sensor noise. The NISB is a non-iterative method
comprised of two consecutive phases. In the first phase, an initial estimate of the
noise subspace is identified by applying ED of a RCM [58]. In the second phase,
this initial noise subspace estimate is used for estimating the noise covariance
matrix, and then a refined estimate of the noise subspace is found by applying the
generalized ED to the pair of SCM and estimated noise covariance matrix. Well-
known subspace-based methods such as multiple signal classification (MUSIC),
and root-MUSIC can exploit the noise subspace estimate for identifying the
unknown DOAs. The NISB method requires substantially lower computational
complexity to implement as compared to the iterative methods like IMLSE. It
should be pointed out that the performance of the NISB method degrades in the
presence of correlated sources.

Recall that the noise subspace matrix U ∈ CM×(M−L) satisfies the following
condition:

AHU= 0L×(M−L) . (3.14)

Consequently, multiplying (3.1) by a noise subspace estimate denoted by Û leads
to

R̂Û≈ Q̂nonuniÛ . (3.15)

where R is replaced by R̂, and Q̂nonuni represents an estimate of the nonuniform
noise covariance matrix. It is proved in Publication III that Û can be obtained
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as the M−L eigenvectors of the generalized ED of the pair R̂ and Q̂nonuni which
correspond to the M−L smallest eigenvalues. The NISB method uses this result
to find the refined noise subspace. A proper Q̂nonuni, however, needs to be found
first. Towards this end, the initial noise subspace estimate, denoted by Ûini,
can be found as the M−L eigenvectors of the RCM corresponding to the M−L
smallest eigenvalues [58]. Note that the RCM is formed as R̂RCM = R̂−D{R̂}.
We can write Q̂nonuni as

Q̂nonuni =σ2IM +Qnun (3.16)

where σ2 denotes the uniform part of sensor noise variances, and Qnun is a
diagonal matrix with one of its diagonal entries being zero. We consider the
position of this zero entry as the position of the smallest diagonal entry of R̂.
With k being the index of the aforementioned zero diagonal entry, we can first
insert (3.16) into (3.15) and then multiply the resultant by the unit vector dT

k
which yields

dT
k R̂Ûini ≈dT

k (σ2IM +Qnun)Ûini =σ2dT
k Ûini (3.17)

where Û is replaced by Ûini, and the relation dT
k Qnun = 01×M is used. Therefore,

an estimate of σ2 is obtained as

σ̂2 =
⃓⃓
⃓⃓
⃓
dT

k R̂ÛiniÛ
H
inidk

dT
k ÛiniÛ

H
inidk

⃓⃓
⃓⃓
⃓ . (3.18)

As the last step of forming Q̂nonuni, an estimate of Qnun is considered as

Q̂nun = diag
{︁

[R̂]1,1 − c, . . . , [R̂]M,M − c
}︁

(3.19)

where c is the smallest diagonal entry of R̂. The matrix Q̂nonuni can be con-
structed using (3.16), (3.17) and (3.19). At last, the refined noise subspace
estimate is computed as the M −L eigenvectors corresponding to the M −L
smallest eigenvalues of the generalized ED of the pair matrices R̂ and Q̂nonuni.

3.2.3 Unified Approach to DOA Estimation in Unknown Noise Fields

In Publication VIII, a unified approach for DOA estimation problem in unknown
noise fields is proposed. This approach comprises of three phases designed
carefully to handle challenging scenarios with small sample size and/or closely
located sources and/or relatively low signal-to-noise ratios (SNRs).

In the first phase, a general approach for nonuniform and also block-diagonal
noise covariance estimation is developed, which is applicable to arbitrary array
configurations. In the second phase, a GLS-based forward-only DOA estimation
method is devised that uses the output of the first phase. In addition, a forward-
backward (FB) extension of the aforementioned DOA estimator is developed.
Using the GLS-based estimators (forward-only or FB versions) twice leads to
the output of the second phase being a set which contains 2L DOA candidates.
In the third phase, a DOA selection strategy is designed to select the final DOA
estimates from the set of DOA candidates.
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Nonuniform Noise Covariance Matrix Estimation
The noise covariance matrix estimator is an iterative estimator that utilizes
(3.15) to update Q̂nonuni and Û. The LS minimization criteria is used to obtain the
update rule for Q̂nonuni, whereas the GED concept is adopted here for updating
Û.

In the i-th iteration, the columns of Û(i) can be estimated as the M−L eigenvec-
tors corresponding to the M−L smallest eigenvalues obtained by performing the
GED of the matrices

{︂
R̂,Q̂(i)

nonuni

}︂
. This choice is similar to the last step of the

NISB method, where it is used in a non-iterative manner though. Noteworthy
to mention that Û(i) and Q̂(i) represent the estimates in the i-th iteration.

