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Abstract

In this article we propose a new Rao-Blackwellized particle filtering based algorithm
for tracking an unknown number of targets. The algorithm is based on formulating
probabilistic stochastic process models for target states, data associations, and birth
and death processes. The tracking of these stochastic processes is implemented using
sequential Monte Carlo sampling or particle filtering, and the efficiency of the Monte
Carlo sampling is improved by using Rao-Blackwellization.
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1 Introduction

This article is an extended version 4 of the article [1], in which we proposed
a Rao-Blackwellized particle filtering based multiple target tracking algorithm
called Rao-Blackwellized Monte Carlo data association (RBMCDA). In this
article we extend the RBMCDA algorithm to tracking an unknown and time
varying number of targets. In the proposed algorithm, not only the target
states and the data associations, but also the births and deaths of the targets
are modeled as hidden stochastic processes, which are observed through the
measurements. The states of the stochastic processes are inferred from the
measurements using Rao-Blackwellized particle filtering.

In principle, it is always possible to approximate the optimal Bayesian filtering
solution [2] to the estimation problem with a particle filter [3–5], which gen-
erates samples from the joint posterior distribution of the hidden stochastic
processes. The idea behind Rao-Blackwellization is that by conditioning on
the data associations and the birth and death processes, the posterior distri-
butions of the states of the targets can be approximated with Gaussian distri-
butions. For this reason, the target states can be integrated out analytically
and the particle filter only needs to be applied to the data associations and
the birth and death processes. This significantly reduces the computational
requirements and increases the efficiency of the particle filter.

The problem of tracking an unknown number of targets can be divided into
the subproblems of tracking single targets, data association and estimating
the number of targets. Of course, these subproblems are coupled such that
one cannot be solved without the other, but this conceptual division is often
done in literature. In the article [1] we presented a solution to first two of
these problems using Rao-Blackwellized particle filtering together with classi-
cal filtering theory [2,6]. The main contribution of this article is to solve the
problem of estimating the number of targets.

In the next two sections we shall present a short review of the existing meth-
ods for data association in the case of a known number of targets (Section
1.1) and for data association and number of targets estimation in the case of
an unknown number of targets (Section 1.2). Relationships with the method
described in this article are also discussed.

4 A short version of this study was presented at the Seventh International Confer-
ence on Information Fusion (FUSION 2004) in Stockholm, Sweden [1]
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1.1 Approaches to Data Association

The classical data association methods for multiple target tracking can be
divided into two main classes [7]. Unique-neighbor data association methods,
such as multiple hypothesis tracking (MHT), associate each measurement with
one of the previously established tracks. All-neighbors data association meth-
ods, such as joint probabilistic data association (JPDA), use all measurements
for updating all the track estimates.

The idea of MHT [8,7,9] is to associate each measurement with one of the ex-
isting tracks, or to form a new track from the measurement. Because this asso-
ciation is not necessarily unique, several hypotheses are continuously formed
and maintained. The MHT algorithm calculates the likelihoods of the mea-
surements and the posterior probabilities of the hypotheses, storing only the
most probable hypotheses. To enhance the computational efficiency, heuris-
tic methods such as gating, hypothesis merging, clustering and several other
strategies can be employed.

Probabilistic multiple hypothesis tracking (PMHT) [10] is a modification of
the MHT, where the data associations are assumed to be independent over
the target tracks. This way the computational complexity of the method is
substantially reduced, but it is also impossible to model certain practical con-
straints, for example, to restrict the number of contacts per target to one on
each scan. Our RBMCDA method [1] in its original form had this same re-
striction, but it can be easily overcome by allowing dependencies in the data
association priors, as shown in Section 2.3.

JPDA [8,7] approximates the posterior distributions of the targets as separate
Gaussian distributions for each target. If the number of targets is T , then
T separate Gaussian distributions are maintained. The number of Gaussian
distributions is kept constant by integrating over the distribution of data as-
sociations of the previous step. This results in an algorithm where each of the
target estimates gets updated by every measurement with weights that depend
on the predicted probabilities of the associations. Gating is used for limiting
the number of measurements for each track. If the predicted probabilities are
too low (i.e., below a predefined threshold) for certain targets, those targets
are not updated at all. Clutter measurements can be modeled similarly.

Sequential Monte Carlo (SMC) based multiple target tracking methods [11–
13] typically belong to the class of unique-neighbor data association methods,
as they are based on representing the data association and state posteriors
as discrete sets of hypotheses. These kind of SMC methods can be consid-
ered generalizations of MHT. Instead of maintaining the N most probable
data association hypotheses, the joint tracking and data association problem
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is modeled as a Bayesian estimation problem and the posterior distribution is
estimated with SMC methods. This particle filtering approach has the advan-
tage that there are no restrictions on the analytic form of model, although the
required number of particles for a given accuracy can be high.

In article [1] we proposed how SMC based tracking and data association algo-
rithms can be made more accurate and efficient using Rao-Blackwellization.
In the Rao-Blackwellized Monte Carlo data association (RBMCDA) algorithm
the states are integrated out in closed form and SMC is only used for the data
association indicators. Instead of a pure particle representation, this leads to a
mixture of Gaussians representation of the joint posterior distribution, which
reduces variance and requires less particles for the same accuracy.

1.2 Approaches to Tracking Unknown Number of Targets

The JPDA method was originally formulated for a known number of targets,
but it is possible to include track formation and termination logic in cascade
with the algorithm [8]. There is no explicit probability model for target ap-
pearance and disappearance, but instead there can be a Markov chain model
for the number of data associations before track initiation is confirmed. Tracks
are terminated when the probability of target existence goes below a prede-
fined threshold.

