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Abstract

We show how spatio-temporal Gaussian pro-
cess (GP) regression problems (or the equiv-
alent Kriging problems) can be formulated
as infinite-dimensional Kalman filtering and
Rauch-Tung-Striebel (RTS) smoothing prob-
lems, and present a procedure for con-
verting spatio-temporal covariance functions
into infinite-dimensional stochastic differen-
tial equations (SDEs). The resulting infinite-
dimensional SDEs belong to the class of
stochastic pseudo-differential equations and
can be numerically treated using the meth-
ods developed for deterministic counterparts
of the equations. The scaling of the computa-
tional cost in the proposed approach is linear
in the number of time steps as opposed to
the cubic scaling of the direct GP regression
solution. We also show how separable covari-
ance functions lead to a finite-dimensional
Kalman filtering and RTS smoothing prob-
lem, present analytical and numerical exam-
ples, and discuss numerical methods for com-
puting the solutions.

1 Introduction

Gaussian process (GP) regression (O’Hagan, 1978;
Rasmussen and Williams, 2006) is a Bayesian machine
learning paradigm, where the model functions are as-
sumed to be realizations from a Gaussian random pro-
cess prior. Learning in GP models amounts to comput-
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ing the posterior process given a set of measurements,
and prediction means computing predictive distribu-
tions of the function values at new input points. In the
usual setting, the GP is constructed by postulating the
prior mean function m0(x) and the prior covariance
function C0(x,x

′) for the Gaussian model functions
f(x). Because GP regression is formally equivalent to
Gaussian random field based Kriging in geostatistics
(Cressie, 1993), all the results presented in this paper
are also directly applicable to the corresponding geo-
statistical models.

GP regression can, in principle, be used for spatio-
temporal modeling simply by postulating the mean
and covariance functions m0(x, t) and C0(x, t;x

′, t′),
respectively, for the spatio-temporal process f(x, t).
However, this procedure leads to an unfeasible cubic
O(M3 T 3) computational cost, where M is the average
number of measurements per time step and T is the
number of time points.

Kalman filter (Kalman, 1960; Jazwinski, 1970; Gre-
wal and Andrews, 2001) is a classical algorithm, which
can be used for computing the Bayesian solutions to a
general class of temporal Gaussian processes observed
through a Gaussian linear model. Instead of postulat-
ing the mean and covariance functions for the process,
the model is constructed as the solution to a linear
stochastic differential equation (SDE) such as

df(t) = Af(t) dt+ L dW(t), (1)

where f = (f, df/dt, . . . , ds−1f/dts−1) and W(t) is a
Wiener process. The advantage of this procedure is
that the complexity of the approach is linear O(T ) in
the number of time steps. Actually, the Kalman fil-
ter only provides the forward-time posteriors of the
process and to get the full posterior one needs to use
the Rauch-Tung-Striebel (RTS) or other type of linear
smoother (Rauch et al., 1965; Grewal and Andrews,
2001). Originally, Kalman filter was derived as a com-
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putationally efficient solution to the Wiener filtering
problem (Wiener, 1950), which can be considered as
an early version of GP regression.

As the models used in Kalman filtering are also Gaus-
sian processes, one would expect that there would be
a connection between GP regression and Kalman fil-
tering. There indeed is, as has recently been explicitly
shown by Hartikainen and Särkkä (2010), but only in
the case of scalar input. In that case it is possible to in-
terpret the input as time and find a suitable linear SDE
such that its covariance function matches that of the
GP regression model. The advantage of this Kalman
filtering and smoothing formulation is that its com-
putational cost is linear in the number of time steps
O(T ) as opposed to the cubic cost O(T 3) of direct GP
regression (Hartikainen and Särkkä, 2010).

Lindgren et al. (2011) recently analyzed the classical
link (Whittle, 1954; Matérn, 1960) between station-
ary stochastic partial differential equations (SPDEs),
Gaussian fields, and Gauss-Markov random fields
(GMRFs). The methods proposed by Lindgren et al.
(2011) can be used for converting between SPDE,
covariance function, and GMRF representations of
spatio-temporal fields. But the approach does not
solve the cubic time scaling problem, because in spatio-
temporal case the approach amounts to using the
classical conversion procedure for getting the covari-
ance function C(x, t) and then approximating it with
Hilbert space methods. The approach is not linear
in time, because the straight-forward application of
the classical conversion of SPDEs to covariance func-
tions does not lead to models, which would be stable
in forward time (causal in signal processing terminol-
ogy). This means that the models are not Marko-
vian in time series sense and thus usage of Kalman
filter and smoother type linear time O(T ) algorithms
is not possible. To achieve the linear time complexity
O(T ), it is necessary to use a spatio-temporal analog of
the spectral factorization approach of Hartikainen and
Särkkä (2010). Obviously, when one uses only O(T )
basis functions, the approach of Lindgren et al. (2011)
can be made linear in time - but with the cost of very
rough approximation.

In this paper, we extend the linear-time temporal GP
regression approach (Hartikainen and Särkkä, 2010)
to spatio-temporal GP regression models by combin-
ing it with the classical conversion procedure (Whittle,
1954; Matérn, 1960; Lindgren et al., 2011). We show
how spatio-temporal GP regression can be posed as
an infinite-dimensional (or “distributed parameter”)
Kalman filtering and RTS smoothing problem (Cur-
tain, 1975; Tzafestas, 1978; Omatu and Seinfeld, 1989;
Wikle and Cressie, 1999; Cressie and Wikle, 2002), and
present a procedure for converting spatio-temporal co-

variance functions into linear causal evolution type
infinite-dimensional stochastic (partial/pseudo) differ-
ential equations, where the matrix A is replaced with
a differential or pseudo-differential operator (Lanczos,
1997; Shubin, 1987). We also show how separable co-
variance functions lead to finite-dimensional models,
which can be solved using finite-dimensional Kalman
filters and RTS smoothers. We also present simu-
lated and real data examples, and discuss on numerical
methods for computing the solutions1.

The scaling of the proposed approach is linear in the
number of time steps O(T ) as opposed to the cubic
scaling O(T 3) of the direct GP regression solution us-
ing a general spatio-temporal covariance function. The
spatio-temporal complexity of the proposed approach
depends on the approximations used and can vary
from O(M T ) with efficient sparse approximations to
O(M3 T ) when no sparse approximations are used.

2 From Gaussian Processes to

Infinite-Dimensional Filtering and

Smoothing

In this section we show how Gaussian process (GP)
regression can be seen as infinite-dimensional linear
regression, how Kalman filtering and RTS smoothing
can be seen as time-varying extensions of linear regres-
sion, and finally how Kalman filtering and smoothing
can be extended to infinite dimensions. We also dis-
cuss on computational methods, which can be used for
implementing the methods in practice.

