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Abstract

Latent force models (LFMs) are hybrid mod-
els combining mechanistic principles with
non-parametric components. In this article,
we shall show how LFMs can be equivalently
formulated and solved using the state vari-
able approach. We shall also show how the
Gaussian process prior used in LFMs can
be equivalently formulated as a linear state-
space model driven by a white noise process
and how inference on the resulting model can
be efficiently implemented using Kalman fil-
ter and smoother. Then we shall show how
the recently proposed switching LFM can
be reformulated using the state variable ap-
proach, and how we can construct a proba-
bilistic model for the switches by formulat-
ing a similar switching LFM as a switching
linear dynamic system (SLDS). We illustrate
the performance of the proposed methodol-
ogy in simulated scenarios and apply it to
inferring the switching points in GPS data
collected from car movement data in urban
environment.

1 Introduction

Gaussian process regression [9, 11] refers to the
non-parametric Bayesian machine learning approach,
where the unknown function y = x(t) is modeled as
a Gaussian process (or actually a Gaussian random
field). The prediction is done by computing the con-
ditional distribution of the function values x(t∗) at
specific test inputs t∗, where the conditioning is with
respect to the training set {(ti, yi) : i = 1, . . . , N}.
In Gaussian process regression literature (e.g, [11]) the
unknown function is usually denoted as y = f(x),
where x is the input and f(x) is the Gaussian process.
However, to be consistent with the notation used in

stochastic process literature (e.g., [10, 4, 6]), here we
shall denote the input as t and the unknown function
as x(t).

When the input variable t is scalar valued, the process
x(t) is a Gaussian process in the same sense as in clas-
sical analysis of stochastic processes (see, e.g., [10]).
As linear operators applied to Gaussian processes re-
sult in Gaussian processes, and because solutions of
linear differential equations are linear operations on
the driving forces, it is also possible to combine lin-
ear differential equation models with non-parametric
Gaussian process models. The idea of latent force mod-

els (LFMs) [2, 3] is exactly this and the inference in
LFMs is based on computing the various covariance
functions between variables by first constructing the
explicit solution for each variable in the differential
equation, and then computing the covariance functions
using these solutions.

Unfortunately, the approach where the differential
equations for each variable are solved separately and
the covariance functions are constructed from the solu-
tions results in quite tedious closed form computations
(cf. [2, 3]), because many of the computations cannot
be easily transformed into numerical algorithms. A
better approach in this sense is the state variable ap-
proach, which is commonly used in Kalman filtering
(see, e.g. [4, 6]), which replaces the calculus of scalar
differential equations and their impulse responses with
solutions of vector valued linear stochastic differential
equations driven by Gaussian processes, and their ma-
trix exponential based solutions, that is, matrix valued
“impulse responses”.

In this article, we shall first show how latent force mod-
els can be equivalently formulated and solved using the
state variable approach. In the reformulation the theo-
retical solutions itself remain the same, but the imple-
mentation can be reduced to computation of matrix
exponentials and their integrals, which are easier to
implement numerically.



As shown in [7], a time-series type of Gaussian process
prior can be equivalently formulated as a state-space
model, that is, as a linear system driven by a white
noise process. This means that the latent Gaussian
processes used in LFM models can be implemented by
extending the state-space model with additional state
variables representing the latent force components. In
this article we shall follow this approach and reformu-
late LFMs as linear state-space models driven by white
noise processes. As the resulting model is a Gauss-
Markov model, we shall also show how Kalman filter
and smoother (cf. [7]) can be used for doing efficient
inference on the resulting model.

We shall also show how the switching LFM [3] can be
equivalently reformulated using the state variable ap-
proach. We briefly discuss some of the problems with
the switching LFMs, and propose an alternative ap-
proach, in which the state-space view on LFMs is uti-
lized to perform probabilistic inference for the switch-
ing sequence. This reformulation leads to switch-
ing linear dynamic systems, which can be efficiently
treated with classical multiple model approaches [4]
or by using more recently developed methodology [5].

We illustrate the performance of the proposed method-
ology in simulated scenarios, and as a real world data
example apply the constructed switching LFM for in-
ferring the switching points in GPS data collected from
car movement data in urban environment.