MHT based methods [8,7,9] as well as PMHT [10] form hypotheses of asso-
ciations with new targets for every measurement. In practice, to reduce the
computational complexity, new target hypotheses (or new track hypotheses)
are formed only when the measurement falls into an area where the likelihood
of the association with the existing targets is too low. A track is deleted when
its likelihood becomes too low compared to the other tracks.

Random sets and finite set statistics (FISST) [14] provide a very general frame-
work for Bayesian modeling of multiple target tracking in the case of an un-
known number of targets. A tractable implementation of the framework is to
use the first order moment of the multi-target posterior, the probability hy-
pothesis density (PHD) [15] as an approximation. SMC based implementations
of the PHD have been reported, for example, in the articles [16] [17].

In the SMC based method presented in the article [13] the extension to an
unknown number of targets is based on hypothesis testing. Because the al-
gorithm generates estimates of data association probabilities, these estimates
can be used for approximating the probability of the hypothesis that the target
has disappeared from the surveillance area. The detection of the appearance
of a new target is based on testing the hypothesis between association with
the old targets and with the new target.

4



The article [18] presents a SMC based method, which is similar to our method
except that a plain particle presentation of the joint posterior distribution is
used. In the method, birth and death moves in particle proposals are used, and
the moves resemble the birth and death models used in this article. Due to
the plain particle presentation, the method in the article [18] is also applicable
to the more general case of target tracking without explicit thresholding of
measurements.

The method in [19] also resembles our method, except that the article does not
suggest any particular form for the birth and death models. The approximation
based on limiting the number of births and deaths on each time step is also
discussed in [19].

The particle filtering based method in [20] uses exponential (Poisson) mod-
els for target appearance and disappearance a bit similarly to our method.
The branching particle based solution [21] also models target appearance as a
stochastic (Markov) process.

The tracking of an unknown number of targets is also closely related to model
selection. An application of SMC methods to estimating the number of RBF
network weights from data is presented in [22].

In this article, we extend the SMC based RBMCDA method [1] to tracking
an unknown number of targets. The extension is based on modeling the birth
and death stochastic processes, such that track formation and termination
(or initiation and deletion) are not based on heuristic rules, but on the rules
determined by the estimation algorithm designed for the probability model.
However, this probability model of extension to an unknown number of targets
is closer to the approach presented in [9] than to the approach in [15] despite
the more strict Bayesian nature of the latter.

1.3 Particle Filtering

Sequential Importance Resampling (SIR) (see, e.g. [3–5,23]), is a generalization
of the particle filtering framework for the estimation of state space models of
the form

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),
(1)

where xk ∈ Rn is the state at time step tk and yk ∈ Rd is the measurement.
The algorithm uses a weighted Monte Carlo representation of the posterior
state distribution. This set of particles is updated and reweighted using a
recursive version of importance sampling. An additional resampling procedure
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is used for removing particles with very small weights and duplicating particles
with large weights. The variance introduced by the resampling procedure can
be reduced by proper choice of the resampling method [4].

In our version of SIR resampling is not performed on every step, but only
when it is actually needed. One way of implementing this is to do resampling
on every kth step, where k is some predefined constant. This method has
the advantage that it is unbiased. Another way, which is also used in our
simulation system, is adaptive resampling, in which the effective number of
particles, which is estimated from the variance of the particle weights [24] is
used for monitoring the need for resampling.

The performance of the SIR algorithm is also dependent on the importance dis-
tribution π(·), which is an approximation of the posterior distribution of states
given the values at the previous step. The importance distribution should be
of such functional form that we can easily draw samples from it and eval-
uate the probability densities of the sample points. The optimal importance
distribution (see, e.g., [5,23]) is π(xk | xk−1,y1:k) = p(xk | xk−1,y1:k). This
importance distribution is optimal in the sense that it minimizes the variance
of the importance weights.

One way of improving the efficiency of SMC is to use Rao-Blackwellization.
The idea of the Rao-Blackwellized particle filter (RBPF) [25,5,23] is that some-
times it is possible to evaluate some of the filtering equations analytically and
the others with Monte Carlo sampling instead of computing everything with
pure sampling. According to the Rao-Blackwell theorem this leads to estima-
tors with less variance than what could be obtained with pure Monte Carlo
sampling [26]. An intuitive way of understanding this is that the marginaliza-
tion replaces the finite Monte Carlo particle set representation with an infinite
closed form particle set, which is always more accurate than any finite set.

The sampling and resampling approach that we used is not necessarily the
most efficient in all conditions, but it turned out to work well in our appli-
cations. By tuning the resampling algorithm and possibly changing the order
of weight computation and sampling, accuracy and computational efficiency
of the algorithm could possibly be improved [27]. An important issue is that
sampling could be more efficient without replacement, such that duplicate
samples are not stored. There is also evidence that in some situations it is
more efficient to use a simple deterministic algorithm for preserving the N
most likely particles. In the article [28] it is shown that in digital demodula-
tion, where the sampled space is discrete and the optimization criterion is the
minimum error, the deterministic algorithm performs better.
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2 RBMCDA with a Known Number of Targets

This section reviews the Rao-Blackwellized Monte Carlo data association (RBM-
CDA) method that we proposed in [1] and relates it to the Rao-Blackwellized
particle filtering framework. The method described here is basically the same
as in the original article except that the requirement of IID prior data associ-
ation probabilities is replaced with a Markov chain assumption.