2.1 GP Regression as Infinite-Dimensional

Linear Model

Consider the following finite-dimensional linear model

f ∼ N(m0,C0)

y = Hf + e,
(2)

where the unknown latent vector is f ∈ R
s, y ∈ R

n

is the vector of measurements, H ∈ R
n×s is the

measurement model matrix (or regressor matrix), and
e ∼ N(0,Σ) is a vector of measurement errors. The
posterior distribution of f given y is now Gaussian
p(f |y) = N(f | m̂, Ĉ) with the mean and covariance

m̂ = m0 +C0 H
T (HC0 H

T +Σ)−1[y −Hm0]

Ĉ = C0 −C0 H
T (HC0 H

T +Σ)−1HC0.
(3)

Let’s now consider the case, where f is not a vector,
but an element of an infinite dimensional Hilbert space
f(x) ∈ H(Rd). The components fi in the model (2)

1For more details, see the supplementary material.
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now correspond to values of the function f(x) with
different inputs. That is, the index i ∈ {1, . . . , n}
gets replaced with the input value x ∈ R

d. With
this identification the Gaussian prior N(m0,C0) be-
comes a Gaussian process prior GP(m0(x), C0(x,x

′))
and the matrix H becomes a vector of functionals
H : H(Rd) 7→ R

n (cf. Särkkä, 2011):

f(x) ∼ GP(m0(x), C0(x,x
′))

y = H f(x) + e,
(4)

where we still have y ∈ R
n and e ∼ N(0,Σ). The

posterior mean and covariance functions are now given
by infinite-dimensional analogs of the Equations (3):

m̂(x) = m0(x) + C0(x,x
′)H∗

× [HC0(x,x
′)H∗ +Σ]

−1
[y −Hm0(x)]

Ĉ(x,x′) = C0(x,x
′)− C0(x,x

′)H∗

× [HC0(x,x
′)H∗ +Σ]

−1
HC0(x,x

′),

(5)

where the operator multiplication from left means op-
erating to variable x and multiplication from right
means operating to x′. The ()∗ denotes an adjoint,
which in practice exchanges the roles of variables x

and x′, and transposes the matrix (cf. Särkkä, 2011).

Note that if we define the measurement model func-
tional H f(x) = (f(x1), . . . , f(xn)), then the model
reduces to

f(x) ∼ GP(m0(x), C0(x,x
′))

yj = f(xj) + ej , j = 1, . . . , n,
(6)

where (e1, . . . , en) ∼ N(0,Σ), which is just the basic
GP regression model (O’Hagan, 1978; Rasmussen and
Williams, 2006). It is easy to see that in this case the
Equations (5) also reduce to the basic GP regression
equations.

In this paper, we concentrate on spatio-temporal pro-
cesses, which means that the functions are also depen-
dent on another variable t, which can be interpreted
as time. Without loss of generality we may assume
that the measurements are obtained at certain discrete
points of time tk, k = 1, . . . , T , which do not need to
be distinct, and the model can be written in form

f(x, t) ∼ GP(m0(x, t), C0(x,x
′; t, t′))

yk = Hkf(x, tk) + ek,
(7)

where the measurements yk have dimension nk and
the measurement noises form an IID sequence ek ∼
N(0,Σk). The direct GP regression solution to this
problem could now be constructed by interpreting time
t as an additional input in Equations (5), which would
result in an algorithm with cubic computational cost
O(T 3) in number of time steps.

2.2 Infinite-Dimensional Kalman Filtering

and Smoothing

Assume that we extend the linear model (2) such that
the vector is allowed to change in time according to
a linear stochastic differential equation (SDE) model
(see, Karatzas and Shreve, 1991; Øksendal, 2003), and
a new vector of measurements is obtained at times tk
for k = 1, . . . , T :

df(t) = Af(t) dt+ L dW(t)

yk = Hk f(tk) + ek,
(8)

where f(t) ∈ R
s, A ∈ R

s×s, L ∈ R
s×q, Hk ∈ R

nk×s

are given matrices, yk ∈ R
nk , ek ∼ N(0,Σk), and

W(t) ∈ R
q is a Wiener process with a given diffusion

matrix Qc ∈ R
q×q. The prior is assumed to be given

as f(t0) ∼ N(m0,C0). As well known, the problem
of estimating f(t) given the measurements can be now
solved using the classical Kalman filter and Rauch-
Tung-Striebel (RTS) smoother (Kalman, 1960; Rauch
et al., 1965; Grewal and Andrews, 2001).

The infinite-dimensional counterpart of the model (8)
is the following:

df(x, t) = A f(x, t) dt+ L dW(x, t)

yk = Hk f(x, tk) + ek,
(9)

where x 7→ fj(x, t) ∈ H(Rd) for j = 1, . . . , s, A is a
s×smatrix of linear operators operating on x with ele-
ments Anm : H(Rd) 7→ H(Rd), L ∈ R

s×q is a matrix,
Hk is a nk × s matrix of linear functionals operating
on x with elements Hk,nm : H(Rd) 7→ R, yk ∈ R

nk ,
ek ∼ N(0,Σk), and W(x, t) is a q-dimensional vector
of Hilbert space H(Rd) valued Wiener processes with
the joint diffusion operator Qc(x,x

′). The prior is as-
sumed to be given as f(x, t0) ∼ GP(m0(x),C0(x,x

′)).
The dynamic model in the above equation now is an
infinite-dimensional linear Itô stochastic differential
equation (Da Prato and Zabczyk, 1992). If the op-
erator A happens to be a differential operator, the
equation becomes an evolution type stochastic par-
tial differential equation (Chow, 2007). However, in
this paper we consider a more general class of equa-
tions, where the operators are pseudo-differential op-
erators (Shubin, 1987). Note that the GP regression
model (4) is obtained as a special case with A = 0,
Qc(x,x

′) = 0, and only one measurement step.

The model can now be converted into an equiva-
lent discrete-time model in analogous manner to the
finite-dimensional case (see, e.g., Grewal and Andrews,
2001). First compute the evolution operator U(t) =
exp (tA), where exp(·) is the operator exponential
function. The mild solution to the stochastic equa-
tion can now be expressed as (Da Prato and Zabczyk,
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1992):

f(x, t) = U(t− s) f(x, s) +

∫ t

s

U(t− τ)L dW(x, τ),

(10)
where t and s < t are arbitrary. The second term
above is a GP with the covariance function Q(x,x′; t−
s) =

∫ t

s
U(t− τ)LQc(x,x

′)LTU
∗(t− τ) dτ , and thus

we can express the model (9) at times tk as the follow-
ing discrete-time model (cf. Wikle and Cressie, 1999;
Cressie and Wikle, 2002; Gelfand et al., 2010, Part V):

f(x, tk) = U(∆tk) f(x, tk−1) + vk(x)

yk = Hk f(x, tk) + ek,
(11)

where ∆tk = tk − tk−1 and vk(x) ∼
GP(0,Q(x,x′; ∆tk)). Note that the discretiza-
tion above is exact, because it is the mild solution
to the infinite-dimensional stochastic differential
equation, not an approximation to it. If we want to
predict the values at certain new time points t∗, we
need to include them as additional measurement-less
time points to the discretization above.

