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ABSTRACT

In this paper, we show how temporal (i.e., time-series)

Gaussian process regression models in machine learning can

be reformulated as linear-Gaussian state space models, which

can be solved exactly with classical Kalman filtering the-

ory. The result is an efficient non-parametric learning algo-

rithm, whose computational complexity grows linearly with

respect to number of observations. We show how the re-

formulation can be done for Matérn family of covariance

functions analytically and for squared exponential covari-

ance function by applying spectral Taylor series approxima-

tion. Advantages of the proposed approach are illustrated

with two numerical experiments.

1. INTRODUCTION

In this paper, we shall show how a wide class of tempo-

ral (i.e., time-series) Gaussian process regression problems

can be reformulated as Kalman filtering and Rauch-Tung-

Striebel (RTS) smoothing of linear state space models. The

advantage of the Kalman filter and RTS smoother based ap-

proach is that the computational complexity grows as O(n),
where n is the number of measurements. With direct Gaus-

sian process regression methods the complexity is O(n3),
although in temporal regression context much work has been

done (e.g., [1, 2]) to alleviate the computational burden of

the direct GP solution by utilizing the structural form of the

joint covariance matrix of the process (e.g., by representing

it in Toeplitz form).

In order to apply the Kalman filters and smoothers, the

model has to be reformulated as estimation of the state of a

multi-dimensional continuous-time Gauss-Markov process.

We shall show how for Matérn class of covariance func-

tions this reformulation can be done without an approxima-

tion and how a simple spectral Taylor series approximation
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can be used for squared exponential covariance functions.

This approach is directly applicable to cases with missing

or non-uniformly sampled data, which is a typical problem

for methods utilizing the temporal structure of data in co-

variance representations.

The underlying idea of efficient inference of Gaussian

processes using a state space formulation is not new, be-

cause the contribution of Kalman’s original 1960’s article

[3] was exactly this kind of re-formulation of the filtering

problem of Wiener [4]. The idea of Bayesian modeling

of unknown processes as Gaussian processes has also been

widely utilized in communications theory [5, 6], but the phi-

losophy differs slightly from that of Gaussian process re-

gression in machine learning [7]. The idea of approximating

the squared exponential covariance function with spectral

Taylor series expansion is also not new, and can be found,

for example, in [8].

Kalman filtering and Rauch-Tung-Striebel smoothing are

also mature subjects, and the solutions to discrete time and

continuous time linear Gaussian state space models (Gaus-

sian processes) were first presented in articles [3, 9, 10].

Although the articles talk in language of least squares and

maximum likelihood estimates, the results are completely

equivalent to the full Bayesian treatment of the problems

(see, e.g. [5, 6, 11]). This connection of Gaussian process

regression to Kalman filtering and other fields was also dis-

cussed in the discussion part of O’Hagan’s 1978 article [12].

In this paper we shall apply some these useful classi-

cal results in machine learning context to derive efficient

learning algorithms for temporal Gaussian process regres-

sion problems.

2. GAUSSIAN PROCESS REGRESSION

Gaussian process (GP) regression [12, 7] concerns the prob-

lem of estimating the value of a function f : ℜD 7→ ℜ on

arbitrary input point t∗ ∈ ℜD, given a set of data D =
{ti, yi}n

i=1, where the training targets yi ∈ ℜ are usually

assumed to be the function values corrupted with Gaussian



noise:

yi = f(ti) + ǫi, ǫi ∼ N(0, σ2
noise).

The non-parametric GP approach is based on assuming that

the joint prior for values of f on any collection of points t

is Gaussian, commonly denoted as

f(t) ∼ GP(0, k(t, t′, θ)),

where k is a covariance function with hyperparameters θ.