2.1 Filtering Model

The filtering model of the RBMCDA algorithm is the following:

• Clutter or false alarm measurements can be modeled using any probability
density, which is independent of the target states xk = (xk,1 · · · xk,T )T

p(yk | ck = 0). (2)

Here ck is the data association indicator, which has the value ck = 0 for
clutter and ck = j for the targets j = 1, . . . , T . The clutter measurements
can be, for example, uniformly distributed in the measurement space of
volume V

p(yk | ck = 0) = 1/V. (3)

• Target measurements are linear Gaussian

p(yk | xk,j, ck = j) = N(yk | Hk,jxk,j,Rk,j). (4)

where the measurement matrices Hk,j and covariance matrices Rk,j can
be different for each target. Non-linear measurement models can be used
by replacing the non-linear model with a locally linearized model as in the
extended Kalman filter (EKF) [2,6] or by using the unscented transformation
as in the unscented Kalman filter (UKF) [29].
• Target dynamics are linear Gaussian

p(xk,j | xk−1,j) = N(xk,j | Ak−1,jxk−1,j ,Qk−1,j), (5)

where the transition matrix Ak−1,j and process noise covariance matrix
Qk−1,j may be different for different targets. The motions of individual tar-
gets are a priori independent. Because for any continuous time linear Gaus-
sian dynamic model there exists an equivalent discrete time linear Gaussian
model [2,6], this directly generalizes to continuous time linear models. Non-
linear discrete or continuous time dynamic models can be also used as in
EKF [2,6] or UKF [29]. With slight modifications to the algorithm, it would
be possible to use the interacting multiple model (IMM) filter [6], which
allows the modeling of target maneuvers.
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• Target and clutter association priors are known and can be modeled as an
mth order Markov chain

p(ck | ck−1, . . . , ck−m). (6)

This is kind of higher order models are needed for implementing constraints
to the data associations on a single measurement scan (see Section 2.3). Of
course, the model can be also a first order Markov chain (m = 1) or the
associations can be completely independent (m = 0).
• The number of targets T is known and constant.
• Target state priors can be represented as a weighted importance sample set

p(x0,j) =
∑

i

w(i)N(x0,j | m(i)
0,j ,P

(i)
0,j). (7)

2.2 Relationship with the Rao-Blackwellized Particle Filter

The RBMCDA model described in the previous section fits exactly to the
Rao-Blackwellized particle filtering framework (see, e.g., [5]) when the sampled
latent variable λk is defined to contain the data association event indicators,
ck at time step k

λk = ck. (8)

(1) The state xk on time step k consists of the stacked vector of target states

xk =




xk,1
...

xk,T



. (9)

(2) The prior distribution of the joint state p(x0) is Gaussian, because the
individual target prior distributions are Gaussian.

(3) The joint dynamic model of targets is linear Gaussian

p(xk | xk−1) = N(xk | Ak−1xk−1,Qk−1), (10)

where Ak−1 is a block diagonal matrix consisting of the dynamic models
of the targets and Qk−1 is the block diagonal process noise covariance.

(4) The joint measurement model of the targets can be written as

p(yk | xk, ck) = N(yk | Hk(ck)xk,Rk(ck)), (11)

where the measurement model matrix Hk(ck) is formed conditional on
the data association ck such that the only nonzero entries are the ones
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corresponding to the measurement model of the target ck. The measure-
ment noise covariance Rk(ck) is the measurement noise covariance of the
target ck.

(5) The clutter measurements are simply state independent measurements
with a measurement model of the form p(yk | ck = 0).

(6) The data associations are modeled as a Markov chain of latent variables
as in the Rao-Blackwellized particle filter model.

2.3 Sequential Measurement Update Issues

In Section 2.1 we formulated the model such that exactly one measurement
is obtained at one time step tk. This way, the data association procedure can
be reduced to processing one measurement at a time. However, this does not
mean that we are restricted to one measurement per time instance (i.e., scan),
because the successive time steps may occur on the same time instance.

scan 1 (3 measurements): t1 = t2 = t3 = 1 s

scan 2 (2 measurements): t4 = t5 = 2 s

scan 3 (3 measurements): t6 = t7 = t8 = 2.5 s

scan 4 (1 measurement): t9 = 3.5 s

· · · · · ·
Table 1
Several measurement steps can occur on the same time instance or scan.

In the example presented in Table 1 the time steps 1,2 and 3 all occur on time
instance 1 s, time steps 4 and 5 occur on time instance 2 s and so on. Now, for
example, time steps 1,2 and 3 can be processed sequentially by setting ∆t = 0
in the dynamic model and in the prediction step, which is equivalent to not
performing the prediction step at all between the measurements.

The original RBMCDA that was presented in [1] had the restriction that the
data associations were required to be conditionally independent as in PMHT
[10]. This makes it impossible to model certain joint effects in sets of measure-
ments obtained on one time instance (i.e., scan). For example, it is impossible
to restrict the maximum number of data associations with each target to one
per time instance. However, by allowing the data association priors to de-
pend on previous data associations (at least on the same time instance) this
restriction can be included in the model.

As discussed in Section 2.1, the data association indicators may also depend
on previous data associations, that is, they may form an mth order Markov
chain

p(ck | ck−1, . . . , ck−m). (12)
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This kind of model can be used for restricting the data associations to at most
one data association to each target as follows:

• The joint prior model can be written in the general form

p(ck+m−1, . . . , ck). (13)

We can encode the desired restriction into the prior by assigning zero prob-
ability to any joint event, which would have two associations to the same
target.
• The joint model can be also expanded as follows:

p(ck+m−1, . . . , ck)

=
m∏

j=1

p(ck+j | ck, . . . , ck+j−1).
(14)

This means that exactly the same model can be realized by using using the
following priors for the data associations:
· ck has the prior p(ck).
· ck+1 has the prior p(ck+1 | ck).
· . . .
· ck+m−1 has the prior p(ck+m−1 | ck+m−2, . . . , ck).

Using the above idea it is possible to reduce any joint data association prior of
form (13) to an equivalent Markov prior model, which is suitable for sequential
processing.