2 Latent Force Models

In [2] Alvarez et al. introduced latent force models

(LFMs), which are hybrid models combining mecha-
nistic principles with non-parametric components. For
example, in [2] D output processes {xd(t)}

D
d=1 are

modelled as second order differential equations

Ad

d2xd(t)

dt2
+ Cd

xd(t)

dt
+ κdxd(t) =

R
∑

r=1

Sd,rur(t), (1)

where the driving processes ur(t) are given inde-
pendent Gaussian process (GP) [11] priors ur(t) ∼
GP(m(t), kur

(t, t′)), r = 1, . . . , R where m(t) is an
appropriate mean function (taken usually to be zero
without loss of generality) and kur

(t, t′) a suitably cho-
sen covariance function.

The inference in the approach of Alvarez et al. [2] is
based on closed form computation of the covariance
functions of xd(t), dxd(t)/dt and all the required cross
covariances by solving the differential equation. The
derivations in [2] were done in purely scalar notation.
An alternative approach would be to work with vectors
and matrices and convert the output model into state-
space model, which in case of second order model (1)

can be done as follows:

1. Define state and input vectors as x(t) =
(x1(t) dx1(t)/dt . . . xD(t) dxD(t)/dt)T and u(t) =
(u1(t) . . . uR(t))

T .

2. Define matrices

F =















0 1
− κ1

A1

−C1

A1

. . .

0 1
− κD

AD
−CD

AD















(2)

and

L =

















0 · · · 0

−
S1,1

A1

· · · −
S1,R

A1

...
. . .

0 0

−
SD,1

AD
−

SD,R

AD

















. (3)

Now the model can be written in form

dx(t)

dt
= Fx(t) + Lu(t). (4)

The differential equation has the solution

x(t) = Φ(t)x(t0) +

∫ t

t0

Φ(t− s)Lu(s)ds, (5)

where Φ(τ) denotes the matrix exponential Φ(τ) =
exp(F τ). In this case it happens that the matrix ex-
ponential can be easily computed in closed form. All
the required covariance terms could now be evaluated
as follows:

E[x(t)x(t′)] = Φ(t− t0)P
0
xΦ(t

′ − t0)
T

+

∫ t′

t0

∫ t

t0

Φ(t− s)LKuu(s, s
′)LTΦ(t′ − s′)T dsds′,

(6)

where P0
x is the prior covariance of x(t) and Kuu(s, s

′)
is the joint covariance of all the latent forces between
time instants s and s′. Since we assume independence
across forces, Kuu(s, s

′) is diagonal. The difficulty
here is how to evaluate the double integral in (6). If
the covariance functions of the latent forces are set to
squared exponentials

kur
(τ) = exp

(

−
τ2

l2r

)

, τ = t− t′, r = 1 . . . R, (7)

the covariance functions kyi,xj
(t, t′), kxi,xj

(t, t′),
kxi,ur

(t, t′) and kyi,ur
(t, t′) can be solved analytically

for certain output models, such as (1). This enables



the usage of standard GP regression techniques for pre-
dicting the values of x(t) and u(t) in arbitrary time
points as well as for evaluating the marginal data like-
lihood p(y|θ) =

∫

p(y|x, θ)p(x|θ)dx, where θ contains
the parameters of output model (4) and the covariance
functions kur

.

2.1 Sequential Gaussian Process Priors for

Latent Forces

A drawback of the direct GP regression solution is
that the computational complexity scales as O(D3T 3),
where T is the number of time instances in the ob-
servations. In [2] multioutput generalization of sparse
approximations were used to reduce this to O(DTK2),
where K is the number of inducing variables used in
representing u(t). While at first glance this scaling
appears to be linear in T , we argue that this isn’t
the case in practice since K needs to be increased
when T increases so that the data can be modelled
appropriately. Perhaps an even more severe difficulty
with the direct GP solution is that one has to always
solve the needed covariance functions when construct-
ing new output models. This can be very challenging
or even impossible in many cases, and thereby imposes
serious restrictions on the generality of the modelling
framework.

To remedy these problems we propose to use the tech-
niques presented in [7] for formulating the GP priors
on the components r = 1, . . . , R of u(t) as a multivari-
ate linear time-invariant (LTI) stochastic differential
equation (SDE) models of form

dzr(t)

dt
= Fz,r zr(t) + Lz,r wz,r(t) (8)

where zr(t) = (ur(t)
dur(t)

dt
· · · ddr−1ur(t)

dtdr−1 )T and

Fz,r =











0 1
. . .

. . .

0 1
−a0r · · · −apr−2

r −apr−1
r











,Lz,r =











0
...
0
1











.