To update Q̂nonuni in the (i+1)-st iteration, the following LS minimization
problem can be considered using (3.15):

Q̂(i+1)
nonuni = argmin

Q
f (Q)= ∥(R̂−Q)Û(i)∥2

F . (3.20)

Note that (3.20) should be solved given the constraint that Q is a diagonal
matrix. We show in Publication VIII that the partial derivative of f (Q) with
respect to Q after excluding the constant term can be written as [116]

∂ f (Q)
∂Q

= 2D
{︂

Û(i)(Û(i))H
}︂

Q−D
{︂

R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂
}︂

. (3.21)

As a result, the m-th diagonal entry of Q̂(i+1)
nonuni can be found by equating (3.21)

to zero as

σ̂2 (i+1)
m =dT

m

(︃
1
2

D
{︂

R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂
}︂

D
{︂

Û(i)(Û(i))H
}︂−1

)︃
dm,

m = 1,2, . . . , M . (3.22)

In the i-th iteration of the proposed nonuniform noise covariance matrix esti-
mator, only the m-th diagonal element of Q̂nonuni is updated via (3.22) where
m≜ rem(i, M)+1 with rem(a,b) denoting the remainder in the division of a by
b. All columns of Û are updated in each iteration. Employing the element-wise
update rule for estimating Q̂nonuni results in boosting the convergence of the
proposed iterative algorithm, in which we terminate the algorithm when the
condition | f (i+1) − f (i)| < ϵ is met. Note that we set ϵ= 10−4 and Q̂(0)

nonuni =D{R̂}
in Publication VIII.

Noteworthy to mention that we also propose another nonuniform noise co-
variance matrix estimator in Publication V that use the GED-based approach
to update Û, and use (3.22) to update Q̂nonuni. The difference here is that all
diagonal elements of Q̂nonuni are updated together using (3.22), and also the
proposed iterative algorithm is terminated early after a few iterations. The
reason for the latter is to make the proposed algorithm in Publication V more
computationally efficient.
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Block-diagonal Noise Covariance Matrix Estimation
The objective here is to develop an iterative block-diagonal noise covariance
estimator. First, we rewrite (3.15) for the case of block-diagonal noise as

R̂Û≈ Q̂bdiagÛ . (3.23)

Analogous to the nonuniform noise case, it is observed from (3.23) that Û(i) can
be considered as the M −L eigenvectors associated with the M −L smallest
eigenvalues computed by applying the GED on the pair of matrices

{︂
R̂,Q̂(i)

bdiag

}︂
.

For estimating Q̂bdiag in the (i+1)-st iteration, the following LS minimization
problem can be written using (3.23):

Q̂(i+1)
bdiag = arg min

Qbdiag
fbdiag(Qbdiag)= ∥(R̂−Qbdiag)Û(i)∥2

F . (3.24)

We show in Publication VIII that the partial derivative of fbdiag(Qbdiag) with
respect to the Hermitian matrix Q j after eliminating the constant term can be
expressed as [106]

∂ fbdiag(Qbdiag)
∂Q j

=Q∗
j (V(i)

j j )
T + (V(i)

j j )
TQT

j − (R(i)
j j )

T ,

j = 1, . . . , q (3.25)

where V(i)
j j ∈ Cn j×n j and R(i)

j j ∈ Cn j×n j are respectively defined as the jth block

on the main diagonal of R(i) ≜ R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂ and V(i) ≜ Û(i)(Û(i))H .
Applying first the transposition operator to (3.25), followed by vectorizing and
equating the result to zero, we have

V(i)
j q j = r(i)

j , j = 1, . . . , q (3.26)

where V(i)
j ≜

[︂(︂
(V(i)

j j )
T ⊗In j

)︂
+
(︂

In j ⊗V(i)
j j

)︂]︂
is a square matrix, q j ≜ vec{Q j},

and r(i)
j ≜ vec{R(i)

j j }. Consequently, by solving the systems of linear equations in
(3.26), and using the unvectorization operator, we obtain

Q̂(i+1)
j = unvec

{︂
(V(i)

j )−1r(i)
j

}︂
, j = 1, . . . , q. (3.27)

In the i-th iteration, we compute j = rem(i, q)+1 and update only the j-th block
of Q̂bdiag.

Subspace-Based DOA Estimation via GLS
In the second phase, we first pre-whiten the received signal using the noise
covariance matrix estimated in the first phase, and then develop a GLS-based
DOA estimation method by taking into account the signal subspace error. For
notation simplicity, we use Q to represent the noise covariance matrix regardless
of its structure.

Multiplying (3.3) by Q− 1
2 , we have

X≜Q− 1
2 X=Q− 1

2 AS+Q− 1
2 N=Q− 1

2 AS+N (3.28)
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where the covariance matrix of the columns of N is IM . Using the truncated
SVD, X can be decomposed as