Assume, for example, that we are tracking two targets and on each time in-
stance we may obtain zero or one detections from each of the targets. The
rest of the detections are false alarms, that is, clutter. The target detection
probabilities of both targets are the same and given as

p(detection) = pd. (15)

Assume that on time instance tscan we obtain m measurements yk, . . . ,yk+m−1

(i.e., the times of the steps are tk, ..., tk+m−1 = tscan). The prior for the data
associations can be now defined sequentially as follows:

• Define detection indicators as follows

δ1(j) =





1, if there is target 1 detection in ck+j−1...ck

0, otherwise

δ2(j) =





1, if there is target 2 detection in ck+j−1...ck

0, otherwise.

(16)
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• Compute the data association priors given each of the possible detection
indicator combinations:

p(ck+j | δ1(j) = 0 and δ2(j) = 0)

p(ck+j | δ1(j) = 0 and δ2(j) = 1)

p(ck+j | δ1(j) = 1 and δ2(j) = 0)

p(ck+j | δ1(j) = 1 and δ2(j) = 1).

(17)

Prior models having the restriction of one data association to each target per
time instance can be defined in similar manner for any number of targets. The
resulting prior is of the recursive (Markov) form, which is a special case of the
model described in Section 2.1.

2.4 Data Representation

The algorithm state consists of a set of N particles, where each particle i at
time step k contains the following:

{c(i)
k−m+1:k,m

(i)
k,1, . . . ,m

(i)
k,j , . . . ,m

(i)
k,T ,P

(i)
k,1, . . . ,P

(i)
k,j, . . . ,P

(i)
k,T , w

(i)
k }, (18)

where

• c(i)
k−m+1:k are the data association indicators of time steps k −m + 1, . . . , k

with integer values 0, . . . , T , where T is the number of targets. If the data
association prior model is an mth order Markov model, then m previous
data associations should be stored. If the data association prior is time
independent, the data association indicators do not need to be stored at all.
• m

(i)
k,j,P

(i)
k,j are the mean and covariance of the target j, and they are condi-

tional on the data association history c
(i)
1:k.

• w(i)
k is the importance weight of the particle.

2.5 Evaluating and Sampling from the Optimal Importance Distribution

For each particle i, the optimal importance distribution is given by

p(ck | y1:k, c
(i)
1:k−1). (19)
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The marginal measurement likelihood is given by [1]

p(yk | ck,y1:k−1, c
(i)
1:k−1)

=





1/V if ck = 0

KFlh(yk,m
−(i)
j,k ,P

−(i)
j,k ,Hj,k,Rj,k) if ck = j

(20)

where j = 1, . . . , T and KFlh(·) denotes the Kalman filter measurement like-
lihood evaluation. Hj,k and Rj,k are the measurement model matrix and the
measurement covariance matrix of the target j, respectively. For j = 1, . . . , T
we have

[m
−(i)
j,k ,P

−(i)
j,k ] = KFp(m

(i)
j,k−1,P

(i)
j,k−1,Aj,k−1,Qj,k−1), (21)

where KFp(·) denotes the Kalman filter prediction step, and m
(i)
j,k−1,P

(i)
j,k−1 are

the mean and the covariance of target j in particle i, which is conditioned on
the state history c

(i)
1:k−1. Aj,k−1 and Qj,k−1 are the transition matrix of dynamic

model and the process noise covariance matrix of the target j, respectively.

The posterior distribution of ck can be calculated using Bayes’ rule

p(ck | y1:k, c
(i)
1:k−1)

∝ p(yk | ck,y1:k−1, c
(i)
1:k−1)

× p(ck | c(i)
k−m:k−1),

(22)

where we have used the fact that an association ck does not depend on the pre-
vious measurements y1:k−1, and depends only on the m previous associations
ck−m:k−1 if the order of the Markov model is m.

We can sample from the optimal importance distribution as follows:

(1) Compute the unnormalized clutter association probability

π̂
(i)
0 = p(yk | c(i)

k = 0,y1:k−1, c
(i)
1:k−1)

× p(c(i)
k = 0 | c(i)

k−m:k−1).
(23)

(2) Compute the unnormalized target association probabilities for each target
j = 1, . . . , T

π̂
(i)
j = p(yk | c(i)

k = j,y1:k−1, c
(i)
1:k−1)

× p(c(i)
k = j | c(i)

k−m:k−1).
(24)

(3) Normalize the importance distribution:

π
(i)
j =

π̂
(i)
j

∑T
j′=0 π̂

(i)
j′
, j = 0, . . . , T. (25)
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(4) Sample a new association c
(i)
k with the following probabilities:

• Draw c
(i)
k = 0 with probability π

(i)
0

• Draw c
(i)
k = 1 with probability π

(i)
1 .

• Draw c
(i)
k = 2 with probability π

(i)
2 .

• . . .
• Draw c

(i)
k = T with probability π

(i)
T .

Now it is easy to evaluate also the probabilities of data association hypotheses
in the optimal importance distribution, because the probabilities are given by
the terms π

(i)
j , j = 1, . . . , T conditional on each particle.

2.6 Algorithm Implementation

As shown in Section 2.2 the RBMCDA algorithm is a special case of the generic
RBPF algorithm. However, due to the conditional independences between the
targets, the full Kalman filter prediction and update steps for all targets can
be reduced to single target predictions and updates. Actually, because the
targets are a priori independent, conditional on the data associations ck the
targets will remain independent during tracking. This leads to the following
simplifications to the RBPF computations:

(1) The Kalman filter prediction steps can be done for each target in each
particle separately. That is, we do not need to do Kalman filter prediction
to the joint mean and covariance of all targets, but only to each target
separately.

(2) We can always use the optimal importance distribution, which was de-
scribed in the previous section, as the importance distribution for the
latent variables.