By choosing the coefficients a0r, . . . , a
pr−1
r , the spec-

tral density qr of white noise process wz,r(t) and the
dimensionality pr of zr(t) appropriately the dynamic
model on ur(t) can be chosen to correspond a GP prior
with a certain stationary covariance function. We are
especially interested in covariance functions of form

kur
(τ) = exp

(

−

√

2(pr + 1/2)τ

l

)

Γ(pr + 1)

Γ(2pr + 1)

×

pr
∑

i=0

(pr + i)!

i!(pr − i)!

(

√

8(pr + 1/2)τ

l

)pr−i

,

which is the Matérn class of covariance functions with
smoothess parameter ν = pr + 1/2. This class is
particularly useful since it contains the exponential
and squared exponential covariances as special cases
(ν = 1/2 and ν → ∞). The key property of this model
class is that it has an analytic state-space representa-
tion since its spectral density S(ω) can be written as
a rational function of ω2 [7]. If one wishes to use the
squared exponential covariance function (which has no
analytic Gauss-Markov representation, since it is in-
finitely differentiable) instead, more quickly converg-
ing state-space representations can be constructed by
applying Taylor series approximations for the spectral
density [7].

The GP prior models of form (8) can be straightfor-
wardly augmented to output model (4) to form a joint
model

dxa(t)

dt
= Faxa(t) + La wa(t) (9)

where we have defined an augmented the state vec-
tor xa(t) = (x(t)T z1(t)

T · · · zR(t)
T )T , and the ma-

trices Fa and La are constructed such that they
operate on the augmented state appropriately. As
an example consider the second order latent force
model (1) with D = R = 1 and p1 = 2, in which
case the state vector of the joint model is xa(t) =

(x1(t)
dx1(t)

dt
u1(t)

du1(t)
dt

)T and the dynamic model
matrices are

Fa =









0 1 0 0

− κ1

A1

−C1

A1

−
S1,1

A1

0

0 0 0 1
0 0 −a01 −a11









,La =









0
0
0
1









.

Higher dimensional models can be construced in a sim-
ilar fashion.

2.2 Posterior Inference and Predictions

The LTI SDE model (9) has the fortunate property
that it can be analytically converted to a discrete-time
dynamic model

xk = A(∆tk)xk−1 + qk−1, qk−1 ∼ N(0,Q(∆tk)),
(10)

where the transition and process noise matrices can be
solved on the time instances T = {tk}

T
k=1 as

A(∆tk) = Φa(∆tk),∆tk = tk − tk−1,Φa(τ) = exp(Fa τ),

Q(∆tk) =

∫ ∆tk

0

Φa(∆tk − τ)La Qc L
T
a Φa(∆tk − τ)Tdτ,

(11)

where Qc is the spectral density of white noise process
wa(t) in (9). So far we have not discussed how the



output process is observed. The standard approach is
to use the linear-Gaussian model

yk = Hkxk + rk, rk ∼ N(0,Rk), (12)

where the matrixHk collects the observed components
from the state vector.

The filtered posterior distribution of the state
p(xk|y1:k, θ) = N(mk,Pk) on the selected time points
can be solved exactly with the classical Kalman fil-
ter and the smoothing distribution p(xk|y1:T , θ) =
N(m̃k, P̃k) with the Rauch-Tung-Striebel (RTS)
smoother (see, e.g, [4, 6]). Both the Kalman filter and
RTS smoother scale in O(d3T ) computations, where d
is the dimensionality of x and T the number of time
points. The estimation should be started from the
Gaussian prior p(x0|θ) = N(m0,P0), where it is rea-
sonable to set the covariance matrix to be block diag-
onal of form P0 = blkdiag(P0

x,P
0
u1
, . . . ,P0

uR
), where

P0
x is the joint prior covariance for the non-augmented

output process x(t) chosen according to a priori knowl-
edge. The blocks P0

ur
for the R latent forces can be

set to stationary covariances by numerically solving
the algebraic Riccati equations

dPur

dt
= Fz,r Pur

+Pur
FT

z,r + Lz,r qr L
T
z,r = 0. (13)

Suppose we wish to estimate the smoothing distribu-
tion of the state on unobserved time instant t∗, that is,
p(x(t∗)|y1:T , θ) = N(ms

∗
,Ps

∗
), where tk−1 < t∗ < tk.