The infinite-dimensional Kalman filter and smoother
(see, e.g., Tzafestas, 1978; Omatu and Seinfeld, 1989;
Cressie and Wikle, 2002) can be now written in the fol-
lowing form, which is formally equivalent to the finite-
dimensional case with matrices replaced with opera-
tors and functionals:

• Filtering: Starting from m0(x) and C0(x), per-
form the following for k = 1, . . . , T :

m−

k (x) = U(∆tk)mk−1(x)

C−

k (x,x
′) = U(∆tk)Ck−1(x,x

′)U∗(∆tk)

+Q(x,x′; ∆tk)

mk(x) = m−

k (x) +C−

k (x,x
′)H∗

k

×
[

Hk C
−

k (x,x
′)H∗

k +Σk

]−1

× [yk −Hk m
−

k (x)]

Ck(x,x
′) = C−

k (x,x
′)−C−

k (x,x
′)H∗

k

×
[

Hk C
−

k (x,x
′)H∗

k +Σk

]−1

×Hk C
−

k (x,x
′).

• Smoothing: Starting from ms
T = mT and Cs

T =
CT , perform the following for k = T − 1, . . . , 0:

Gk(x) = Ck(x,x
′)U∗(∆tk)

[

C−

k+1(x,x
′)
]−1

ms
k(x) = mk(x) +Gk

[

ms
k+1(x)−m−

k+1(x)
]

Cs
k(x,x

′) = Ck(x,x
′) +Gk(x)

×
[

Cs
k+1(x,x

′)−C−

k+1(x,x
′)
]

G∗

k(x),

where []−1 is interpreted as matrix or operator inverse.

The smoothing pass results in the mean and covariance
functions, ms

k(x) and Cs
k(x,x

′), which are conditioned
to the measurements y1, . . . ,yT . Thus, for example,
the marginal posterior of f(x∗, tk), where x

∗ is a given
test point is

p(f(x∗, tk) |y1, . . . ,yT )

= N(f(x∗, tk) |ms
k(x

∗),Cs
k(x

∗,x∗)).
(12)

With this formulation, the smoothing gives the GP re-
gression predictions only at times tk, but to get solu-
tions at arbitrary times, it is easy to include additional
test time points t∗ without measurements to the set of
times tk. The marginal likelihood needed in param-
eter estimation can be evaluated as p(y1, . . . ,yT ) =
∏T

k=1 N(yk |Hk m
−

k (x),Hk C
−

k (x,x
′)H∗

k +Σk).

2.3 Computational Methods

The actual implementation of the infinite-dimensional
Kalman filter and smoother requires computation of
the exponential of the operator exp (tA) as well as
a few other infinite-dimensional operations. Fortu-
nately, all the involved operations can be performed
with the well-known analytical and numerical methods
for partial differential equations, evolution equations
and pseudo-differential equations (see, e.g., Robinson,
2001; Zinn-Justin, 2002; Pivato, 2010; Lamoureux and
Margrave, 2008; Lindgren et al., 2011). Particularly
useful methods are basis function expansion based
methods such as eigenfunction expansions, Galerkin
approximations (e.g. FEM), and point collocation
methods. The basis function approach was also used
for approximating the space-time Kalman filter by
Wikle and Cressie (1999). Methods such as finite-
differences (FD) approximations or FFT based spec-
tral methods can also be sometimes used.

One particularly useful special class of models are the
models, which are “diagonal” with respect to the input
variable x. This means that the operator matrix A

and functional matrices Hk in the model (9) are in
fact constant matrices:

df(x, t) = Af(x, t) dt+ L dW(x, t)

yk = Hk f(x, tk) + ek.
(13)

If we are interested in the values of the process
at certain finite set of input points x1, . . . ,xn only
(say, at training and test sets), then we can reduce
the above model into a finite-dimensional state space
model by defining the augmented state as fa(t) =
(f(x1, t), . . . , f(xn, t)). The model now becomes finite-
dimensional and we can use the conventional finite-
dimensional Kalman filtering and smoothing tech-
niques for computation. This approach has been used,
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for example, in the recent articles of Hartikainen et al.
(2011) and Hiltunen et al. (2011).

3 Converting Covariance Functions to

Stochastic Equations

In this section, we present a method for convert-
ing space-time covariances into equivalent infinite-
dimensional stochastic differential equations. We as-
sume that the Gaussian processes are stationary, which
means that their covariance functions can be written
as functions of single d-dimensional input variable. We
use slight abuse of notation and write stationary co-
variance function C(x,x′) = C(x−x′) simply as C(x).
In the case of spatio-temporal covariances, the station-
ary covariance functions are denoted as C(x, t).

3.1 General Conversion Procedure

Assume that we have been given a stationary (scalar)
covariance function C(x, t) for a spatio-temporal pro-
cess f(x, t), where x ∈ R

d and t ∈ R. We now want to
form an infinite-dimensional SDE, whose solution (ap-
proximately) has the same covariance function. By the
Fourier transform we can compute the corresponding
spectral density S(ωx, ωt), where ωx ∈ R

d and ωt ∈ R.
The next task is to find a function G(iωx, iωt), which
is rational in variable iωt as follows:

G(iωx, iωt)

=
b0(iωx)

(iωt)N + aN−1(iωx) (iωt)N−1 + · · ·+ a0(iωx)
,

(14)

such that its absolute value approximates the spectral
density well: S(ωx, ωt) ≈ G(iω, iωt)G(−iω,−iωt).
One practical way to form this kind of approxima-
tion – if the spectral density does not already have
the suitable form – is to Taylor expand the inverse of
spectral density in terms of (iωt)

2, which gives 2N ’th
order polynomial approximation of the form

1

S(ωx, ωt)
≈ c0(iωx)+c2(iωx) (iωt)

2+c4(iωx)ω
4
t + · · ·
(15)

Other methods such as orthogonal polynomials or
point-wise polynomial fitting could be used equally
well. We can then do spectral factorization with re-
spect the variable iωt as was done in Hartikainen and
Särkkä (2010).

Once we have obtained the rational approximation
(14), we can write down the equation for the (general-
ized) Fourier transform of f(x, t) formally as follows:

F (iωx, iωt) = G(iωx, iωt)N(iωx, iωt), (16)

where N(iωx, iωt) is the formal Fourier transform
of the space-time white noise with unity spectral
density. The spectral density of F (iωx, iωt) is
now |F (iωx, iωt)|2 = G(iωx, iωt)G(−iωx,−iωt) ≈
S(ωx, ωt) as desired. The inverse Fourier transform
f̃(iωx, t) of F (iωx, iωt) with respect to time can now
be implemented by as follows (cf. Hartikainen and
Särkkä, 2010):

df̃(iωx, t)

=











0 1
. . .