(3) The marginalized measurement likelihoods can be computed for each tar-
get separately. Note that these likelihoods have already been computed
for each target during the evaluation of the optimal importance distribu-
tion.

(4) The measurement updates can be also performed for each target sepa-
rately. This means that the Kalman filter update is actually performed
only to one target in each particle.

3 RBMCDA with an Unknown Number of Targets

In the next sections we extend the RBMCDA algorithm to an unknown and
time varying number of targets. The probabilistic construction of the model
for an unknown number of targets, that is, the probability model for varying
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state space dimension follows roughly the approach described in [9], which
extends MHT to tracking an unknown number of targets. The idea is to assume
that there is always a (very large) constant number of targets T∞. But an
unknown, varying number of them are visible (or alive), and they are the ones
we are tracking. The visibility of targets is represented with a vector of discrete
indicator variables.

The number T∞ ensures that the joint distribution of the target states is a
Gaussian distribution with constant dimensionality and thus a well defined
probability distribution. The model is formulated such that we do not explic-
itly need to know the actual number of targets T∞ as long as it is theoretically
large enough.

As an extension to the MHT method, we construct a probabilistic stochastic
process model for the births and deaths of the targets and show how Rao-
Blackwellized particle filtering can be applied to this problem.

3.1 Filtering Model

(1) Clutter or false alarm measurements have the same kind of model as in
the RBMCDA model in Section 2.1.

(2) Target measurements are linear Gaussian or non-linear EKF/UKF based
as in the RBMCDA model in Section 2.1.

(3) Target dynamics are linear Gaussian or EKF/UKF/IMM based as in the
RBMCDA model in Section 2.1.

(4) The target (ck = j) and clutter (ck = 0) association priors, in the case
that births and deaths do not occur at the current time step, are known
and can be modeled as anmth order Markov chain p(ck | ck−m:k−1, Tk−m:k−1),
where Tk−m:k−1 contains the number of targets at time steps k−m, . . . , k−
1. For example, we might have a uniform prior over targets and clutter:

p(ck | ck−m:k−1, Tk−m:k−1) =
1

1 + Tk−1

. (26)

(5) Target births may happen only when a measurement is obtained, and in
that case a birth happens with probability pb. For simplicity, the model
is defined such that a birth may happen only jointly with an association
event, so that if there is no association to a newborn target, there is no
birth.

This is equivalent to stating that the target state prior remains constant
until the first measurement is associated, that is, the dynamic model
does not affect the target state before the first measurement has been
associated to the target. This indicates that it is sufficient to consider
the time of the first associated measurement as the actual birth moment.
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(6) After associating a measurement with a target, the life time td (or time
to death) of the target has probability density

td ∼ p(td), (27)

which can be, for example, an exponential or gamma distribution.
(7) At the time of birth each target has a known Gaussian prior distribution

(which can be non-informative)

p(xk0,j) = N(x0,j | m0,j ,Pk0,j). (28)

3.2 Probabilities of Birth and Death

If a birth has occurred, it is assumed to be certain that the current measure-
ment is associated to the newborn target:

p(ck | birth) =





1 , if ck = Tk−1 + 1

0 , otherwise.
(29)

In the case of no birth, the Markov model for data the associations applies:

p(ck | no birth) = p(ck | ck−m:k−1). (30)

The data association and birth events can be divided into the following cases
with different probabilities:

(1) A target is born and the measurement is associated with the newborn
target:

bk = birth

ck = Tk−1 + 1.
(31)

(2) A target is not born and the measurement is associated with one of the
existing targets or with clutter:

bk = no birth

ck = j, j = 0, . . . , Tk.
(32)

(3) Other events have zero probability.

Thus, given the associations ck−m:k−1 on the m previous steps, the joint dis-
tribution of the event bk ∈ {no birth, birth} and the association ck is given
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as

p(bk, ck | ck−m:k−1) =



pb , in case (1)

(1− pb) p(ck | ck−m:k−1) , in case (2)

0 , in case (3),

(33)

where pb (see Section 3.1) is the prior probability of birth.

The restriction of one data association per target on single time instance (see
Section 2.3) in the case of unknown number of targets can be handled in the
same manner as in the case of known number of targets. We simply assume
that there is positive probability of detecting a newborn target on each step.
That is, in addition to existing targets we model the possibility detection of a
new target which has the detection probability pb. This probability of detecting
a new target is equivalent to the probability of birth, because we have defined
the birth to be the event of detecting the target for the first time. However,
the difference to the restriction of one association per target is that births may
occur as many times as there are measurements on scan, not only once per
scan.

The filtering model represented in Section 3.1, states that after associating
a measurement with a target, the life time td of the target has the known
probability density (27). Thus if the last association with target j was at time
τk,j, and on the previous time step tk−1 we sampled a hypothesis that the
target is alive, then the probability that the target is dead at current time
step tk is

p(death of j | tk, tk−1, τk,j)

= P (td ∈ [tk−1 − τk,j, tk − τk,j] | td ≥ tk−1 − τk,j).
(34)

3.3 Relationship to RBPF

The RBMCDA algorithm with an unknown number of targets fits to the RBPF
framework, if the latent variable λk contains the visibility indicator ek and the
data association indicator ck at the current time step

λk = {ek, ck}. (35)

The visibility indicators and the data associations implicitly define the number
of (visible) targets Tk at each time step.

Given that the targets are a priori unordered, there is a high permutation sym-
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metry in the posterior distributions of the target states, visibility indicators
and data association indicators. We can change the indices of any two targets,
including the visibility indicators and data associations, and the probability of
the configuration will remain the same. For this reason, we shall select one of
the permutations arbitrarily and use it for representing all the permutations.
This permutation is based on the times of the first associations with the tar-
gets. This does not change the model, because this is not a priori ordering, but
is merely a way of selecting a compact representation for a very high number
of redundant permutations.