X=UsΣsVH
s (3.29)

where Us ∈CM×L and Vs ∈CN×L are respectively the left and right singular vec-
tors corresponding to the L largest singular values on the diagonal of Σs ∈RL×L.
Taking (3.28) and (3.29) into account, it can be concluded that the columns of Us

and Q− 1
2 A reside in the same vector space. In other words, Us can be written

as Us =Q− 1
2 AG with G ∈CL×L being a non-singular matrix. Consequently, we

have ˜︁Us ≜Q
1
2 Us =AG. It is shown in Publication VIII that the DFT of the p-th

column of ˜︁Us can be expressed as

ūp +diag(ūp)Waa=Wbp, p = 1, . . . ,L (3.30)

where ūp ≜ DFT{˜︁up} = WD˜︁up, ˜︁up is the p-th column of ˜︁Us,
Wa ≜ [w1,w2, . . . ,wM]T ∈ CM×L, W ≜ [w1,w2, . . . ,wM]T ∈ CM×L, wk ≜
[Wk

M , (Wk
M)2, (Wk

M)3, . . . , (Wk
M)L]T , wk ≜ [1, Wk

M , (Wk
M)2, . . . , (Wk

M)L−1]T ,
and Wk

M ≜ e− j 2πk
M . In addition, it is shown in Publication VIII that the roots

of the polynomial γL +∑︁L
l=1[a]l γL−l = 0 are related to the unknown DOAs θl

via γl = e− j2πdsin(θl )/λ for l = 1, . . . ,L [107,108]. Therefore, the DOA estimation
problem boils down to estimating a.

As the aim is to form a set of DOA candidates with 2L members, the selection
matrix ZI ∈R|I |×M , introduced earlier in this chapter, is used to revise (3.30) as

ZI ūp+diag(ZI ūp)ZI Waa=ZI Wbp, p = 1, . . . ,L. (3.31)

Note that different selecting matrices choose different sets of equations in (3.31).
It is shown in Publication VIII that choosing |I | = M and |I | = M−1 ends up in
generating the most accurate 2L candidates.

To estimate a via (3.31), we need to first remove the impact of the unknown
vectors bp ’s. To do so, B ∈C|I |×(|I |−L) is obtained such that BH˜︁ZI = 0(|I |−L)×L

with ˜︁ZI ≜ZI W ∈C|I |×L. Then, multiplying (3.31) by BH results in

BH(ZI ūp+diag(ZI ūp)ZI Waa)= 0(|I |−L), p = 1, . . . ,L. (3.32)

Reorganizing (3.32), we form Hpa = hp for p = 1, . . . ,L, where Hp ≜
BHdiag(ZI ūp)ZI Wa ∈C(|I |−L)×L and hp ≜−BHZI ūp ∈C(|I |−L). Piling up the
L matrices Hp and the L vectors hp into a matrix H and a vector h, respectively,
(3.32) can be recast as

Ha=h (3.33)

where H≜ [HT
1 . . .HT

L ]T ∈CL(|I |−L)×L and h≜ [hT
1 . . .hT

L ]T ∈CL(|I |−L).
As only an estimate of Q can be calculated, (3.28)-(3.33) should be rewritten

with this consideration (see Publication VIII). By doing so, (3.33) is rewritten as
Ĥa≈ ĥ. Then, a GLS-based estimator of a is given as

â= (ĤHWĤ)−1ĤHWĥ. (3.34)
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where W≜
(︁
E{êêH}

)︁−1 ∈CL(|I |−L)×L(|I |−L) and ê≜ Ĥa− ĥ ∈CL(|I |−L). We show
in Publication VIII that a proper estimate of W can be calculated as

Ŵ= (Σ̂2
s ⊗ (C(a)CH(a))−1). (3.35)

where Σ̂s is a diagonal matrix which contains the L largest singular values of the

matrix X̂ ≜ Q̂− 1
2 X, and C(a) ≜ BH (︁I|I |+diag{ZI Waa}

)︁
ZI WDQ̂

1
2 ∈ C(|I |−L)×M .

It is clear from (3.34) and (3.35) that an iterative algorithm should be used to
update â and Ŵ. The algorithm is initialized by â(0) = âLS = Ĥ†ĥ. Noteworthy to
mention that only a few iterations are sufficient to reach a precise result.

At last, we show in Publication VIII that the FB extension of (3.34) can be
obtained as

â=
(︃
˜︁Ĥ

H
ŴFB ˜︁Ĥ

)︃−1
˜︁Ĥ

H
ŴFB˜︁ĥ (3.36)

where ˜︁Ĥ =
[︃
˜︁Ĥ

T
1 , . . . , ˜︁Ĥ

T
L

]︃T

∈ CL(|I |−L)×L, ˜︁ĥ =
[︃
˜︁ĥ

T
1 , . . . ,˜︁ĥ

T
L

]︃T

∈ CL(|I |−L), ˜︁Ĥp =

BHdiag(ZI êp)ZI Wa ∈ C(|I |−L)×L, ˜︁ĥp =−BHZI êp ∈ C(|I |−L), êp is the p-th col-

umn of Ês ≜DFT{˜︁Q̂
1
2 Ês} ∈CM×L, ˜︁Q̂≜ Q̂+JMQ̂∗JM , Ês and Π̂s are respectively

the matrix of the left singular vectors and the diagonal matrix of the L principal

singular values of the matrix X̂FB =
[︃
˜︁Q̂
− 1

2 X ˜︁Q̂
− 1

2 JMX∗JN

]︃
. Moreover, we have

ŴFB = Π̂
2
s ⊗
(︁
CFB(a)CFB(a)H)︁−1, CFB(a)≜BH (︁I|I |+diag{ZI Waa}

)︁
ZI WD ˜︁Q̂

1
2 ∈

C(|I |−L)×M . Similar to the forward-only case, an iterative algorithm should be
used to update â and ŴFB.