. . .

0 1
−a0(iωx) −a1(iωx) . . . −aN−1(iωx)











× f̃(iωx, t) dt+











0
...
0
1











dW̃ (iωx, t),

(17)

where the actual process is the first component f̃ , f̃1
and t 7→ W̃ (iωx, t) is a scalar Wiener process with
diffusion constant |b0(iωx)|2.
By taking the inverse Fourier transform F−1

x [] with
respect to the input variable and writing the result in
stochastic differential equation form gives the following
stochastic evolution equation:

df(x, t) =











0 1
. . .

. . .

0 1
−A0 −A1 . . . −AN−1











f(x, t) dt

+











0
...
0
1











dW (x, t),

(18)

where W (x, t) is a Hilbert space valued Wiener pro-
cess with stationary diffusion operator Qc(x,x

′) ,

Qc(x) = F−1
x [|b0(iωx)|2]. The operators Aj are linear

operators defined in terms of their Fourier transforms:

A0 = F−1
x [a0(iωx)],

A1 = F−1
x [a1(iωx)],

. . .

AN−1 = F−1
x [aN−1(iωx)].

(19)

If the terms aj(iωx) happen to be rational functions,
the operators are integro-differential operators. In par-
ticular, if they happen to be polynomials the Equa-
tion (18) becomes so called stochastic partial differ-
ential equation (SPDE) of the evolution type. If the
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terms are nor polynomials or rational functions, the
operators are so called pseudo-differential operators
and the Equation (18) becomes a stochastic pseudo-
differential equation or a fractional stochastic equa-
tion, which type of equations have been recently stud-
ied, for example, by Kelbert et al. (2005); Angulo et al.
(2008).

3.2 Separable Covariance Functions

One useful special case is obtained, when the covari-
ance function is separable C(x, t) = C(x)C(t). Then
the spectral density is also separable S(ωx, ωt) =
S(ωx)S(ωt), and the transfer function (14) can be se-
lected to be of the form

G(iωx, iωt) =
b0(iωx)

(iωt)N + aN−1 (iωt)N−1 + · · ·+ a0
,

(20)
where |b0(iωx)|2 = const × S(ωx), and aj are con-
stants, which can be easily determined with the one-
dimensional procedure presented by Hartikainen and
Särkkä (2010). Comparing to Equations (17) and (18)
it is now easy to see that we get an equation of the
“diagonal” form (13), where the diffusion operator of
the Wiener process W (x, t) is constant times C(x).
As discussed in Section 2.3, this model can be then
reduced to a finite-dimensional state space model and
thus the estimation becomes very light.

Example 3.1 (Squared exponential covariance). As-
sume that the space-time covariance function is given
by the squared exponential (SE) covariance function,
which indeed is separable:

C(x, t) = exp
(

−αx ||x||2 − αt t
2
)

= exp
(

−αx ||x||2
)

exp
(

−αt t
2
)

.
(21)

Using the procedure in Section 4.2 of (Hartikainen and
Särkkä, 2010) we can now find the state space model
parameters A, L and qc for the time part defined by
C(t) and S(ωt). The resulting infinite-dimensional
SDE will then be of the form (13), where the diffusion
operator of the Wiener process is qc exp

(

−αx ||x||2
)

.

4 Analytical and Numerical Results

4.1 Cressie & Huang Spatio-Temporal

Covariance Function

Consider the stationary covariance function intro-
duced in Example 1 of (Cressie and Huang, 1999):

C(x, t) =
σ2

(a2t2 + 1)d/2
exp

(

− b2||x||2
a2t2 + 1

)

. (22)

Taking Fourier transform with respect to x and t gives
the spectral density

S(ωx, ωt)

=
2σ2π(d+1)/2

a ||ωx|| bd−1
exp

(

−||ωx||2
4b2

)

exp

(

− b2

a2||ωx||2
ω2
t

)

.

(23)

The fourth order Taylor series expansion approxima-
tion can now be formed as follows:

exp

(

b2

a2||ωx||2
ω2
t

)

≈ 1

2

(

b2

a2||ωx||2
)2

×
(

2

(

a2||ωx||2
b2

)2

− 2

(

a2||ωx||2
b2

)

(iωt)
2 + (iωt)

4

)

.

(24)

The roots of the polynomial on the right are given as
r = ±21/4 exp(±iπ/8) ||ωx|| (a/b), and thus the stable
roots are rs = −21/4 exp(±iπ/8) ||ωx|| (a/b). Thus, we
get the following stable transfer function:

G(iωx, iωt) =
b0(iω)

(iωt)2 + a1 (iωt) + a0
, (25)

where

a0 = 21/2 ||ωx||2
(a

b

)2

a1 = 25/4 cos
(π

8

)

||ωx||
(a

b

)

|b0(iωx)|2 =

(

4σ2π(d+1)/2a3

bd+5

)

||ωx||3 exp
(

−||ωx||2
4b2

)

.

(26)

The operators in (18) are now given as

A0 = F−1
x [21/2 ||ωx||2 (a/b)2]

= −21/2 (a/b)2 ∇2

A1 = F−1
x [25/4 cos(π/8) ||ωx|| (a/b)]

= 25/4 cos(π/8) (a/b)
√

−∇2,

(27)

where ∇2 = ∂2/∂x2
1 + · · · + ∂2/∂x2

d is the Laplacian,
and thus the resulting pseudo-differential evolution
equation is of the form

df(x, t)

=

(

0 1

21/2 (a/b)2∇2 −25/4 cos(π/8) (a/b)
√
−∇2

)

× f(x, t) dt+

(

0
1

)

dW (x, t).

(28)

To evaluate the accuracy of the above approximation,
we formed a finite dimensional approximation to the
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Figure 1: Spectrum of Cressie & Huang model with
d = 1, a = 1/10, b = 1/10, σ = 10 (top left) and
the covariance function (top right). Spectrum of the
stochastic equation (bottom from left), and its covari-
ance function (bottom right).

equation on finite range x ∈ [−100, 100] by projecting
the process f(x, t) onto the first 50 eigenfunctions of
the Laplace operator with Dirichlet boundary condi-
tions.

The original spectral density and covariance function
together with the spectral density and covariance func-
tion of the above equation with scalar x are shown
in Figure 1. It can be seen that the spectra and co-
variance functions indeed are very similar, although,
slight approximation induced differences can be seen.
The predictions of the GP regression solution and its
Kalman/RTS approximation are shown in Figure 2
and the predictions are indeed very similar. With M
eigenfunctions and T measurements, the computations
need by the Kalman/RTS approach are of the order
M3 T , whereas the requirements for GP solution are
of the order T 3. Thus with the used values M = 50
and T = 500 then Kalman/RTS is a couple of orders
of magnitude lighter than the GP regression solution.