This can be done by adding t∗ to the set of selected
time steps T and skipping the Kalman filter update
step on that particular time step on the forward pass,
and then running the RTS smoother on T ∪{t∗}. Alter-
natively, after running the Kalman filter and smoother
on time steps T one can infer the state on t∗ by first
making a prediction on t∗ from p(xk−1|y1:k−1, θ) and
then smoothing the estimate with p(xk|y1:T , θ).

In case of non-linear observation models the state tra-
jectory is analytically intractable, but a wide range of
Gaussian filters [8, 13] and smoothers [12] has been
proposed in the literature.

3 Switched Latent Force Models

In [3] the LFM framework was extended to a case of
having a system, in which the driving latent forces can
switch on certain time instants. The switching process
was formulated such that time series was divided into
non-overlapping intervals [tq−1, tq]

Q
q=1 in which only

one latent force uq−1(t) out of Q independent forces

{uq(t)}
Q
q=1 is active one at a time.

In essence, the contribution of paper [3] is to solve
(6) for output model (1) analytically in cases when

the covariance function of the GP prior for the latent
force is

kuu(t, t
′) =

{

kq(t)(t, t
′), if q(t) = q(t′),

0, otherwise,
(14)

where q(t) returns the segment index of time point
t. In [3] the derivation was done in scalar nota-
tion, but here we briefly give an alternative deriva-
tion in vector form. Assume now that t ∈ [tq̂−1, tq̂]
and t′ ∈ [tq̂′−1, tq̂′ ] with Qm = min(q̂, q̂′). Denote
Ψ(t, s, t′, s′, k(·, ·)) = Φ(t − s)Lk(s, s′)LTΦ(t′ − s′)T .
In this case the equation (6) still holds and the double
integral in it can be solved as

∫ t′

t0

∫ t

t0

Ψ(t, s, t′, s′, kuu)dsds
′,

=

Qm−1
∑

q=1

∫∫ tq

tq−1

Ψ(t, s, t′, s′, kq)dsds
′

+

∫ t′

tQm−1

∫ t

tQm−1

Ψ(t, s, t′, s′, kQm
)dsds′,

=

Q
∑

q=1

Φ(t− tq)

∫∫ ∆tq

0

Ψ(∆tq, s,∆tq, s
′, kq)dsds

′Φ(t′ − tq)

+

∫∫ tQm

tQm−1

Ψ(t, s, t′, s′, kQm
)dsds′,

=

Q
∑

q=1

Φ(t− tq)K
q
xx(∆tq,∆tq)Φ(t

′ − tq)
T ,

+Φ(t− tQm−1)K
Qm
xx (∆tQm

,∆t′Qm
)Φ(t′ − tQm−1),

where ∆tq = tq − tq−1, ∆tQm
= min(tq̂, tQm

)− tQm−1

and ∆t′Qm
= min(tq̂′ , tQm

) − tQm−1. The key here is
to note that integral of Ψ with respect to s and s′

depends only on the lengths of the integral limits, and
thus we can translate the limits above.

3.1 Sequential Gaussian Process Priors

As with the standard LFMs, the sequential GP priors
of form (8) can also be straightforwardly incorporated
to switched latent force models if the switching points
are assumed to be known. Inference can be done with
a Kalman filter and smoother such that the switching
points {tq}

Q−1
q=1 are included to set of time points T ,

and when making the Kalman filter prediction step
to a swithing point q the transition and process noise
matrices are set to A = blkdiag(Ax,0p) and Q =
blkdiag(Qx,P

0
uq
), where tk is the point before tq in

T and p the dimensionality of the GP prior that is
common to all Q forces. The matrices for the output
components Ax and Qx are solved similarly as in (11)
with Fa = F, La = L and ∆tk = tk − tq.



3.2 Probabilistic Model for Switches

In [3] the switching points {tq}
Q−1
q=1 were treated as hy-

perparameters of the constructed covariance function,
which were then optimized with respect to marginal
likelihood alongside with the other hyperparameters of
the model. While this can be sensible in some cases,
placing the swithing points incorrectly can result in
errorneous results since it ignores all the uncertainty
related to locations of the points. Moreover, the num-
ber of segments Q was fixed in [3], and estimated with
computationally demanding cross-validation.