(1) The joint state xk contains the states of the T∞ targets

xk =




xk,1

. . .

xk,T∞



. (36)

(2) At the initial time step the targets have Gaussian prior distributions
N(xk,j |m0,P0). The model is constructed such that the invisible targets
at any time step k (indicated by ek) do not have a dynamic model. This
means that the targets which have not yet become visible (have not been
born yet) at any time step k have independent Gaussian prior distribu-
tions N(xk,j | m0,P0). If we denote the sets of not visible and visible
target indices with J0 and J1, respectively, the joint prior distribution of
all targets is of the form

p(xk | y1:k) =
∏

j∈J1

N(xk,j | mk,j ,Pk,j)

×
∏

j′∈J0

N(xk,j′ | m0,P0).
(37)

That is, the distribution of the visible targets is completely independent
of the distributions of the invisible targets and thus it suffices to store
only the states of the visible targets instead of all T∞ targets. The joint
distribution of all targets is still always theoretically a Gaussian distri-
bution of dimension T∞.

(3) When a target birth occurs, that is, a new target becomes visible (i.e.,
produces the first measurement) a new item in the indicator vector ek
is set and the corresponding target prior distribution is updated (initial-
ized) by the measurement. Because we only need to store one possible
permutation from a high number of equivalent target permutations, we
can add the new target to the first empty place in the indicator vector
ek.

(4) When a target dies, that is, becomes invisible again, the target distribu-
tion again becomes the prior and the target state is moved to the end
of the joint state vector xk and indicator vector ek. The targets in the
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vectors can be shifted such that the visible targets always remain in the
beginning of the vectors.

(5) The target dynamics, target measurements and clutter measurements are
modeled in the same way as in the RBMCDA model of Section 2.1 and
thus they fit into the RBPF framework easily.

(6) By constructing a prior model for to births and deaths, we get the dis-
tribution

p(ek | ek−1), (38)

which defines the dynamics of births and deaths. The data association
model is of the form

p(ck | ck−m:k−1, ek), (39)

and thus these two models together give a joint Markov chain model for
the indicators:

p(ek, ck | ck−m:k−1, ek−m:k−1)

= p(ck | ck−m:k−1, ek) p(ek | ek−1),
(40)

which is the form required by the RBPF model.

3.4 Evaluating and Sampling from the Optimal Importance Distribution

The possible events between two measurements yk−1 and yk and at the asso-
ciation of measurement yk are:

(1) Targets may die (indicated by elements of ek):
(a) none of the targets dies
(b) one or more targets die

(2) yk is associated with (indicated by ck):
(a) clutter
(b) one of the existing targets
(c) a newborn target

Death events are independent of the measurements. However, the two event
families are related such that a new measurement yk can be associated only
to the targets that have not died between the measurements yk−1 and yk.

The model (40) assigns unique prior probabilities to each of the finite number
of different events, but the problem is that the number of possible events
grows exponentially with the number of targets. The combinatorial problem
in the number of events is solely due to the exponential number of possible
combinations of target deaths. There is no combinatorial problem in target
births, because we can always use the sequential update scheme as discussed
in Section 2.3. However, the purpose of the death model is only to remove
the targets with which no measurements have been associated for a long time.
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Because the death model is built only for serving this purpose without any
physical meaning, it is not desirable to spend most of the computing power
on it.

For the above reason we shall use an approximation where we restrict the
possible number of deaths at each time step to one. This means that at each
time step (measurement time) either none or exactly one of the targets dies.
The probability of two or more death events between measurements is assumed
to be zero. Note that the varying time step size is accounted already in the
death model (34) and thus the survival rate will change only a bit, because we
assume that there cannot be more deaths than there are measurements. We
could overcome this restriction by performing redundant measurement update
steps, for example, by generating artificial clutter measurements, which have
prior probability one of being clutter.

Because due to restricting the number of deaths on each time step the number
of events grows only linearly with the number of targets, we can construct an
approximate prior distribution of births, deaths and associations as follows:

(1) Enumerate all possible combinations of joint birth, (zero or one) deaths,
and association events and compute probabilities for each of the combi-
nations.

(2) Normalize the list of events such that their probabilities sum to one.

For each combination of birth, death and association events there is a tran-
sition pair (e1:k−1, c1:k−1) → (ek, ck) with a probability given by the above
procedure. That is, we have an approximate representation of the distribution
p(ek, ck | e1:k−1, c1:k−1).

The likelihood term p(yk | ek, ck) can be computed similarly as in the case of
a known number of targets (see Equation (20)). By multiplying each of the
birth, death, and association combinations with the measurement likelihood
and normalizing, we can form the optimal importance distribution similarly
as in Section 2.5.

3.5 Data Representation

The algorithm state consists of a set of N particles, where each particle i at
time step k contains the following:

{c(i)
k−m+1:k, e

(i)
k ,m

(i)
k,1, . . . ,m

(i)
k,j, . . . ,m

(i)
k,T ,P

(i)
k,1, . . . ,P

(i)
k,j, . . . ,P

(i)
k,T , w

(i)
k }, (41)

where
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• c(i)
k−m+1:k are the data association indicators of the time steps k−m+1, . . . , k.

• e
(i)
k is the life-indicator, which is a binary vector of length T∞ indicating

which of the targets are alive at current time step.
• m

(i)
k,j,P

(i)
k,j are the mean and covariance of the target j, and they are condi-

tional on the data association history c
(i)
1:k.

• w(i)
k is the importance weight of the particle.

The following information is also implicitly or explicitly stored for each parti-
cle:

{T (i)
k , τ

(i)
k,j, id

(i)
k,j, }, (42)

where

• T (i)
k is the number of targets.

• τ (i)
k,j is the time of the last measurement associated with target j.