4.2 Modeling of US Monthly Precipitation

and Temperature Data

As a real world modeling problem we consider spatio-
temporal regression of monthly precipitation and tem-
perature minimum/maximum data2 collected in the
US from years 1895-1997. There are 11918 measure-
ments stations for the precipitation data and 8125 for
the temperatures. Subsets of this data were used by
Paciorek and Schervish (2006); Vanhatalo and Vehtari
(2008) to assess spatial regression models. High frac-
tion of the measurements is missing, and our aim is

2
http://www.image.ucar.edu/GSP/Data/US.monthly.met/

Figure 2: Prediction with Cressie & Huang covariance
function with GP regression formulas (left), and with
eigenfunction expansion approximation to the infinite-
dimensional Kalman filter and RTS smoother (right).
The 500 training points are shown with blue dots.

to fill out the missing measurements by taking ac-
count of the spatio-temporal correlations in the data.
As the size of original data is very large we focus on
(roughly) the same subset of data as used by Paciorek
and Schervish (2006). The subset is collected from a
rectangular area ([−109.5,−101]× [36.5, 41.5] lon/lat)
around Colorado and comprises of 502 stations for the
precipitation and 423 for the temperature readings.
The total number of measurements in the subset are
372873 for precipitation, 336156 for maximum temper-
ature and 336720 for minimum temperature.

We used 10-fold cross-validation for comparing the
predictive performance of models with and without
a temporal model. The baseline is independent GP
(IGP) for each month separately. For the model that
takes into account the temporal dynamics we imple-
mented a spatio-temporal GP (STGP) with a separa-
ble covariance function C(x, t) = Cx(x)Ct(t), where
the spatial covariance function Cx(x) was a Matérn
covariance with smoothness parameter νx = 3/2. For
the temporal covariance Ct(t) we also used the Matérn
class, and tested two different smoothness parame-
ters νt ∈ {1/3, 3/2}. To speed up the computations
we implemented sparse approximations for both types
of models. In particular, we focused on the fully in-
dependent conditional (FIC) approximation (see, e.g.,
Quiñonero-Candela and Rasmussen, 2005), which was
recently considered for separable spatio-temporal GPs
by Hartikainen et al. (2011). The model here is the
same, with the exception that Hartikainen et al. (2011)
considered non-Gaussian likelihoods whereas we can
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now assume a Gaussian noise model for the precipi-
tation and temperature measurements. The hyperpa-
rameters of both models were optimized with respect
to marginal likelihood.

Table 1: Cross-validation based approximations of
MSEs for different models of the US monthly precip-
itation and temperature minima/maxima. The errors
are with respect to normalized measurements.

GP Prec. Tmax. Tmin.
STGP(1/2) 0.22 (0.01) 0.029 (0.003) 0.028 (0.003)
STGP(3/2) 0.25 (0.02) 0.034 (0.003) 0.032 (0.004)
IGP 0.30 (0.02) 0.065 (0.003) 0.050 (0.006)

Table 1 shows the estimated predictive mean squared
error (MSE) values and their standard errors for all
the considered models with 256 inducing points. The
spatio-temporal GP with temporal smoothness param-
eter ν = 1/2 clearly is the best model in all the cases.
Johns et al. (2003) discussed that utilization of tem-
poral information might reduce MSE by 1% − 2% for
the precipitation data. Based on our results, in the
considered subset, the temporal information reduces
error at least 20% in the precipitation and even more
in the temperatures. Figure 3 shows the MSE values
of all the considered models as a function of number of
inducing points m, which were placed in a regular grid
over the data. It can be seen that although the num-
ber of inducing points indeed affects the MSE values,
taking the temporal information into account always
reduces the error.

5 Conclusion and Discussion

In this paper, we have shown how spatio-temporal
Gaussian process (GP) regression can be formulated
as an infinite-dimensional Kalman filtering and RTS
smoothing problem, and presented a method for
converting spatio-temporal covariance functions to
infinite-dimensional stochastic differential equations.
Using simulated and real-world data we have shown
that the proposed method is useful also in practice.
The clear advantage of the method is that the com-
putational cost is linear with respect to the number of
time steps in contrast to the cubic scaling of the direct
GP regression. The disadvantage is that the resulting
stochastic equations can be quite complicated and we
often need to resort to approximations such as basis
function expansions. To further speed up the com-
putations it is also possible to combine the proposed
approach with sparse approximations as was done in
the US monthly precipitation and temperature data
example presented in this paper. Although in this pa-
per we have used the terminology of GP regression, the
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Figure 3: Prediction MSEs as function of number of
inducing points for precipitation (top), maximum tem-
perature (middle) and minimum temperature (bot-
tom) with the US monthly data.

results also apply to the corresponding Gaussian ran-
dom field based enviromental and Kriging models used
in geostatistics (Cressie, 1993; Lindgren et al., 2011),
because the mathematical formulation of the models
is the same.
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Quiñonero-Candela, J. and Rasmussen, C. E. (2005).
A unifying view of sparse approximate Gaussian
process regression. JMLR, 6:1939–1959.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaus-
sian Processes for Machine Learning. MIT Press.

Rauch, H. E., Tung, F., and Striebel, C. T. (1965).
Maximum likelihood estimates of linear dynamic
systems. AIAA Journal, 3(8):1445–1450.

Robinson, J. C. (2001). Infinite-Dimensional Dynamic
Systems. Cambridge University Press.
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SUPPLEMENTARY MATERIAL FOR

“Infinite-Dimensional Kalman Filtering Approach

to Spatio-Temporal Gaussian Process Regression”

1 Introduction

1.1 Wiener Process and White Noise

In the actual paper, we have denoted stochastic differential equations in Itô
notation (cf. Karatzas and Shreve, 1991; Øksendal, 2003) such as

df(t) = Af(t) dt+ L dW(t), (1)

where W(t) is a Wiener process (or Brownian motion) with diffusion matrix
Qc. The Wiener process is a Gaussian process with statistics:

E[W(t)] = 0

E[W(t)WT (s)] = Qc min (s, t) .
(2)

In this supplementary material we will rewrite the equation (1) in differential
equation form:

df(t)/dt = Af(t) + Lw(t), (3)

where the driving process w(t) is a Gaussian white noise with statistics

E[w(t)] = 0

E[w(t)wT (s)] = Qc δ(s− t),
(4)

and can be considered as the formal derivative of Wiener process w(t) =
dW(t)/dt. Here Qc is called the spectral density of the white noise process.
The space-time white noise can be defined in analogous manner.

The white noise notation is very convenient in practical computations, be-
cause in many cases the differential equations can be treated as if they were
deterministic differential equations. For this reason this notation is often pre-
ferred in engineering literature (cf. Jazwinski, 1970; Grewal and Andrews, 2001).
However, it is important to make sure that every operation is indeed valid in
rigorous Itô calculus sense (Karatzas and Shreve, 1991; Øksendal, 2003), and
treat the white noise notation only as a convenient notation for the actual Itô

1



calculus in operation. To emphasis the actual meaning of the equations, we
have chosen to use the Itô notation in the paper itself.