After calculating â, γ̂l ’s are obtained as the roots of the polynomial γL +∑︁L
l=1[â]l γL−l = 0. Then, θ̂l for l = 1, . . . ,L are calculated as θ̂l = arcsin

(︂
− βlλ

2πd

)︂

where βl is the phase argument of γ̂l .

DOA Selection Strategy
Given 2L DOA candidates, a properly designed DOA selection strategy is re-
quired to select the final L DOA estimates. We propose a three-step DOA
selection strategy in Publication VIII which exploits the conventional beam-
former (CB) [33], [111–113], DML cost function [39], [40], [114], and GLR tech-
nique [46], [115].

Step 1: Let θ2L represent the vector which contains 2L DOA candidates. Then,
we calculate the threshold η as the value of the (L+1)-st peak of the CB output
LCB(θ) = a(θ)HR̂a(θ) computed for a reasonable number of equidistant points
(for example, 314 points) to cover the interval [−π

2 , π
2 ]. We compute the CB

output for the elements of θ2L and put those elements that have output larger
than η into a new vector ˜︁θ. Note that if certain scenarios occur, we consider
the L DOAs generated by |I | = M as the final DOAs and terminate the DOA
selection strategy steps. These scenarios are the CB output has less number of
peaks than (L+1), and the number of elements of ˜︁θ becomes smaller than L or
equal to 2L.
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Step 2: Select the first DOA as that element of ˜︁θ which maximizes the GLR,
that is,

θ̂1 = argmax
θ

aH(θ)Q̂−1R̂Q̂−1a(θ)

aH(θ)Q̂−1a(θ)
, θ ∈ ˜︁θ. (3.37)

Note that the GLR presented in [115] is extended here to the general noise case
where Q̂ is an estimate of the noise covariance matrix.

Step 3: The remaining elements of ˜︁θ are stored in θ̄. Let L denote the length
of θ̄. Using the elements of θ̄, we construct Ḡ = L̄

(L−1)!(L̄−L+1)! DOA subsets such
that each subset has (L−1) DOAs. Let Θ1,Θ2, . . . ,ΘḠ and A(Θ1),A(Θ2), . . . ,A(ΘḠ)
be these DOA subsets and their corresponding array manifolds, respectively.
Therefore, we identify the (L−1) remaining DOAs as the subset that minimizes
the following DML cost function

Θ̂R = argmin
Θi

trace
[︂(︂

P⊥
˜︁A(Θi)

−ν1ν
H
1

)︂
Q̂− 1

2 R̂Q̂− 1
2
]︂

, i = 1,2, . . . ,Ḡ (3.38)

where P⊥
˜︁A(Θi)

≜ IM−˜︁A(Θi)
(︁˜︁A(Θi)H˜︁A(Θi)

)︁−1 ˜︁A(Θi)H , ˜︁A(Θi)≜ Q̂− 1
2 A(Θi), and ν1 ≜

P⊥˜︁A(Θi )
Q̂− 1

2 a(θ̂1)

∥P⊥˜︁A(Θi )
Q̂− 1

2 a(θ̂1)∥2

. Noteworthy to mention that Q̂− 1
2 R̂Q̂− 1

2 is employed here to cover

the general noise case.
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4. MIMO Channel Estimation and Data
Detection with One-Bit ADCs

4.1 Signal Model

4.1.1 MmWave UL Channel

Let a BS of a multi-user mmWave MIMO system be composed of a ULA with
M antennas that deploy one-bit ADCs. Consider also K single antenna users
equipped with high-resolution digital-to-analog converters (DACs). The UL
channel between user k and the BS is mathematically expressed as in (1.4). As
a result, by placing hk for k = 1,2, . . . ,K in columns of the matrix H, we have

H= [h1,h2, . . . ,hK ]= [A(θ1)γ1,A(θ2)γ2, . . . ,A(θK )γK ] . (4.1)

Consequently, the received signal at the BS in the training stage is formulated
as

Y=Q(HS+N) (4.2)

where Q(·)≜ sign(ℜ{·})+ jsign(ℑ{·}) represents the one-bit quantizer, S ∈CK×Ns

is the pilot sequence transmitted by users, and N ∈CM×Ns is a matrix of complex-
valued Gaussian noise with zero mean and variance σ2.