To make progress on this we can utilize the state-space
view of LFMs by formulating the latent force model as
a switching linear dynamical system (SLDS) of form

p(xk|xk−1, sk) = N(xk|A(∆tk, sk)xk−1,Q(∆tk, sk))

p(yk|xk, sk) = N(yk|H(sk)xk−1,R(sk))

(15)

where sk denotes the active model at time index k. For
simplicity we assume a discrete-time Markov model of
form p(sk|sk−1) for the model transitions over finite
time steps, but we could also alternatively first for-
mulate a continous-time Markov process for the state
and model transitions, and then discretize the model
on time steps of interest. The key advantage of this ap-
proach is that it allows to make probabilistic inference
over the model sequence by utilizing the state-of-the-
art methodology for SLDSs that are discussed in the
next section.

For the SLDS we consider here we assume that there
are R active forces on each time step (recall that
in [3] only one force was allowed to be active), of
which each rth force can have Mr different length-
scales. To achieve discontinuities in the latent forces
similarly as with model of previous section, we as-
sume that the transitions between the different mod-
els can happen only via resetting models, which reset
the latent force components of the state vector to a
suitable prior while keeping the output components
intact. For simplicity in this work we assume that
the resetting model resets all the latent force com-
ponents to a zero-mean Gaussian prior with a suit-
ably chosen covariance P̃0

u = blkdiag(P̃0
u1
, . . . , P̃0

uR
).

Thus, the matrices Ak and Qk for the reset model
can be implemented as Ak = blkdiag(Ax,0p) and

Qk = blkdiag(Qx, P̃
0
u), where p =

∑R

r=1 pr, and Ax

and Qx are solved similarly as in (11) with Fa = F,
La = L and ∆tk = tk − tk−1.

We also assume that there are L possible length-scales
that are shared between the R forces, that is, there
are a total of LR+1 models in the SLDS, of which the
LR+1th model is the reset model. The Markov model

for the transitions can be stated as

p(sk|sk−1) =



















ask , if sk = sk−1,

bsk , if sk = LR + 1 and sk−1 6= LR + 1,

csk , if sk 6= LR + 1 and sk−1 = LR + 1,

0, otherwise,

where we require that ask+bsk = 1 and
∑LR

sk=1 csk = 1.

In the switching model presented in [3] the covari-
ance function hyperparameters were considered to be
different for different time segments, which results in
Q length-scale hyperparameters to be estimated from
data if one does not fix the parameters to be the same
across the segments. In our SLDS model we can have
L ≤ Q parameters to be learned, which can be used
for more than one segment in the time series, while
in the approach of [3] each of the parameters are only
used within a single segment.

3.3 Inference in Switching Linear Dynamic

Systems

Assume now that we have a switching linear dynamic
system (15) for the state trajectory and observations,
and a Markov model p(sk|sk−1) for the model transi-
tions. It is well known that analytic inference on this
class of models scales exponentially with respect to T
[4], making it computationally infeasible. Thus, we
need to turn to approximations in practical computa-
tions.

We consider applying Gaussian sum filtering and
smoothing, in which the forward pass is usually termed
as assumed density filtering (ADF). There are many
ways to perform the smoothing pass, but in particu-
lar we focus on employing the expectation correction

(EC) algorithm [5], which can be seen as an analog of
applying RTS smoothing to ADF in a similar way as
regular RTS smoother is applied to Kalman filtering.

The result of ADF on time step k is a Gaussian mixture

p(xk|sk,y1:k) ≈

I
∑

i=1

wi,sk,kN(xk|mi,sk,k,Pi,sk,k)

for the state of each model sk and an approximation
for the model probabilities p(sk|y1:k). The number of
mixture components I is chosen according to computa-
tional budget (by setting Ik = Mk the result is exact).
One step of ADF requires running IM2 Kalman filters,
resulting in overall complexity of O(d3IM2T ).

Similarly, EC produces a mixture approximation for
the smoothed distribution as

p(xk|sk,y1:T ) ≈

J
∑

i=1

w̃i,sk,kN(xk|m̃i,sk,k, P̃i,sk,k),



and an approximation for p(sk|y1:T ). Similarly as with
ADF the number of mixture components J is chosen
according to available computational resources. EC is
computationally more demanding than ADF, requir-
ing IJM2 RTS smoothers to be run on each step,
which results in O(d3IJM2T ) overall complexity.

