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Chapter 1

Introduction

1.1 Why The Bayesian Approach?

The mathematical treatment of the models and algorithms in this document is
Bayesian, which means that all the results are treated as being approximations
to certain probability distributions or their parameters. Probability distributions
are used to represent both the uncertainties in the models and for modeling the
physical randomness. The theory of non-linear optimal filtering is formulated in
terms of Bayesian inference, and both the classical and recent filtering algorithms
are derived using the same Bayesian notation and formalism.

The selection of the Bayesian approach is more a practical engineering than
a philosophical decision. It simply is easier to develop a consistent, practically
applicable theory of recursive inference under the Bayesian philosophy than under,
for example, the least squares or the maximum likelihood philosophy. Another
useful consequence of selecting the Bayesian approach is that least squares, max-
imum likelihood and many other philosophically different results can be obtained
as special cases or re-interpretations of the Bayesian results. Of course, quite often
the same thing applies also the other way around.

Modeling uncertainty as randomness is a very “engineering” way of modeling
the world. It is exactly the approach also chosen in statistical physics as well as
in financial analysis. The Bayesian approach to optimal filtering is far fromnew
(see, e.g., Ho and Lee, 1964; Lee, 1964; Jazwinski, 1966; Stratonovich, 1968;
Jazwinski, 1970), because the theory already existed at the same time the seminal
article of Kalman (1960b) was published. The Kalman filter was first derived from
the least squares point of view, but non-linear filtering theory has beenBayesian
from the beginning (see, e.g., Jazwinski, 1970).

One should not take the Bayesian way of modeling unknown parameters as
random variables too literally. It does not imply that one believes that there really
is something random in the parameters — it is just a convenient way of repre-
senting uncertainty using the same formalism that is used for representing ran-
domness. Random or stochastic processes appearing in the mathematical models
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are not necessarily really random in a physical sense, instead, the randomness is
just a mathematical device for taking into account the uncertainty in a dynamic
phenomenon.

But it does not matter if the randomness is interpreted as physical randomness
or as a representation of uncertainty, as long as the randomness based models
succeed in modeling the real world. In the above engineering philosophy the con-
troversy between so called “frequentists” and “Bayesians” is as futile asthe unnec-
essary controversy about interpretations of quantum mechanics, that is, whether,
for example, the Copenhagen interpretation or many worlds interpretation is the
correct one. The philosophical interpretation does not matter as long as we get
meaningful predictions from the theory.

1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
state of a time-varying system which is indirectly observed through noisy measure-
ments. Thestateof the system refers to the collection of dynamic variables such as
position, velocity, orientation, and angular velocity, which define the physical state
of the system. Thenoisein the measurements means that the measurements are
uncertain in the sense that even if we knew the true system state the measurements
would not be deterministic functions of the state, but would have a distribution of
possible values. The time evolution of the state is modeled as a dynamic system
which is perturbed by a certainprocess noise. This noise is used for modeling the
uncertainties in the system dynamics. In most cases the system is not truly stochas-
tic, but the stochasticity is only used for representing the model uncertainties.

1.2.1 Applications of Optimal Filtering

Phenomena which can be modeled as time varying systems of the above type are
very common in engineering applications. These kind of models can be found,for
example, in navigation, aerospace engineering, space engineering, remote surveil-
lance, telecommunications, physics, audio signal processing, control engineering,
finance and several other fields. Examples of such applications are the following:

• Global positioning system (GPS)(Kaplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measures arrival times of
signals from several GPS satellites and computes its position based on these
measurements. The GPS receiver typically uses an extended Kalman filter
or some other optimal filtering algorithm for computing the position and
velocity such that the measurements and the assumed dynamics (laws of
physics) are taken into account. Also the ephemeris information, which is
the satellite reference information transmitted from the satellites to the GPS
receivers, is typically generated using optimal filters.
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Figure 1.1: In GPS system, the measurements are time delays of satellitesignals and the
optimal filter (e.g., EKF) computes the position and the accurate time.

• Target tracking(Bar-Shalom et al., 2001; Crassidis and Junkins, 2004) refers
to the methodology where a set of sensors such as active or passive radars,
radio frequency sensors, acoustic arrays, infrared sensors andother types
of sensors are used for determining the position and velocity of a remote
target. When this tracking is done continuously, the dynamics of the target
and measurements from the different sensors are most naturally combined
using an optimal filter. The target in this (single) target tracking case can be,
for example, a robot, a satellite, a car or an airplane.