4.1.2 OFDM Systems With Frequency Selective Channels

Consider a MIMO-OFDM system operating over a frequency selective channel
with known number of channel taps, denoted by Ltap. The BS deploys M
antennas equipped by one-bit ADCs. This MIMO-OFDM system serves K single-
antenna users with high-resolution DACs. Moreover, Nc is the number of sub-
carriers employed by the MIMO-OFDM system. The frequency domain symbol
of the k-th user is xFD

k ∈ CNc×1. We add a cyclic prefix (CP) of length Ncp with
Ncp satisfying the relation Ltap −1≤ Ncp ≤ Nc. Note that the superscripts “TD”
and “FD” are used to specify Time Domain and Frequency Domain variables,
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respectively. After excluding the CP, the one-bit quantized observed signal by
the i-th antenna of the BS can be modeled as

yTD
i =Q

(︄
K∑︂

k=1

GTD
i,k WH

D xFD
k +nTD

i

)︄
, i = 1, . . . , M (4.3)

where WD ∈ CNc×Nc represents the normalized DFT matrix, and GTD
i,k is a

circulant matrix, specified by its first column gTD
i,k = [(hTD

i,k )T ,0, . . . ,0]T with
hTD

i,k ∈ CLtap×1 being the Ltap channel vector between the i-th antenna of the
BS and the k-th user. It is assumed that the elements of hTD

i,k are independent

and identically distributed (i.i.d.) as C N
(︂

0, 1
Ltap

)︂
.

4.2 Proposed Methods

4.2.1 SE-TMR

The SE-TMR method is proposed in Publication VI for one-bit mmWave UL
channel estimation. It is developed via leveraging the angular domain sparsity
of mmWave channel and Toeplitz matrix reconstruction concept. It is observed
from (1.4) that hk can be still considered sparse in the angular domain, in spite
of being made of many paths. As a result, we approximate the k-th column of H
in (4.1) with only Lk path gains and DOAs. Therefore, (4.1) can be approximated
as

H= [h1,h2, . . . ,hK ]= [A(θ̄1)γ̄1,A(θ̄2)γ̄2, . . . ,A(θ̄K )γ̄K ] (4.4)

where θ̄k ≜ [θ̄k,1, θ̄k,2, . . . , θ̄k,Lk ]T ∈ RLk×1 and γ̄k ≜ [γ̄k,1, γ̄k,2, . . . , γ̄k,Lk
]T ∈ CLk×1

are respectively the DOAs and path gains of Lk paths, considered for recon-
structing hk. Then, we recast (4.4) as

H=AΓḠ= H̄Ḡ (4.5)

where

A≜ [A(θ̄1),A(θ̄2), . . . ,A(θ̄K )] ∈CM×L (4.6)

Γ≜

⎡
⎢⎢⎣

diag(γ̄1)
. . .

diag(γ̄K )

⎤
⎥⎥⎦ ∈CL×L (4.7)

Ḡ≜

⎡
⎢⎢⎢⎢⎢⎣

1L1

1L2

. . .

1LK

⎤
⎥⎥⎥⎥⎥⎦
∈RL×K (4.8)
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H̄≜AΓ ∈CM×L (4.9)

and L ≜
∑︁K

k=1 Lk. Note that by estimating H̄, H can be recovered since Ḡ is
known. As A and Γ are Vandermonde and diagonal matrices, respectively, it can
be shown that

H̄H̄H =T (u) (4.10)

with u ∈CM×1 and [u]1 being a real number. Combining (4.10) with the sparsity
property of the columns of H in the angular domain, the following optimization
problem can be formulated:

min
H̄,u,ER ,EI

∥vec{WDH̄Ḡ}∥1 +λ

(︄
M∑︂

i=1

Ns∑︂

j=1

([ER]i, j + [EI ]i, j)

)︄
(4.11)

s.t.

[︄
IL H̄H

H̄ T (u)

]︄
⪰ 0

[u]1 = C
M

ℜ{[H̄ḠS]i, j}ℜ{[Y]i, j}⩾ −[ER]i, j,

i = 1, . . . , M, j = 1, . . . , Ns

ℑ{[H̄ḠS]i, j}ℑ{[Y]i, j}⩾ −[EI ]i, j,

i = 1, . . . , M, j = 1, . . . , Ns

[ER]i, j ⩾ 0, i = 1, . . . , M, j = 1, . . . , Ns

[EI ]i, j ⩾ 0, i = 1, . . . , M, j = 1, . . . , Ns

where WD ∈ CM×M is the normalized DFT matrix, λ > 0 is a regularization
parameter, the entries of ER ∈ RM×Ns and EI ∈ RM×Ns are slack variables (see
Publication VI for details). Note that the first constraint in (4.11) is imposed
to enforce the Toeplitz property presented in (4.10). The optimization problem
(4.11) is convex, and it is solved by CVX [121] in Publication VI. After recovering
H using (4.5), the RELAX [122] (which is an one-dimensional harmonic retrieval
(HR) method) is used in Publication VI to further refine the estimate of H.