• id
(i)
k,j is a unique integer valued identifier, unique over all targets in all par-

ticles, which is assigned at the birth of the target.

3.6 Algorithm Implementation

Similarly to the case of RBMCDA (see, Section 2.6), because the targets are a
priori independent, conditional on data associations ck and indicators ek, the
targets will also remain independent during tracking. This means that exactly
the same simplifications to RBPF apply to the case of an unknown number
of targets as to a known number of targets.

4 Simulations

4.1 Bearings Only Tracking of a Known Number of Targets

First we shall consider a classical bearings only multiple target tracking prob-
lem, which frequently arises in the context of passive sensor tracking. The
simulation scenario is similar to that was presented in [1], but now the simula-
tion includes clutter measurements and the restriction of one data association
per target on single time instance is also modeled.

The dynamics of target j with the state vector xj,k = (xj,k yj,k ẋj,k ẏj,k)
T can

20



be modeled with a discretized Wiener velocity model [6]




xj,k

yj,k

ẋj,k

ẏj,k




=




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







xj,k−1

yj,k−1

ẋj,k−1

ẏj,k−1




+ qk−1, (43)

where qk−1 is the Gaussian process noise with moments

E[qk−1] = 0

E[qk−1q
T
k−1] =




1
3
∆t3 0 1

2
∆t2 0

0 1
3
∆t3 0 1

2
∆t2

1
2
∆t2 0 ∆t 0

0 1
2
∆t2 0 ∆t




q,

where q is the spectral density of the noise. In the simulation, the value q = 0.1
was used for both targets. The noise in an angular measurement from target
j by sensor i can be modeled as Gaussian

θ̂k = arctan

(
yj,k − siy
xj,k − six

)
+ rk, (44)

where (six, s
i
y) is the position of sensor i and rk ∼ N(0, σ2) with σ = 0.02

radians.

Because the measurement model is non-linear we replace the Kalman filter in
the data association algorithm with EKF. The uncertainty in data associations
can be modeled by defining a variable ck, which has the value ck = j if the
measurement at time step k is associated with target j.

The target detection probability is set to pd = 80% and the number of clutter
measurements (uniform on range [−π, π]) is Poisson-distributed with mean 5.
The measurement data obtained from simulated sensors is shown in Figure 1.
The initial distribution was on purpose selected such that all the four crossings
of measurements from the two sensors contain some probability mass, and the
distributions of the targets are two-modal as shown in Figure 2. The particles
in the figure are a random sample drawn from the posterior distribution esti-
mate, used for visualizing the distribution. The actual posterior distribution
estimate is a mixture of Gaussians which is hard to visualize directly. The
number of Monte Carlo samples used in the estimation method was 100.

Figure 3 shows the final tracking result, and it can be seen that in the be-
ginning of the trajectory the posterior distribution is multimodal. Also the
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Fig. 1. Measurement data obtained from angular sensors.

True Target 1
True Target 2

Fig. 2. The prior distributions of the targets. Half of the prior probability mass is
located in the wrong sensor measurement crossings.

posterior distributions of the trajectories are a bit wider in the area between
the sensors, because in that area the position uncertainty is higher in the di-
rection of the line connecting the two angular sensors. Again, particles are
used for visualizing the distribution, although the true posterior distribution
estimate is a mixture of Gaussians.

Figure 4 shows the smoothed tracking result, which is an estimate where the
distributions of all time steps are conditioned on all the measurements. This
kind of an estimate can be easily calculated with (fixed interval) Kalman
smoothers [2,6] and particle smoothers [4] also in the Rao-Blackwellized parti-
cle filtering case. Conditional on all the measurements the trajectory no longer
contains multimodalities. Also the position uncertainty on the line connecting
the sensors is lower.
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Estimated Target 1
Estimated Target 2

Fig. 3. Filter estimates for each time step. In the beginning of the trajectory the
posterior distribution is multimodal. The multimodality can be seen from the two
extra clouds of particles, which are located quite far away from the actual target
trajectories. The higher position uncertainty on the line connecting the two sensors
can be also seen.

Smoothed Target 1
Smoothed Target 2

Fig. 4. Smoothed estimates do not have the multimodality in the beginning of the
trajectory, because later measurements have resolved it. The position uncertainty
on the line connecting the two sensors is also lower than in the filter estimates.

4.2 Unknown Number of 1D Signals

In this section the algorithm extension to an unknown number of signals is
simulated with the appearing and disappearing signals as described in Table
2. The true signals and simulated data are shown in the Figure 5. All the
signals are modeled with discretized white noise acceleration models [6]



xk

ẋk


 =




1 ∆t

0 1






xk−1

ẋk−1


+ qk−1, (45)

where xk = x(tk), ẋk = ẋ(tk), the sampling period is ∆t = 1/100, and the
process noise spectral density is q = 1/10. The signal conditioned measure-
ments are modeled (and simulated) as measurements of the signal plus a white
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Signal Appears Disappears

x(1)(t) t = 0 t = 8

x(2)(t) t = 0 t = 15

x(3)(t) t = 1 t = 4

x(4)(t) t = 2 t = 5

x(5)(t) t = 5.5 t = 10

x(6)(t) t = 6 t = 15

Table 2
Signal appearance and disappearance schedule in the 1D scenario with an unknown
number of signals.
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Fig. 5. Simulated data of the 1D scenario with an unknown number of signals.