Sensor

angle

target

Figure 1.2: In target tracking, a sensor generates measurements (e.g.,angle measure-
ments) of the target, and the purpose is to determine the target trajectory.

• Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoli,
1999; Stone et al., 1999; Särkkä et al., 2007b) systems are used for remote
surveillance in the cases where there are multiple targets moving at the
same time in the same geographical area. This raises the concept of data
association (which measurement was from which target?) and the problem
of estimating the number of targets. Multiple target tracking systems are
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typically used in remote surveillance for military purposes, but possible civil
applications are, for example, monitoring of car tunnels, automatic alarm
systems and people tracking in buildings.

Sensor 1

Sensor 2

Sensor 3

angle 1

angle 4

angle 3

angle 2

angle 5

angle 6

target 2

target 1

Figure 1.3: In multiple target tracking the data association problem has to be solved,
because it is impossible to know without any additional information which target produced
which measurement.

• Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopes for computingthe
position and velocity of a device such as a car, an airplane or a missile.
When the inaccuracies in sensor measurements are taken into account the
natural way of computing the estimates is by using an optimal filter. Also
in sensor calibration, which is typically done in time varying environment
optimal filters are often applied.

• Integrated inertial navigation(Grewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sensors, such as altime-
ters and landmark trackers, and biased but locally accurate inertial sensors.
Combining of these different sources of information is most naturally per-
formed using an optimal filter such as the extended Kalman filter. This kind
of approach was used, for example, in the guidance system of the Apollo 11
lunar module (Eagle), which landed on the moon in 1969.

• GPS/INS navigation(Grewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation where the inertial sensors are combined with
a GPS receiver unit. In GPS/INS navigation system the short term fluctua-
tions of the GPS can be compensated with the inertial sensors and the inertial
sensor biases can be compensated with the GPS receiver. An additional
advantage of this approach is that it is possible to temporarily switch to pure
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inertial navigation when the GPS receiver is unable to compute its position
(i.e., has no fix) for some reason. This happens, for example, indoors,in
tunnels and in other cases when there is no direct line-of-sight between the
GPS receiver and the satellites.

• Brain imagingmethods such as EEG, MEG and DOT are based on recon-
struction of the source or diffusion field from noisy sensor data by using
minimum norm estimates (MNE) and its variants (Hauk, 2004; Tarantola,
2004; Kaipio and Somersalo, 2005). The minimum norm solution can also
be interpreted in Bayesian sense as a problem of estimating the field with cer-
tain prior structure from Gaussian observations. With that interpretation the
estimation problem becomes equivalent to the familiar statistical inversion
or generalized Gaussian process regression problem (Kaipio and Somersalo,
2005; Särkkä, 2011). Including dynamical priors then leads to a linear or
non-linear spatio-temporal estimation problem, which can be solved with
Kalman filters and smoothers (cf. Hiltunen et al., 2011; Särkkä et al., 2012b).
The same can be done in inversion based approaches to functional Magnetic
Resonance Imaging (fMRI) such as Inverse Imaging (InI) (Lin et al., 2006).

• Spread of infectious diseases(Anderson and May, 1991) can often be mod-
eled as differential equations for the number of susceptible, infected and
recovered/dead individuals. When uncertainties are introduced into the dy-
namic equations, and when the measurements are not perfect, the estimation
of the spread of the disease can be formulated as an optimal filtering prob-
lem.

• Biological processes(Murray, 1993) such as population growth, predator-
prey models and several other dynamic processes in biology can also be
modeled as (stochastic) differential equations. The estimation of the states
of these processes from inaccurate measurements can be formulated as an
optimal filtering problem.

• Telecommunicationsis also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectors and phase locked
loops can be interpreted to contain optimal filters (Van Trees, 1968, 1971)
as components. Also the celebrated Viterbi algorithm (Viterbi, 1967) can be
interpreted as a combination of optimal filtering and optimal smoothing of
the underlying hidden Markov model.

• Audio signal processingapplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et al., 2002) often use
TVAR (time varying autoregressive) models as the underlying audio signal
models. These kind of models can be efficiently estimated using optimal
filters and smoothers.
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• Stochastic optimal control(Maybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic controllers can typically
be found in, for example, airplanes, cars and rockets. Optimal, in addition
to the statistical optimality, means that control signal is constructed to mini-
mize a performance cost, such as expected time to reach a predefined state,
the amount of fuel consumed or average distance from a desired position
trajectory. Optimal filters are typically used for estimating the states of
the stochastic system and a deterministic optimal controller is constructed
independently from the filter such that it uses the estimate of the filter as
the known state. In theory, the optimal controller and optimal filter are not
completely decoupled and the problem of constructing optimal stochastic
controllers is far more challenging than constructing optimal filters and (de-
terministic) optimal controllers separately.