4.2.2 L1-RLR-TMR

The L1-RLR-TMR method is proposed in Publication VII for estimating mmWave
UL channels with one-bit ADCs. This method leverages the combination of
ℓ1 regularized logistic regression and Toeplitz matrix reconstruction notions
for designing a proper minimization problem. An ADMM-based approach is
developed in Publication VII for handling the aforementioned minimization
problem.
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Plugging (4.5) into (4.2), and then applying the vectorization operator to the
resultant, we obtain

y≜ vec{Y}=Q
(︂(︁

(ḠS)T ⊗IM
)︁

h̄+n
)︂

(4.12)

where h̄≜ vec{H̄} and n≜ vec{N}. The real domain representation of (4.12) is
given as

yR ≜ [ℜ{y}T ,ℑ{y}T ]T = S̄h̄R (4.13)

where H̄≜ H̄R + jH̄I = [h̄1, h̄2, . . . , h̄M]T , h̄R ≜ [vec{H̄R}T ,vec{H̄I }T ]T , and

S̄≜
[︄
ℜ{(ḠS)T ⊗IM} −ℑ{(ḠS)T ⊗IM}

ℑ{(ḠS)T ⊗IM} ℜ{(ḠS)T ⊗IM}

]︄

= [s̄1, s̄2, . . . , s̄2MNs ]
T . (4.14)

The following minimization problem can be formulated for finding h̄R :

min
h̄R ,u

∥F̄h̄R∥1 +λ

2MNs∑︂

t=1

log
(︂

1+ e−κ[yR ]t(s̄T
t h̄R )

)︂

s.t.

[︄
IL (H̄R + jH̄I )H

H̄R + jH̄I T (u)

]︄
⪰ 0

∥h̄m∥2
2 = c , m = 1, . . . , M (4.15)

where F̄ ≜
[︄
ℜ{ḠT ⊗WD} −ℑ{ḠT ⊗WD}

ℑ{ḠT ⊗WD} ℜ{ḠT ⊗WD}

]︄
, λ > 0 is a regularization parame-

ter, and h̄T
m is the m-th row of H̄. In (4.15), the term ∥F̄h̄R∥1 is used for

capturing the underlying sparsity of the mmWave channel, while the term∑︁2MNs
t=1 log

(︂
1+ e−κ[yR ]t(s̄T

t h̄R )
)︂

is the well-known objective function of the binary
logistic regression added for modeling the binary outputs of one-bit ADCs. More-
over, the semi-definite relaxation (SDR) of (4.10) is imposed as a constraint
analogous to the SE-TMR method. The optimization problem introduced in
(4.15) is non-convex. We propose an ADMM-based solution for it in Publication
VII. We use the ADMM technique twice for splitting two sets of variables. The
first usage is for taking care of the SDR constraint, while the second one is for
taking care of the ℓ1 norm in the objective function. We call the former one
as the outer ADMM, whereas the latter is called the inner ADMM. The scaled
augmented Lagrangian of both the outer and inner ADMM, as well as the update
rules can be found in Publication VII.

4.2.3 AdaBoost-Based Channel Estimation and Data Detection in
One-Bit Massive MIMO

In Publication IX, AdaBoost-based algorithms for MIMO-OFDM channel estima-
tion and data detection are proposed. The main idea is to use GDA classifier/ap-
proximate GDA classifier as weak learners in each iteration of an AdaBoost
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algorithm. This approach enables us to develop such algorithms that are compu-
tationally efficient, specifically in large-scale MIMO-OFDM systems.

Binary Classification via GDA
For a training set containing m training examples with n features {x( j)} j=1,...,m

and two classes y( j) ∈ {1,−1} j=1,...,m, GDA assumes that each x( j) is generated
from a normal distribution with the covariance matrix of Σ and means of µ−1
and µ1 depending on the value of y( j). The means and covariance matrix can be
estimated using the training examples as

µ̂−1 =

m∑︂

j=1

1{y( j) =−1}x( j)

m∑︂

j=1

1{y( j) =−1}

(4.16)

µ̂1 =

m∑︂

j=1

1{y( j) = 1}x( j)

m∑︂

j=1

1{y( j) = 1}

(4.17)

Σ̂= 1
m

m∑︂

j=1

(x( j) − µ̂y( j))(x( j) − µ̂y( j))T . (4.18)

The decision boundary that separates two classes is then obtained as

hGDA = Σ̂
−1 (︁

µ̂1 − µ̂−1
)︁

. (4.19)

Channel Estimation
Based on the definitions and details given in Publication IX, the GDA-based
weak classifier employed in the t-th iteration of the proposed AdaBoost-based
channel estimator can be developed as

µ̂(t)
−1 =

2Nc∑︂

j=1

1{yTD
i,R, j =−1}w(t)

j φTD
R, j (4.20)

µ̂(t)
1 =

2Nc∑︂

j=1

1{yTD
i,R, j = 1}w(t)

j φTD
R, j (4.21)

Σ̂
(t) =

2Nc∑︂

j=1

w(t)
j (φTD

R, j − µ̂(t)
yTD

i,R, j
)(φTD

R, j − µ̂(t)
yTD

i,R, j
)T (4.22)

ĥTD,(t)
i,R =

(︂
Σ̂

(t)
)︂−1 (︁

µ̂(t)
1 − µ̂(t)

−1
)︁

(4.23)

where hTD,(t)
i,R ≜

[︁ℜ{hTD
i }T ,ℑ{hTD

i }T]︁T ∈ R2KLtap×1 and hTD
i ≜

[(hTD
i,1 )T , (hTD

i,2 )T , . . . , (hTD
i,K )T ]T for i = 1, . . . , M where M is the number of

27



MIMO Channel Estimation and Data Detection with One-Bit ADCs

antenna at the BS (see Publication IX for more details). Moreover, w(t)
j is the

weight allocated to the j-th training example in the t-th iteration. We name the
AdaBoost-based channel estimator which employ (4.23) in its t-th iteration as
one-bit GDA-Ada estimator.