This means that the prior for the function values on a finite

set of input points {t1 · · · tn} is p(f(t1), . . . , f(tn)) ∼
N(0,K), where the entries of the covariance matrix K are

formed by evaluating the covariance function as [K]ij =
k(ti, tj , θ). Due to the well known properties of the Gaus-

sian distribution it is straightforward to show that given the

data set D and hyperparameters θ, the posterior of f on in-

put t∗ is also Gaussian

p(f(t∗)|y, θ) = N(µGP(t∗), σ
2
GP(t∗)),

with mean and variance

µGP(t∗) = k∗,f (K + σ2
noiseI)

−1y

σ2
GP(t∗) = k(t∗, t∗) − k∗,f (K + σ2

noiseI)
−1kT

∗,f ,

where the element i of row vector k∗,f is the prior covari-

ance between f(t∗) and f(ti) as [k∗,f ]i = k(t∗, ti, θ).
The central problem with the brute-force implementa-

tion of GP models are the O(n3) and O(n2) scalings of

computational complexity and memory requirements, with

respect to number of data points. In this paper we concen-

trate on time series data (D = 1) and stationary covariance

functions (i.e., k(t, t′, θ) = k(τ, θ), where τ = t − t′), and

show how the inference can be done in O(n) in such cases

with the most commonly used classes of covariance func-

tions. For notational compactness we omit the hyperparam-

eters θ from the results below by treating them as fixed, and

discuss their selection briefly in Section 5.

3. SPECTRA AND COVARIANCE FUNCTIONS OF

STOCHASTIC DIFFERENTIAL EQUATIONS

In this article we aim to represent the random process f(t)
having the covariance function k(τ) as output of a linear

time invariant (LTI) stochastic differential equation (SDE),

which are efficient to analyse with Kalman filtering theory

discussed in Section 5. In particular, we consider mth order

scalar LTI SDEs of form

dmf(t)

dtm
+am−1

dm−1f(t)

dtm−1
+ · · ·+a1

df(t)

dt
+a0f(t) = w(t),

(1)

where a0, . . . , am−1 are known constants and w(t) is a white

noise process with spectral density Sw(ω) = q. This can be

written as first order (vector) Markov process1

dx(t)

dt
= Fx(t) + Lw(t), (2)

where the state x(t) contains the derivatives of f(t) up to

order m − 1 as x(t) = (f(t) df(t)
dt · · · dm−1f(t)

dtm−1 )T . The

matrices F ∈ ℜm×m and L ∈ ℜm×1 can be written as

F =











0 1
. . .

. . .

0 1
−a0 · · · −am−2 −am−1











, L =











0
...

0
1











.

This representation is known as the companion form [13] of

(1), and there exists other forms as well (such as the canoni-

cal controllable and observable forms [14]), which could be

more stable numerically, should some problems arise dur-

ing the inference. With LTI SDEs of orders considered in

this paper, however, we did not experience any problems.

By defining H = (1 0 · · · 0)T we can extract f(t)
from x(t) as f(t) = Hx(t). This can be used to com-

pute the power spectral density of f(t) by replacing x(t)
with Hx(t) in Equation (2) and formally taking the Fourier

transform on both sides of it, which after some algebra yields

S(ω) = H(F + iωI)−1L q LT [(F − iωI)−1]T HT . (3)

In stationary state (i.e. when the process has run an infi-

nite amount of time) the covariance function of f(t) is the

inverse Fourier transform of its spectral density:

k(τ) =
1

2π

∫ ∞

−∞

S(ω)eiωτdω.

This can be calculated more easily as [6]

k(τ) =

{

HP∞Φ(τ)T HT , if τ ≥ 0

HΦ(−τ)P∞HT , if τ < 0,
(4)

where Φ(τ) = exp(F τ) and P∞ is the stationary covari-

ance of x(t). The latter can be obtained as the solution of

the matrix Riccati equation

dP

dt
= FP + PFT + L q LT = 0. (5)

4. CONVERTING COVARIANCE FUNCTIONS TO

STOCHASTIC DIFFERENTIAL EQUATIONS

Assume now that we have been given a stationary covari-

ance function k(τ) for f(t), and we wish to represent f(t)

1Note that here we use the white-noise notation for SDEs, whereas

the corresponding formal Ito SDE notation would be dx = Fx(t) dt +
L dβ(t), where β(t) is a Brownian motion.



in form (2) to achieve the linear time inference. The real

question now is how to form F, L and q such that the first

component of x(t) has the desired covariance function k(τ).
This is possible to do for covariance functions, whose spec-

tral density S(ω) can be represented as a rational function

of the form

S(ω) =
(constant)

(polynomial in ω2)
, (6)

which is in fact the functional form of (3). By applying

spectral factorization [4, 5, 15] we can write the spectral

density as

S(ω) = H(iω) q H(−iω), (7)

where the transfer functions H(iω) and H(−iω) have all of

their poles in upper and lower planes, respectively. We can

construct a stable (causal) Markov process with the former,

which means that when a white noise process with spectral

density q is fed as input to the system with transfer func-

tion H(iω), the output has the desired spectral density. This

leads to following frequency domain representation of the

process:

(iω)mF (ω)+hm−1(iω)m−1F (ω) · · · +h0F (ω) = W (ω),

where W (ω) and F (ω) are the formal Fourier transforms of

w(t) and f(t), and h0, . . . , hm−1 the coefficients of poly-

nomial in the denominator of H(iω). In time domain:

dmf(t)

dtm
+hm−1

dm−1f(t)

dtm−1
+· · ·+h1

df(t)

dt
+h0f(t) = w(t),

which is of the desired Markov form of Equation (1). Next

we show how some of the most widely used classes of co-

variance functions can be transformed to models of this form.

4.1. Whittle-Matérn Family

A common class of covariance functions is the Whittle-Matérn

family [16, 17, 7]

kν(τ) = σ2 21−ν

Γ(ν)

(√
2ν

l
τ

)ν

Kν

(√
2ν

l
τ

)

, (8)

where l and σ2 are the length scale and magnitude hyperpa-

rameters controlling the overall correlation scale and vari-

ability of the process, Kν is a modified Bessel-function of

the second kind and ν a parameter controlling the smooth-

ness of the process. With ν = 1/2 this is equivalent with the

exponential covariance k(τ) = σ2 exp(−|τ |/l), and when

ν → ∞ we obtain the squared exponential (see Section

4.2). This parametrization is the same as in the book of Ras-

mussen and Williams [7]. With one-dimensional processes

the spectral density of the Matérn covariance function (8) is

S(ω) = σ2 2π1/2Γ(ν + 1/2)

Γ(ν)
λ2ν(λ2 + ω2)−(ν+1/2),

where we have denoted λ =
√

2ν/l. In this paper we limit

our view to cases in which ν = p + 1/2, where p is a non-

negative integer. Thus,

S(ω) ∝ (λ2 + ω2)−(p+1).

Clearly this is of the desired rational function form (6), and

no approximation is needed. We can rewrite this as

S(ω) ∝ (λ + iω)−(p+1)(λ − iω)−(p+1),

from which we can extract the transfer function of a stable

Markov process as

H(iω) = (λ + iω)−(p+1).

The corresponding spectral density of the white noise pro-

cess w(t) is

q =
2σ2π1/2λ(2p+1)Γ(p + 1)

Γ(p + 1/2)
. (9)

For example, with p = 1 the corresponding LTI SDE model

reads

dx(t)

dt
=

(

0 1
−λ2 −2λ

)

x(t) +

(

0
1

)

w(t),

and with p = 2

dx(t)

dt
=





0 1 0
0 0 1

−λ3 −3λ2 −3λ



 x(t) +





0
0
1



 w(t),

where in both cases the spectral density q of white noise

process w(t) is evaluated by Equation (9).

The spectral densities and covariance functions for con-

structed LTI SDE models with p ∈ {0, 1, 2, 5} evaluated by

equations (3) and (4) are shown in Figure 1. It can be seen

that the Matérn family of covariance functions provides a

flexible way of controlling the smoothness of the process.

4.2. Squared Exponential

A very commonly used covariance function in machine learn-

ing setting is the squared exponential covariance function

k(τ) = σ2 exp

(

− τ2

2l2

)

, (10)

where the length scale and magnitude hyperparameters l
and σ2 have the same interpretation as with the Matérn co-

variance function (8). A process f(t) with covariance func-

tion (10) is infinitely differentiable, which means that there

does not exists a finite-dimensional Markov process having

exactly the same spectral density as f(t), but in this article

we aim to find a finite-dimensional Markov process, which

has approximately the same spectral density.
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Fig. 1. Spectral density S(ω) and covariance function k(τ)
of the Matérn covariance function model with parameter p
having the values p ∈ {0, 1, 2, 5}.

By denoting κ = 1
2l2 the exact spectral density S(ω)

of the process f(t) with the squared exponential covariance

function is

S(ω) = σ2

√

π

κ
exp

(

−ω2

4κ

)

.

If we think S(ω) as function of ω2, we may form Taylor

series approximation to 1/S(ω) as follows:

1

S(ω)
=

1

σ2

√

κ

π
exp

(

ω2

4κ

)

≈ 1

σ2

√

κ

π

(

1 +
ω2

4κ
+

1

2!