The background of the notation is that in rigorous sense, we cannot directly
define differential equations driven by a white noise such as (3). Let’s formally
integrate the equation (3), which gives an integral equation of the form

f(t)− f(t0) =

∫ t

t0

Af(t) dt+

∫ t

t0

Lw(t) dt. (5)

Now the last integral cannot be defined as Riemann integral, because the white
noise process is formally non-continuous everywhere. However, it can be de-
fined as so called Itô stochastic integral (see, e.g. Karatzas and Shreve, 1991;
Øksendal, 2003) provided that we interpret the term w(t) dt as increment of
Wiener process W(t). In Itô formalism the equation can be written in form

f(t)− f(t0) =

∫ t

t0

Af(t) dt+

∫ t

t0

L dW, (6)

where dW is the Wiener process increment. The second integral is now stochas-
tic integral with respect to the stochastic “measure” W(t), the Wiener process.
If we drop the integral signs and consider small values of t− t0, the equation can
be written in the more compact form (1), which is the most common notation
for Itô stochastic differential equations in stochastics literature. The solution
f(t) of an Itô stochastic differential equation is called an Itô process. Note that
the equation can be formally written as

df(t)/dt = Af(t) + L dW/dt, (7)

and comparing to Equation (3) reveals that the white noise process can be con-
sidered as the formal derivative of Wiener process dW/dt. However, a slightly
problematic thing is that the Wiener process is everywhere non-differentiable,
and this causes appearance of the delta function in the covariance of white noise.

For the above reasons we also use the Itô notation for infinite-dimensional
stochastic differential equations in the actual paper, because there the situation
is analogous to the finite-dimensional case. In this supplement we use the white
noise notation, because it is easier when doing the actual analytic calculations.

1.2 Multi-Dimensional Fourier Transform

The Fourier transform of function f(x) : R
d 7→ R is here defined as

F [f ](ω) =

∫

Rd

f(x) exp(−iωT x) dx. (8)

The inverse transform is

F−1[F ](x) =
1

(2π)d

∫

Rd

F (ω) exp(iωT x) dω. (9)
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where F (ω) = F [f ](ω). Fourier transforms are rarely explicitly computed,
but precomputed tables are often used instead (see, e.g. R̊ade and Wester-
gren, 2004). One-dimensional Fourier transform pairs have been extensively
tabulated in literature and because exp(±iωT x) =

∏

j exp(±iωj xj) multi-
dimensional Fourier transforms can be computed as sequential application of
single-dimensional transforms. The Fourier transform of a vector valued func-
tion can be computed by applying Fourier transform to each of the components
of the vector separately.

The important properties, which make Fourier transform particularly useful
for solving linear ordinary and partial differential equations are the following:

• Linearity: If f(x) and g(x) are arbitrary functions and a, b ∈ R are con-
stants, then:

F [a f + b g] = aF [f ] + bF [g]. (10)

• Derivative: If f(x) is a k times differentiable function, defined on whole
space Rd and vanishing at infinity, then the Fourier transform of the partial
derivative ∂kf/∂xk

i is

F [∂kf/∂xk
i ] = (iωi)

k F [f ]. (11)

That is, the Fourier transform maps derivatives to polynomials and thus
transforms ordinary and partial differential equations into algebraic equa-
tions.

• Convolution: The convolution of functions f(x) and g(x) defined on whole
space R

d as above can be defined as

(f ∗ g)(x) =
∫

Rd

f(x− x′) g(x′) dx′. (12)

The Fourier transform of the convolution is then the product of Fourier
transforms of f and g:

F [f ∗ g] = F [f ]F [g]. (13)

The Fourier transform is also useful in computing the covariance functions of
stochastic ordinary and partial differential equations due to the following prop-
erties:

• Wiener-Khinchin: If f(x) is a zero mean wide sense stationary random
field with covariance function

Cf (u) = E[f(x) f(x+ u)], (14)

then the spectral density Sf (ω) of the process f(x) is the Fourier transform
of Cf (u):

Sf (ω) = F [Cf ]. (15)

3



• If h(x) is a function and H(iω) is Fourier transform (i.e., the transfer
function), then the spectral density of the convolution process g(x) =
h(x) ∗ f(x) is

Sg(ω) = H(iω)Sf (ω)H(−iω) = |H(iω)|2 Sf (ω). (16)

The Gaussian spatial white noise process can be defined as a random field w(x)
with the properties:

E[w(x)] = 0

E[w(x)w(x+ u)] = q δ(u).
(17)

The spectral density of the white noise process can be obtained as the Fourier
transform of the covariance function Cw(u) = q δ(u) and it is given as

Sw(ω) = q. (18)

Due to this property the parameter q or its matrix equivalent in the definition
of white noise is often called the spectral density of the white noise process.

In this document and in the paper write we stationary covariance function
C(x,x′) = C(x−x′) simply as C(x). In the case of spatio-temporal covariances,
the stationary covariance functions are denoted as C(x, t).

2 Details of Squared Exponential Covariance Func-

tion Example

The squared exponential (or exponential of square) class of covariance functions
has the form

C(x) = exp
(
−αx2

)
, (19)

where in the parameterization of Rasmussen and Williams (2006) we have α =
1/(2L2). If we rename one of the input as t, and use separate scales for time
and input, we get

C(x, t) = exp
(
−αx x

2 − αt t
2
)

= exp
(
−αx x

2
)
exp

(
−αt t

2
) (20)

which can be seen to be separable in space and time. The corresponding spectral
density is also separable

S(ωx, ωt) =

(
π

αx

)d/2

exp

(

− ω
2
x

4αx

) (
π

αt

)1/2

exp

(

− ω2
t

4αt

)

(21)

Following the procedure presented by Hartikainen and Särkkä (2010) we can
now approximate the last term with a polynomial in ω2

t :

exp

(

− ω2
t

4αt

)

≈ 1

a0 + a1 (iωt)2 + · · ·+ aN (iω)2N
. (22)
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We can then form the spectral factorization, which will gives

1

a0 + a1 (iωt)2 + · · ·+ aN (iω)2N

=

(
1

b0 + b1 (iωt) + · · ·+ bN (iωt)N

)

︸ ︷︷ ︸

Ht(iωt)

(
1

b0 + b1 (−iωt) + · · ·+ bN (−iωt)N

)

︸ ︷︷ ︸

Ht(−iωt)

(23)

where Ht(iωt) has poles only in the upper half plane. Thus we get the approx-
imation

S(ωx, ωt) ≈ Ŝ(ωx, ωt) = |Ht(iωt)|2 Sx(ωx), (24)

where

Sx(ωx) =

(
π

αx

)d/2(
π

αt

)1/2

exp

(

− ω
2
x

4αx

)

. (25)

Let ωx be fixed and consider the process f̃ satisfying the stochastic differential
equation

b0 f̃(ωx, t) + b1
∂f̃(ωx, t)

∂t
+ · · ·+ bN

∂N f̃(ωx, t)

∂tN
= w̃(ωx, t), (26)

where t 7→ w̃(ωx, t) is a white noise process with spectral density Sx(ωx). The
process now has the spectral density, which was defined in the Equation (24).
Taking inverse Fourier transform with respect to the space then implies that
the process satisfying the stochastic equation

b0 f(x, t) + b1
∂f(x, t)

∂t
+ · · ·+ bN

∂Nf(x, t)

∂tN
= w(x, t), (27)

where w(x, t) is a time-white process with spatial spectral density (25), and
thus exponential covariance function, has the spectral density (24) and thus
approximately the covariance function (20).