Calculating the covariance matrix estimate via (4.22) and then inverting it
in (4.23) makes one-bit GDA-Ada computationally inefficient, particularly in
large-scale systems. To remedy this issue, two approximate versions of (4.23)
can be considered as follows

ĥTD,(t)
i,R,app1 ≜

(︂
Σ̂

(t)
1

)︂−1 (︁
µ̂(t)

1 − µ̂(t)
−1
)︁

(4.24)

ĥTD,(t)
i,R,app2 ≜ µ̂(t)

1 − µ̂(t)
−1 (4.25)

where Σ̂
(t)
1 ≜ diag

{︁
σ̂(t)

1
}︁

and σ̂(t)
1 =∑︁2Nc

j=1 w(t)
j

(︂
(φTD

R, j − µ̂(t)
yTD

i,R, j
)⊙ (φTD

R, j − µ̂(t)
yTD

i,R, j
)
)︂

. We

call the AdaBoost-based channel estimators which use (4.24) and (4.25) in their
t-th iteration as one-bit GDA-Ada-1 and one-bit GDA-Ada-2, respectively. Note-
worthy to mention that the computational complexity for implementing the
one-bit GDA-Ada-1 and one-bit GDA-Ada-2 estimator is much lower than that
of the one-bit GDA-Ada estimator.

Data Detection
Analogous to the channel estimation part, GDA classifier/approximate GDA
classifiers can be considered as weak learners in each iteration of AdaBoost-
based data detectors. Hence, the t-th weak learner corresponding to the one-bit
GDA-Ada, one-bit GDA-Ada-1, and one-bit GDA-Ada-2 data detector can be
respectively expressed as

x̂FD,(t)
R =

(︂
Σ̂

(t)
d

)︂−1(︂
µ̂(t)

d,1 − µ̂(t)
d,−1

)︂
(4.26)

x̂FD,(t)
R,app1 =

(︂
Σ̂

(t)
d,1

)︂−1(︂
µ̂(t)

d,1 − µ̂(t)
d,−1

)︂
(4.27)

x̂FD,(t)
R,app2 = µ̂(t)

d,1 − µ̂(t)
d,−1 (4.28)

where

µ̂(t)
d,−1 =

2MNc∑︂

j=1

1{yTD
R, j =−1}w(t)

j gFD
R, j (4.29)

µ̂(t)
d,1 =

2MNc∑︂

j=1

1{yTD
R, j = 1}w(t)

j gFD
R, j (4.30)

Σ̂
(t)
d =

2MNc∑︂

j=1

w(t)
j (gFD

R, j − µ̂(t)
d,yTD

R, j
)(gFD

R, j − µ̂(t)
d,yTD

R, j
)T (4.31)

Σ̂
(t)
d,1 = diag

{︂
σ̂(t)

d,1

}︂
(4.32)
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σ̂(t)
d,1 =

2MNc∑︂

j=1

w(t)
j

(︂
(gFD

R, j − µ̂(t)
d,yTD

R, j
)⊙ (gFD

R, j − µ̂(t)
d,yTD

R, j
)
)︂

. (4.33)

and other definitions and details can be found in Publication IX.

4.3 Experimental Results

In this section, in addition to simulation examples in Publication VII, the perfor-
mance of the L1-RLR-TMR and SE-TMR methods in estimating mmWave UL
channels is compared with that of the BLMMSE [84] and AR [83] methods. The
pilot sequence is selected as a circularly shifted replica of a Zadoff-Chu (ZC) se-
quence of length Ns where each row is orthogonal to the others, i.e., SSH = NsIK.
The SNR and normalized mean squared error (NMSE) are respectively defined as

SNR≜ 10 log10

(︂ ∥HS∥2
F

MNsσ2

)︂
and NMSE≜ 1

K N
∑︁K

k=1
∑︁N

n=1

⃦⃦
⃦⃦ ĥ(n)

k

∥ĥ(n)
k ∥2

− hk
∥hk∥2

⃦⃦
⃦⃦

2

2
, where

ĥ(n)
k denotes the kth column of Ĥ estimated in the n-th Monte Carlo run with hk

being the actual kth column of H, and N being the total number of Monte Carlo
trials considered as N = 200. We consider λ= 1 for the SE-TMR and L1-RLR-
TMR methods, and K = 8. The number of channel clusters and the number of
the within cluster multipaths for all users are considered to be the same. The
latter is set as M1,1