ω4

(4κ)2
+ · · · + 1

N !

ω2N

(4κ)N

)

=
1

σ2N !(4κ)N

√

κ

π

(

N !(4κ)N + N !(4κ)N−1ω2

+
N !(4κ)N−2

2!
ω4 + · · · + ω2N

)

To simplify the results, we shall assume that N is even. That

is, the spectral density of the original process can be approx-

imated by the following spectral density:

Ŝ(ω) = σ2N !(4κ)N

√

π

κ

(

1
∑N

n=0
N !(4κ)N−n

n! ω2n

)

,

which is spectral density of a finitely differentiable process,

because it is a rational function of ω2. With this we can

now approximate the spectral density of the infinitely dif-

ferentiable process f(t).
In order to find the transfer function H(iω) in (7) we

write denominator P (iω) of the spectral density Ŝ(ω) as a

polynomial of iω:

P (iω) =

N
∑

n=0

N !(−1)n(4κ)N−n

n!
(iω)2n, (11)

Because N is even, the coefficient of (iω)2N is 1 and we

can now form H(iω) as follows:
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Fig. 2. Spectral density S(ω) and covariance function k(τ)
of the approximate squared exponential covariance function

model with orders N ∈ {2, 4, 6}. For comparison, val-

ues for the exact squared exponential are also shown, but

it is hardly distinguishable from the approximation of order

N = 6.

1. Compute the roots of the polynomial P (x) defined in

Equation (11). This can be done numerically with a

computer program.

2. Construct two polynomials P−(x) and P+(x), where

P−(x) has the roots of P (x) with negative real parts

and P+(x) has the roots with positive real parts and

P (x) = P−(x)P+(x).

3. The transfer function and the corresponding white noise

specral density are now given as

H(iω) =
1

P−(iω)
, q = σ2N !(4κ)N

√

π

κ
.

This approximation was originally presented briefly in [8],

but here we present its connection to GP regression models

more explicitly and show how it can be a practical tool for

inference.

The approximate spectral densities and covariance func-

tions for N ∈ {2, 4, 6} evaluated by equations (3) and (4)

are shown in Figure 2. The spectral density around the

origin is well approximated with all the presented orders,

which is natural since the Taylor series approximation was

formed around the origin. With N = 2 the tails of the den-

sity deviate from the true values, while with N = 4 there

is only some difference and with N = 6 the approximate

density cannot be easily distinguished from the exact value.

With the covariance function the effect approximation is the

opposite: with N = 2 the tail of the function is reasonably

well approximated, but the near the origin there is a con-

siderable offset from the true value. With N = 4 there is

a noticeable deviation from the exact function, while with

N = 6 the function is practically identical to the true one.



5. INFERENCE WITH STATE-SPACE MODELS

The continuous time LTI model (2) above can be trans-

formed into discrete time model of the following form:

xk = Ak−1xk−1 + qk−1, qk−1 ∼ N(0,Qk−1),

where the state transition and process noise covariance ma-

trices can be calculated analytically (see, e.g., [15]) as

Ak−1 = Φ(∆tk)

Qk−1 =

∫ ∆tk

0

Φ(∆tk − τ)L q LT Φ(∆tk − τ)T dτ,

where ∆tk = tk−tk−1. The measurement model is of form

yk = Hxk + ǫk, ǫk ∼ N(0, σ2
noise).

The posterior distribution of state trajectory p(x1:n|y1:n) for

this class of models can be exactly solved with the well-

known Kalman filter [3] and Rauch-Tung-Striebel smoother

[10] algorithms, which scale O(nm3) and O(nm2) in com-

putational complexity and memory requirements. In this

context, the state dimensionality m is typically very small

(say, less than 10) and constant with respect to n, so the

scalings are O(n) in practice. If one wishes to obtain the

same result as with the brute-force naive GP implementa-

tion reviewed in Section 2, estimation with Kalman filter

must be started from the prior p(x0) = N(0,P∞), where

P∞ is the stationary covariance solving the Riccati equa-

tion (5). It is also useful to note that missing data can be

treated by simply skipping the update step of Kalman filter,

and non-uniformly sampled data by recomputing Ak and

Qk between the measurements.