If we define f = (f, ∂f/∂t, . . . , ∂N−1f/∂tN−1), it is easy to see that the
above equation can be written in form

∂f(x, t)

∂t
= Af(x, t) + Lw(x, t) (28)

where A and L are constant matrices.

3 Details of the Cressie & Huang Example

Consider the stationary covariance function introduced in Example 1 of Cressie
and Huang (1999):

C(x, t) =
σ2

(a2t2 + 1)d/2
exp

(

− b2||x||2
a2t2 + 1

)

. (29)
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The spectral density is Gaussian in space and thus we get the spatial Fourier
transform easily:

Fx[C(x, t)] =
σ2πd/2

bd
exp

(

−a2t2 + 1

4b2
||ωx||2

)

=
σ2πd/2

bd
exp

(

−||ωx||2
4b2

)

exp

(

−a2||ωx||2
4b2

t2
)

.

(30)

Taking Fourier transform with respect to t is again a Gaussian transform for
the last term, which gives the spectral density

S(ωx, ωt) =
σ2πd/2

bd
exp

(

−||ωx||2
4b2

)(
2b π1/2

a ||ωx||

)

exp

(

− b2

a2||ωx||2
ω2
t

)

=
2σ2π(d+1)/2

a ||ωx|| bd−1
exp

(

−||ωx||2
4b2

)

exp

(

− b2

a2||ωx||2
ω2
t

)

.

(31)

Let’s form the following Taylor series approximation to the inverse of the last
term, write it in terms of iωt and factor out the highest order term:

exp

(
b2

a2||ωx||2
ω2
t

)

≈ 1 +

(
b2

a2||ωx||2
)

ω2
t +

1

2

(
b2

a2||ωx||2
)2

ω4
t

= 1−
(

b2

a2||ωx||2
)

(iωt)
2 +

1

2

(
b2

a2||ωx||2
)2

(iωt)
4

=
1

2

(
b2

a2||ωx||2
)2
(

2

(
a2||ωx||2

b2

)2

− 2

(
a2||ωx||2

b2

)

(iωt)
2 + (iωt)

4

)

(32)

The roots of the polynomial on the right are given as

r = ±21/4 exp(±iπ/8) ||ωx|| (a/b), (33)

and thus the stable roots are

rs = −21/4 exp(±iπ/8) ||ωx|| (a/b). (34)

By expanding the corresponding polynomial, we get the following:

(iωt)
2 + 25/4 cos(π/8) ||ωx|| (a/b) (iωt) + 21/2 ||ωx||2 (a/b)2. (35)

Thus, if we define

H(iωx, iωt) =
1

(iωt)2 + 25/4 cos(π/8) ||ωx|| (a/b) (iωt) + 21/2 ||ωx||2 (a/b)2
.

(36)
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then H is a time-stable transfer function such that

S(ωx, ωt) ≈ H(iωx, iωt)Sw(ωx)H(−iωx,−iωt) (37)

where

Sw(ωx) =
2σ2π(d+1)/2

a ||ωx|| bd−1
exp

(

−||ωx||2
4b2

)

2

(
a2||ωx||2

b2

)2

=

(
4σ2π(d+1)/2a3

bd+5

)

||ωx||3 exp
(

−||ωx||2
4b2

) (38)

Now let w(x, t) be a time-white Gaussian process with spectral density function
Qw(x) = F−1

x [Sw(ωx)] and define the operators

A0 = F−1
x [21/2 ||ωx||2 (a/b)2]

A1 = F−1
x [25/4 cos(π/8) ||ωx|| (a/b)],

(39)

then the process f(x, t) approximately has the covariance function C(x, t):

∂2f(x, t)

∂t2
+A1

∂f(x, t)

∂t
+A0f(x, t) = w(x, t). (40)

The first of the operators is just

A0 = 21/2 (a/b)2 F−1
x [||ωx||2] = −21/2 (a/b)2 ∇2 (41)

The second operator can be written as

A1 = 25/4 cos(π/8) (a/b)F−1
x [||ωx||] = 25/4 cos(π/8) (a/b)

√

−∇2 (42)

In numerical computations the operator square root can be usually easily im-
plemented. Thus the resulting pseudo-differential evolution equation is of the
form

∂

∂t

(
f(x, t)
∂f(x,t)

∂t

)

=

(
0 1

c0 ∇2 −c1
√
−∇2

)(
f(x, t)
∂f(x,t)

∂t

)

+

(
0
1

)

w(x, t), (43)

where c0 = 21/2 (a/b)2 and c1 = 25/4 cos(π/8) (a/b) are constants.
To compute approximation to the covariance function with scalar x, let’s

approximate the operators with their Dirichlet counterparts on finite interval
[−L,L]. Consider the eigenvalue problem

−∇2vn(x) = −∂2vn(x)

∂x2
= λ2

n vn(x), vn(−L) = vn(L) = 0, (44)

The normalized (squared) eigenvalues and orthonormal eigenfunctions for n =
1, 2, . . . are:

λn =
nπ

2L

vn(x) =

√

1

L
sin

(
nπ (x+ L)

2L

)

.
(45)
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Thus the 1d Laplacian can be associated with the formal kernel

K0(x, x
′) = −

∑

n

λ2
n vn(x) vn(x

′), (46)

such that

∇2f(x, t) =

∫

K0(x, x
′) f(x, t) dx (47)

If we expand f(x, t) on the basis {vn(x)} then we have

f(x, t) =
∑

n

fn(t) vn(x). (48)

where fn(t) =
∫
f(x, t) vn(x) dx. Thus

∇2f(x, t) =

∫

K0(x, x
′) f(x, t) dx

= −
∑

n,n′

λ2
n vn(x) vn(x

′) fn′(t) vn′(x) dx

= −
∑

n,n′

λ2
n vn(x) δn,n′ fn′(t)

= −
∑

n

λ2
n vn(x) fn(t).