For complete details about ADF and EC we refer the
reader to [5], but there are few implementation details
that need to be discussed briefly. In ADF and EC
one needs to collapse a Gaussian mixture of N com-
ponents to a smaller mixture of K < N components
(in ADF N = IM and K = I, and in EC N = IJM
and K = J). There are many ways to do this, but
we implemented the same procedure as in [5], where
K − 1 components are retained directly and the re-
maining N − K components are merged together via
moment matching. For the models we consider here
we observed this to be working well. Additionally, in
EC one needs to evaluate integrals of form

p(sk|sk+1,y1:T ) =

∫

p(sk|xk+1, sk+1,y1:k)

× p(xk+1|sk+1,y1:T )dxk+1.

(16)

We tested approximating this with a numerical Cu-
bature, but that turned out to result in worse overall
estimation accuracy than simply evaluating the inte-
grand of (16) in the mean of p(xk+1|sk+1,y1:T ), which
was also the way of approximating (16) in [5].

4 Experiments

4.1 Comparison of Computational Efficiency

In this experiment we compare the computational effi-
ciency and estimation accuracy of the proposed state-
space approach to standard LFMs to previously pre-
sented methodology, that is, multioutput generaliza-
tions of FITC and PITC sparse approximations [1] as
well as standard full GPs. We consider a simple sce-
nario, in which we have a second order output model
(1) with D = 5 outputs and R = 1 latent force. We
used unit values for all parameters of the output model
and covariance functions with the exception that we
deviated the sensitivities Sd,r slightly from unity. We
generated data sets of length T = 100 and T = 500 on
the unit interval and calculated the RMSE values of
estimating the output process with all the tested meth-
ods. The hyperparameters were fixed to their true val-
ues. For FITC and PITC we used 40 inducing inputs
placed regularly over the unit interval. The results
are reported in Table 1. It can be seen that in terms
of RMSE values all methods give comparable perfor-
mance. We also note that decreasing the length-scale

Table 1: Comparison of RMSE and CPU time in

the simulated example. The RMSE values are cal-
culate as means over 100 simulations and multiplied
by 100. Here KF-G and KF-M refer to state-space
LFMs, where KF-G has the squared exponential co-
variance function (Taylor series approximated with 6
state components [7]) and KF-M the Matérn covari-
ance (ν = 3/2).

GP FITC PITC KF-G KF-M
T = 100

RMSE 1.64 1.65 1.64 1.64 1.65
CPU (s) 0.092 0.006 0.0291 0.024 0.021
T = 500

RMSE 0.82 0.83 0.82 0.82 0.82
CPU (s) 9.683 0.155 2.802 0.121 0.105

and/or the number of inducing variables will cause the
sparse approximations to eventually fail when the un-
derlying latent function is not smooth enough. The
state-space approach does not have this problem. We
also encountered some numerical difficulties when im-
plementing the needed covariance functions for xd(t)
that were not present in the state-space model.

We also computed the CPU times needed in the infer-
ence. For all GPs the recorded times include only the
time taken to computate of posterior mean for xd(t)
with precomputed covariance matrices while in state-
space models the times include also the calculation
of marginal posterior covariances for both xd(t) and
ur(t) as well as the evaluation of marginal likelihood,
which are computed always during the Kalman filter
and smoother. In terms of CPU time FITC is the
fastest with T = 100 data points, but with T = 500
and more data points Kalman filtering and smoothing
begins to gain the edge in speed.

4.2 Performance of the Probabilistic SLFM

In this toy example we illustrate the performance of
ADF and EC in estimating the proposed switching
LFM. We generate data from a model (1) with D = 3
outputs and R = 1 latent force (Matérn covariance
with ν = 3/2), which had L = 2 possible length-
scales, l1 = 2 and l2 = 30. The constants in the
Markov transition model were set to a1 = a2 = 0.98
and c1 = c2 = 0.5. In the output model we used the
parameters A1 = A2 = A3 = 0.1, C1 = 2, C2 = 3,
C3 = 0.5, κ1 = 0.4, κ2 = 1, κ3 = 1, S1,1 = S3,1 = 1
and S1,2 = 5. Figure 1 shows a typical result of es-
timating x1(t), u(t) and model transitions with ADF
and EC with both I = J = 1 and I = J = 3 mix-
ture components. For reference Kalman filtering and
smoothing results with the true transitions are also
shown. It can be seen that with one Gaussian com-
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(f) u1(t), EC (J=3)
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Figure 1: Illustration of Probabilistic SLFM. Panels (a)-(c) show the estimates of first output x1(t) with
RTS smoother (with known model trajectory) as well as with EC (J = 1 and J = 3). Similarly Panels (d)-(f)
show the results for latent force u1(t). Dotted lines denote the switching points, red lines the true process values
and dark gray the posterior means. Light gray shade denotes 95% posterior uncertainty. Panel (g) shows the
true model sequence and the estimated model probabilities on each time step are shown in (h) and (i), where
black denotes 1 and white 0.

ponent EC already provides credible results, and the
usage of a mixture approximation corrects the length-
scale estimate around the mid-right part of the time
series.