In machine learning context it has become accustomary

to choose the covariance function hyperparameters θ with

GP models by optimizing the marginal data likelihood

p(y1:n|θ) =
n
∏

i=1

p(yi|y1:i−1, θ).

These factors are computed as by-products of the Kalman

filter algorithm, and thereby our approach naturally lends

itself to marginal likelihood based learning of hyperparame-

ters. The computations are especially efficient since smooth-

ing pass is not even required when computing the marginal

likelihood terms. It is also possible to recursively calcu-

late analytic gradients of p(yi|y1:i−1, θ) with respect to θ,

but due to space limitations we omit the details of the fairly

lengthy equations here.

6. EXPERIMENTS

6.1. Comparison of Computational Complexity

To illustrate the efficiency of the proposed approach we cal-

culated the CPU time needed for inference with both the
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Fig. 3. Time needed for inference for the Kalman filtering

approach (m ∈ {0, 6}) and for the naive GP implementation

as a function of data set size. Panel (a) shows the times in

normal scale and panel (b) in log scale.

proposed Kalman filtering method and the brute-force GP

implementation of Section 2 with different data set sizes.

The results are shown in Figure 3 (a) (normal scale) and (b)

(log scale). It is obvious that the brute-force GP method is

applicable only to moderately sized data sets (n is about few

thousand) in a reasonable time frame, while the Kalman fil-

ter/smoother can be applied to practically endless streams

of data. For example, with m = 6 and n = 106 the infer-

ence takes about 10 seconds and with n = 107 about 100

seconds 2.

6.2. Effect of Approximation

In this experiment we investigate numerically how the ap-

proximation made for the squared exponential covariance

function affects the regression results when compared to so-

lution of a exact squared exponential model. We generated

100 time series with a GP having the squared exponential

covariance function (l = 10 and σ2 = 1) with each data set

containing n = 500 data points. For 400 of these we created

observations with the Gaussian noise model (σ2
noise = 0.1),

and treated all 500 as test points.

Figures 4 (a) and (b) show the root mean square error

(RMSE) and log predictive density (LPD) values averaged

over the 100 simulation runs for the squared exponential and

Matérn LTI SDE models as well as for the exact GP. With

all models the hyperparameters were fixed to true values. It

can be seen that squared exponential models converge more

quickly toward the exact squared exponential solution. This

does not, however, mean that squared exponential is the bet-

ter model in all situations as its hard to imagine a real phys-

ical process, which is infinitely differentiable.

As a second experiment we generated another set of 100

time series with the covariance function of the GP changed

2The software was written in Matlab and run on Intel Core 2 Quad 2.83

GHz, 8GB RAM desktop PC. The multi-threading abilities of Matlab were

disabled in all of the experiments to make comparisons fair.
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Fig. 4. Estimation of a processes with a exact squared expo-

nential (panels (a) and (b)) and Matérn ν = 5/2 (panels (c)

and (d)) covariance functions. Panels show the RMSE and

LPD values with squared exponential and Matérn LTI SDE

models with orders m = [1, . . . , 10]. In both cases values

for the exact GP solutions are also shown.

to the Matérn covariance function with ν = 5/2 (i.e. p =
2) and same hyperparameters as above. The corresponding

results are shown Figures 4 (c) and (d). Clearly the SDE and

GP versions of Matérn ν = 5/2 covariance give identical

results, which of course is to expected since there was no

need to do any approximations for the spectral density of

Matérn covariance function.

7. CONCLUSIONS

In this paper we have shown how GP regression for tempo-

ral data can be done in linear time with the most commonly

used classes of covariance functions. The approach is based

on reformulating the regression problem as a smoothing prob-

lem of a linear-Gaussian state space model. This is possible

for covariance functions whose spectral density can be rep-

resented as a rational function of squared angular frequency.

For Matérn family of covariance functions this can be done

without any approximations, and for the frequently used

squared exponential covariance by applying simple Taylor

series approximation for the spectral density.

The resulting algorithm is very efficient, and can be ap-

plied to huge temporal data sets in a reasonable time frame.

Furthermore, the approach lends itself directly to marginal

likelihood based learning of hyperparameters, and handles

missing and non-uniformly sampled data points without any

problems. Although this view on Gaussian process models

is not a new one, we expect it to gain more emphasis in fu-

ture, since the advantages of the state space representation

can be very substantial in many application areas.
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