(49)

The square root operator
√
−∇2 now has the formal kernel

K1(x, x
′) =

∑

n

λn vn(x) vn(x
′). (50)

We can now form (random) series expansion for w(x, t) as follows:

w(x, t) =
∑

n

wn(t) vn(x)

wn(t) =

∫

w(x, t) vn(x) dx.

(51)

The differential equation can now be expressed in terms of the basis coefficients
as follows:

d

dt

(
fn(t)
dfn(t)
dt

)

=

(
0 1

−c0 λ
2
n −c1 λn

)(
fn(t)
dfn(t)
dt

)

+

(
0
1

)

wn(t). (52)

which should be true for all n. The joint spectral density Q̃ for the process
noise can be derived as follows:

E[wn(t)wm(s)] = E[

∫∫

w(x, t) vn(x)w(x
′, s) vm(x′) dx dx′]

=

∫∫

vn(x) E[w(x, t)w(x
′, s)] vm(x′) dx dx′

=

∫∫

vn(x)Qc(x− x′) vm(x′) dx dx′ δ(t− s).

(53)
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i.e.,

Q̃nm =

∫∫

vn(x)LQc(x− x′)LT vm(x′) dx dx′. (54)

with L = (0, 1). Thus we have a model of the form

df = Af dt+ dW, (55)

where f = (f1, df1/dt, f2, df2/dt, . . . , ) and

A =










(
0 1

−c0 λ
2
1 −c1 λ1

)

(
0 1

−c0 λ
2
2 −c1 λ2

)

. . .










(56)

and the diffusion matrix of W is Q̃. The measurement model is then

yk = H̃k f + ek, (57)

where H̃k = (v1(xk) 0 v2(xk) 0 · · · ).
The equation for the mean m and covariance P of f are now given as

dm

dt
= Am (58)

dP

dt
= AP+PAT + Q̃. (59)

Let P∞ be the solution to the equation

AP∞ +P∞ AT + Q̃ = 0 (60)

Then we have

Cf (τ) = E[f(t) fT (t+ τ)] =

{
P∞ exp(τ A)T , for τ ≥ 0
exp(−τ A)P∞ , for τ < 0

(61)

where

exp(τ A) =










exp

{(
0 1

−c0 λ
2
1 −c1 λ1

)

τ

}

exp

{(
0 1

−c0 λ
2
2 −c1 λ2

)

τ

}

. . .










(62)
If we define v(x) = (v1(x), v2(x), . . .), then we have

f(x, t) =
∑

n

fn(t) vn(x) = vT (x)Hf(t) (63)
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where H is a matrix with elements Hj,2j = 1 and thus

E[f(x, t) f(x+ ξ, t+ τ)] = E[vT (x)Hf(t)vT (x+ ξ)Hf(t+ τ)]

= vT (x)H E[f(t) f(t+ τ)]HT v(x+ ξ)

= vT (x)HCf (τ)H
T v(x+ ξ).

(64)

Thus we can approximate the covariance function defined by the stochastic
equation by

Cf (x, t) ≈ vT (0)HCf (t)H
T v(x). (65)

The covariance function can be now numerically computed by using a finite
number of terms from this expansion. The Kalman filtering and RTS smoothing
based estimation solution can be done by using a finite number of series terms
in dynamic model (55) and measurement model (57).

4 Details of Modeling US Monthly Precipita-

tion and Temperature Data

4.1 Model

We implemented the separable spatio-temporal GPs as finite-dimensional SDEs
of form as

df(t) = Af(t) dt+ L dW(t), (66)

where matrix A is a dN×dN block diagonal matrix, where the N×N blocks are
constructed in such a way that they determine the desired temporal covariance
function Ct(t) for the n components (see Hartikainen and Särkkä, 2010, for
more details). In this example we used the Matérn temporal covariance model.
For the spatial covariance Cx(x) we used 2-dimensional Matérn covariance (ν =
3/2), which is used in forming the elements of diffusion matrix Qc of W(t).

To further lighten up the computations we formed the finite-dimensional
model (66) to a latent inducing process u(t) on fixed spatial locations {xi

u}mi=1,
and constructed a linear-Gaussian mapping from the inducing process to a
infinite-dimensional latent process as f(x, t)|u(t) ∼ N(H(x)u(t),R(x), where
matrices in the mapping are set to H(x) = Cf ,uC

−1
u,u and R(x) = diag(Cf ,f −

Cx,u C−1
u,u Cu,x), where the covariance terms are evaluated with the spatial co-

variance function Cx. This can be seen as dynamic formulation of fully inde-

pendent conditional (FIC) sparse approximation recently proposed in the stan-
dard GP regression framework. Different approximations can be constructed by
choosing the matrices H and R appropriately.

To achieve the computational efficiency (i.e., O(dm2) complexity in mea-
surement updates) with the low-rank model one can use the matrix inversion
lemma to avoid the inversion of n×n matrix and rather invert a m×m matrix.
In Kalman filtering context the matrix inversion lemma is commonly imple-
mented such that the estimated states and covariances are replaced with infor-

mation vectors and information matrices, which are defined as Ik = P−1
k and
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ik = P−1
k mk. This formulation is Kalman filter is commonly termed as informa-

tion filter (Grewal and Andrews, 2001). In addition to computational efficiency
the information filter is more numerically robust with the low-rank model, which
is particularly important in marginal likelihood based hyperparameter learning.

4.2 Data

The data we consider in the paper consists of monthly precipitation and tem-
perature minimum/maximum measurements 1 collected in the US from years
1895-1997. There are 11918 measurements stations for the precipitation data
and 8125 for the temperatures. Subsets of this data were used by Paciorek and
Schervish (2006) and Vanhatalo and Vehtari (2008) to assess spatial regression
models. High fraction of the measurements is missing, and our aim is to fill
out the missing measurements by taking account of the spatio-temporal cor-
relations in the data. As the size of original data is very large we focus on
(roughly) the same subset of data as in Paciorek and Schervish (2006). The
subset is collected from a rectangular area ([−109.5,−101]× [36.5, 41.5] lon/lat)
around Colorado and comprises of 502 stations for the precipitation and 423
for the temperature readings. The total number of measurements in the subset
are 372873 for precipitation, 336156 for maximum temperature and 336720 for
minimum temperature.

Locations of the measurements stations for precipitation data are shown
in Figure 1. Examples of time-series of each data set are shown in Figure 1.
The time dynamics of precipitation are much more chaotic than the naturally
periodic behavior of temperature readings.

Figure 1: Locations of the measurement stations in the precipitation data. Black
dots represent the locations in the whole data, and red dots the locations in the
subsample, which used in the experiments. Plots with temperature data are
similar, but the number of stations is smaller.

1http://www.image.ucar.edu/GSP/Data/US.monthly.met/
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Figure 2: Example time series of each data and estimate of them obtained
with STGP (ν = 3/2). Black dots are the measurements, dark gray the mean
estimate and light gray the 95% uncertainty.
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