4.3 GPS Tracking with SLFM

To test how the proposed methods works with real
world data, we used it for estimating the switching
points of car positioning data. The GPS position data
was collected with Indagon’s MTT130 positioning ter-
minal, which had Fastrax’s IT03 GPS module as the
positioning device. The terminal was installed in a
conventional passenger car (Volkswagen Golf Variant)
and the data was collected using a laptop computer.
The GPS antenna was placed on the roof of the car.
The test data was collected while driving around on
the roads and streets in and around Helsinki, Finland,
and it contains stops to traffic lights, crossing turns
and various other situations that could be modeled as
switches in latent forces. The data is shown as time
series and on a two dimensional plane in Panels (a),
(b) and (f) of Figure 2.

We modelled the D = 2 dimensional GPS data (T =
6865) with a switching LFM having R = 2 latent forces
(Matérn covariances with ν = 3/2) and L = 2 possible
length-scales. We optimized the hyperparameters of
the output model and the length-scales with respect
to approximate marginal likelihood given by the ADF
(I = 2). After learning the parameters we applied EC

(J = 2). The obtained results are shown in Figure 2.
It can be seen that the model is easily able capture the
most obvious switching points in the data.

5 Conclusions

In the paper [2] it was discussed that the Kalman fil-
tering and smoothing approach has been usually pre-
ferred mainly due to computational reasons, but in
this article we have shown that LFMs can be equiva-
lently formulated and solved using the state variable
approach, which is commonly used in Kalman filtering
and smoothing [4, 6]. The state-space view of LFMs
actually gives various other advantages in addition to
favorable computational efficiency. An example of this
is that we can formulate a switching latent force model,
in which the switching process can be inferred proba-
bilitistically with methods tailored for switching linear
dynamical systems. We have illustrated the perfor-
mance of the proposed methodology in simulated sce-
narios and applied it to inferring the switching points
in GPS data collected from car movement data in ur-
ban environment.
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Figure 2: GPS Tracking with Switching Latent

Forces. Panels (a) and (b) show the horizontal and
vertical positions of the car obtained by the GPS.
Panels also show the mean estimate produced by EC,
which is indistinguishable from the data. One unit
in the plots is 10km. Panels (c) and (d) show the
estimated latent forces with dark gray denoting the
mean estimate and light gray shade the 95% uncer-
tainty. Dotted black bars denote the points, which had
over 20% estimated probability of being a switching
point. The estimated model probabilities are shown
in Panel (e). Panel (f) shows the GPS data on a two
dimensional plane together with the estimated switch-
ing points (red stars).

putational Complex Systems Research. The authors
would like to thank Aki Vehtari for helpful discussion
and support during the work.

References

[1] Mauricio Alvarez and Neil D Lawrence. Sparse con-
volved gaussian processes for multi-output regression.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bot-
tou, editors, Advances in Neural Information Process-
ing Systems 21, pages 57–64. 2009.

[2] Mauricio Alvarez, David Luengo, and Neil Lawrence.
Latent Force Models. In AISTATS, pages 9–16, 2009.

[3] Mauricio Alvarez, Jan Peters, Bernhard Schoelkopf,
and Neil Lawrence. Switched latent force models
for movement segmentation. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Cu-
lotta, editors, Advances in Neural Information Pro-
cessing Systems 23, pages 55–63. 2010.

[4] Yaakov Bar-Shalom, Xiao-Rong Li, and Thiagalingam
Kirubarajan. Estimation with Applications to Track-
ing and Navigation. Wiley Interscience, 2001.

[5] David Barber. Expectation correction for smoothed
inference in switching linear dynamical systems. Jour-
nal of Machine Learning Research, 7:2515–2540, 2006.

[6] M. S. Grewal and A. P. Andrews. Kalman Filtering,
Theory and Practice Using MATLAB. Wiley Inter-
science, 2001.

[7] J. Hartikainen and S. Särkkä. Kalman Filtering and
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