Gaussian noise component

yk,j = x(j)(tk) + rk, (46)

where rk ∈ N(0, 1/52), given that the measurement is from signal j. Every
measurement has an equal chance of originating from each of the visible signals
and 1% change of being a corrupted measurement uniformly distributed on
the area [−5, 5]. The number of signals is unknown and the following model
for the births and deaths is used:

• The prior probability of birth pb = 1/100.
• A priori time to death td from the last data association has the gamma

distribution

td ∼ Gamma(td | α, β), (47)

with constant parameters α and β.
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The number of Monte Carlo samples used in estimation was N = 10. Figure
6 shows the result of filtering with parameters α = 2 and β = 1. The plotted
result is the hypothesis contained in the particle with largest weight. As can be
seen from Figure 7 there is slight delay after the disappearance of the signals
before they disappear from estimation. The longest delay is in the signal that
ends very near the other signal. Also the 1 time step gap in the lowest signal
is not detected. Figure 8 shows the result of applying a Kalman smoother to
the filtering result in the particle with the largest weight. This corresponds to
the maximum a posteriori signal estimate. It can be seen that the estimation
result follows the actual signal paths quite well except for the slight delays in
signal disappearance.

Figures 9, 10 and 11 show the results when the disappearance model parame-
ters were set to α = 2 and β = 1/10, which means that the signals disappear
almost ten times faster than in the previous figures. It can be seen that in
this case the signals are estimated to disappear and reappear also when there
are random gaps in the signals due to uneven measurement times. This re-
sult is quite natural, because the model states that even quite small gaps in
the measurement sequence (or actually in the signal) should be interpreted as
disappearances and reappearances of the signal.

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

5

Time

Fig. 6. Filtering result of the 1D scenario with an unknown number of signals and
parameters α = 2 and β = 1. The circles represent the estimated starting points of
the signals.

4.3 Tracking an Unknown Number of Targets in 2D

In this section we demonstrate the algorithm in case of an unknown number
of targets moving in 2D space. The prior model for the data associations is
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Fig. 7. Estimated number of signals in the 1D scenario with an unknown number
of signals and parameters α = 2 and β = 1.
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Fig. 8. Smoothing result of the 1D scenario with an unknown number of signals and
parameters α = 2 and β = 1. The circles represent the estimated starting points of
the signals.

defined such that only zero or one associations with each target on single scan
is allowed.
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Fig. 9. Filtering result of the 1D scenario with an unknown number of signals and
parameters α = 2 and β = 1/10. The circles represent the estimated starting points
of the signals.
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Fig. 10. Estimated number of signals in the 1D scenario with an unknown number
of signals and parameters α = 2 and β = 1/10.

The dynamic model for the targets is




xj,k

yj,k

ẋj,k

ẏj,k




=




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







xj,k−1

yj,k−1

ẋj,k−1

ẏj,k−1




+ qk−1, (48)
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Fig. 11. Smoothing result of the 1D scenario with an unknown number of signals
and parameters α = 2 and β = 1/10. The circles represent the estimated starting
points of the signals.

where qk−1 is process noise. The model for the measurements zk is

z1,k = xk + rx,k
z2,k = yk + ry,k

(49)

where rx,k, ry,k,∼ N(0, σ2). The sampling period ∆t = 1/100, process noise
q = 1/10 in x and y directions, and measurement variance σ2 = 1/202.

The detection probability of each target pd = 95% and at each time step a
random number of clutter measurements on area [−2, 2]×[−2.2] is drawn from
a Poisson distribution with mean 1. The clutter measurement prior is chosen
to restrict maximum the number of data associations per target to one. The
birth/death model parameters are set to pb = 1/100, α = 2 and β = 1/2. The
number of Monte Carlo samples was N = 100.

Figures 12, 13 and 14 show the filtering results, estimated number of targets
and smoothed results, respectively. Again, a slight delay in the estimated tar-
get disappearance can be seen after the actual disappearance, but yet the es-
timated trajectories follow the true trajectories quite well. Also the estimated
number of targets matches the actual number of targets well.

The restriction of maximum number of data associations per target is very
important for tracking performance, especially when the amount of clutter
is significant. As we have seen 100 particles is enough for in this particular
scenario, when the restriction is used. A quick test shows that if the restriction
is not used, even with 1000 particles the result is much worse.
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Fig. 12. Filtering result of the 2D scenario with an unknown number of targets. The
circles represent the estimated starting points of the signals.
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Fig. 13. Estimated number of targets in the 2D scenario with an unknown number
of targets.

5 Conclusions and Discussion

In this article we have presented an extension of the Rao-Blackwellized Monte
Carlo data association (RBMCDA) algorithm [1] to tracking an unknown num-
ber of targets. The algorithm is based on constructing a Rao-Blackwellized
particle filtering algorithm for the probabilistic model constructed for the tar-
get states, the data associations and the birth and death stochastic processes.
Simulations were used for demonstrating the performance of the algorithm.
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Fig. 14. Smoothing result of the 2D scenario with an unknown number of targets.
The circles represent the estimated starting points of the signals.

The first extension to the RBMCDA in [1] is that the data associations are no
longer required to be independent over target tracks. This allows considerable
higher clutter densities, because the restriction of one data association per tar-
get on each time instance can be included into the model. As we have shown,
this restriction can be modeled as an mth order Markov chain, which does not
suffer from the combinatorial explosion of MHT. This is because finding the
optimal (MAP) data association history is replaced with random sampling,
which generates samples from the joint posterior distribution of target states
and data associations and all possible data association on each time instance
do not need to be evaluated. The price paid is that the minimum data asso-
ciation error (MAP) optimal solution is no longer available, but fortunately
minimum mean squared error (MMSE) type estimates of target states can be
still optimally computed from the posterior distribution.

The second extension is that the number of targets does not need to be known
in advance and it can be time varying. Due to limiting the number of deaths
between the measurements in the method, the computational complexity is of
the same order as in the case of a known number of targets. This complexity
should be approximately linear with respect to number of targets. Also, when
the number of targets increases, the number of particles should be increased,
which increases the computational complexity proportionally to the number
of particles.
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