path = ·· · = M1,L1
path = ·· · = MK ,1

path = ·· · = M1,LK
path = 100. We generate

DOAs randomly once and use them for all Monte Carlo trials. The channel path
gains are distributed as C N (0,1). Fig. 4.1 compares the NMSE of the methods
tested for the scenario when M = 16, Ns = 128, Lk = 1 for all users, and the
angle spread of 8 degrees within each cluster. It can be seen from Fig. 4.1 that
the performance of BLMMSE degrades substantially when the precise estimate
of the channel covariance matrix is not available. Moreover, the performance
of L1-RLR-TMR is comparable to that of the SE-TMR method at high-SNR
regime, although the SE-TMR method is implemented using CVX and has high
complexity [121]. In Fig. 4.2, the performance of the methods tested is shown
for the setup of M = 16, Ns = 128, Lk = 2, and the within cluster angle spreads
are 8 and 10 degrees for all users. The efficiency of L1-RLR-TMR is confirmed
at high-SNR regime as compared to other methods tested. Particularly, Fig. 4.2
shows that the performance of L1-RLR-TMR implemented by the ADMM is
comparable with that of the SE-TMR implemented using CVX.
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Figure 4.1. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 1.
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Figure 4.2. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 2.
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5. Summary and Future Directions

In this thesis, computationally efficient and yet accurate algorithms have been
developed for some problems in the area of spectral analysis and its applications.
Specifically, the problems of noisy AR parameter estimation, DOA estimation
in the presence of unknown noise fields, and one-bit massive/mmWave MIMO
channel estimation and data detection have been studied.

Five methods have been developed for noisy AR parameter estimation. The
main idea of the first method is to reduce the detrimental impact of noise
variance in each iteration, whereas a constrained LS optimization problem has
been formulated to estimate the AR parameters in the second method. The
third one uses an approximation to reduce the dimension of any arbitrary noisy
AR problem to only two unknown parameters and then estimates those two
parameters in an iterative manner. The fourth method estimates the observation
noise variance as the minimum eigenvalue of an enlarged autocorrelation matrix.
The fifth one solves a properly designed generalized eigenvalue problem to first
estimate the observation noise variance, and then estimate the AR coefficients.

For the case of uniform sensor noise, two ESPRIT-based DOA estimation
methods called ES ESPRIT and EU ESPRIT have been developed which use
GLS-based algorithms to first generate a candidate set of DOAs and then pick up
the final DOAs by either a DML-based or a GLR-based DOA selection strategies.
Furthermore, a computationally efficient non-iterative method called NISB have
been proposed for DOA estimation in the presence of nonuniform noise. The
NISB method is composed of two phases where an initial estimate of the noise
subspace is obtained in the first phase and the nonuniform noise covariance
matrix as well as a refined estimate of the noise subspace are obtained in
the second phase. A unified approch that contains three steps has been also
developed for DOA estimation in the case of unknown sensor noise. The aim of
the first step is to estimate the nonuniform or block-diagonal noise covariace
matrix, while the second step has been devised for generating DOA candidates
using rooting-based forward-only or FB GLS-based algorithms. The third step
exploits the CB, GLR, and DML concepts to select the best final DOA estimates.
This approach outperforms state-of-the-art DOA estimation methods in coping
with challenging setups such as small sample size and low SNRs.
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Summary and Future Directions

The SE-TMR and L1-RLR-TMR methods have been developed for one-bit
mmWave UL channel estimation. The SE-TMR method solves a convex opti-
mization problem that enforces the underlying sparsity and Toeplitz structure
of the channel by considering the ℓ1 norm of the channel in the DFT domain
and a positive semi-definite (PSD) constraint, respectively. The aforementioned
optimization problem is solved via CVX. The L1-RLR-TMR method formulates a
non-convex optimization problem using the combination of ℓ1 logistic regression
and Toeplitz matrix reconstruction. A computationally efficient ADMM-based
algorithm has been presented to solve the optimization problem of L1-RLR-
TMR. Lastly, we have considered GDA/approximate GDA classification methods
as weak learners in iterations of AdaBoost-based algorithms to develop com-
putationally efficient channel estimators and data detectors in MIMO-OFDM
systems with one-bit ADCs. It has been assumed that the fading of channels is
the frequency selective fading. The proposed AdaBoost-based channel estima-
tors and data detectors, which employ approximate versions of GDA as weak
classifiers, require substantially lower computational complexity compared to
other existing methods.

5.1 Future Directions

To close the loop of development in this thesis, it would be interesting to de-
velop a one-bit DOA estimation method based on AdaBoost. Such one-bit DOA
estimation method would be computationally very efficient because of using
approximate GDA classifiers as weak classifiers.

Some other research directions and extensions of the development in this thesis
are: (i) developing few-bit extensions of the proposed one-bit channel estimators
and data detectors. (ii) developing computationally efficient algorithms for
few-bit DOA estimation problem.
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Errata

Publication VI

The definition of SNR should be revised as SNR= 10log10

(︂ ∥HS∥2
F

MNsσ2

)︂
. Therefore,

the curves of both Figures should be shifted to the right for 22 dBs.
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