• Learning systemsor adaptive systems can often be mathematically formu-
lated in terms of optimal filters. The theory of stochastic differential equa-
tions has close relationship with Bayesian non-parametric modeling, ma-
chine learning and neural network modeling (MacKay, 1998; Bishop, 1995).
Methods similar to the data association methods in multiple target tracking
are also applicable to on-line adaptive classification (Andrieu et al., 2002).
The connection between Gaussian process regression and optimal filtering
has also been recently discussed in Särkkä et al. (2007a), Hartikainen and
Särkkä (2010) and Särkkä and Hartikainen (2012).

• Physical systemswhich are time varying and measured through nonideal sen-
sors can sometimes be formulated as stochastic state space models, and the
time evolution of the system can be estimated using optimal filters (Kaipio
and Somersalo, 2005). In Vauhkonen (1997) and more recently, for example,
in Pikkarainen (2005) optimal filtering is applied to the Electrical Impedance
Tomography (EIT) problem in a time varying setting.

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behavior are in the field of opti-
mal linear filtering. The idea of constructing mathematically optimal recursive es-
timators was first presented for linear systems due to their mathematical simplicity
and the most natural optimality criterion in both mathematical and modeling point
of view was the least squares optimality. For linear systems the optimal Bayesian
solution (with MMSE utility) coincides with the least squares solution, that is, the
optimal least squares solution is exactly the posterior mean.

The history of optimal filtering starts from theWiener filter(Wiener, 1950),
which is a frequency domain solution to the problem of least squares optimal filter-
ing of stationary Gaussian signals. The Wiener filter is still important in commu-
nication applications (Proakis, 2001), digital signal processing (Hayes, 1996) and
image processing (Gonzalez and Woods, 2008). The disadvantages ofthe Wiener
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filter are that it can only be applied to stationary signals and that the construction of
a Wiener filter is often mathematically demanding and these mathematics cannot
be avoided (i.e., made transparent). Due to the demanding mathematics the Wiener
filter can only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due
to the seminal article of Kalman (1960b), which describes the recursive solution to
the optimal discrete-time (sampled) linear filtering problem. The reason for the
success is that theKalman filtercan be understood and applied with very much
lighter mathematical machinery than the Wiener filter. Also, despite its mathemat-
ical simplicity, the Kalman filter (or actually the Kalman-Bucy filter; Kalman and
Bucy, 1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered to
belong to the class of Bayesian estimators (Ho and Lee, 1964; Lee, 1964; Jazwin-
ski, 1966, 1970). An interesting historical detail is that while Kalman and Bucy
were formulating the linear theory in the United States, Stratonovich was doing the
pioneering work on the probabilistic (Bayesian) approach in Russia (Stratonovich,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in the sixties, Kalman
filter like recursive estimators were also used in the Bayesian community and it is
not clear whether the theory of Kalman filtering or the theory ofdynamic linear
models(DLM) came first. Although these theories were originally derived from
slightly different starting points, they are equivalent. Because of Kalman filter’s
useful connection to the theory and history of stochastic optimal control, thisdoc-
ument approaches the Bayesian filtering problem from the Kalman filtering point
of view.

Although the original derivation of theKalman filterwas based on the least
squares approach, the same equations can be derived from the pure probabilistic
Bayesian analysis. The Bayesian analysis of Kalman filtering is well covered in the
classical book of Jazwinski (1970) and more recently in the book of Bar-Shalom
et al. (2001). Kalman filtering, mostly because of its least squares interpretation,
has widely been used in stochastic optimal control. A practical reason for this is
that the inventor of the Kalman filter, Rudolph E. Kalman, has also made several
contributions (Kalman, 1960a) to the theory oflinear quadratic Gaussian(LQG)
regulators, which are fundamental tools of stochastic optimal control (Stengel,
1994; Maybeck, 1982b).

1.2.3 Optimal Filtering and Smoothing as Bayesian Inference

Optimal Bayesian filtering (see, e.g. Jazwinski, 1970; Bar-Shalom et al., 2001;
Doucet et al., 2001; Ristic et al., 2004) considers statistical inversion problems,
where the unknown quantity is a vector valued time series(x1,x2, . . .) which is
observed through noisy measurements(y1,y2, . . .) as illustrated in the Figure 1.4.
An example of this kind of time series is shown in Figure 1.5. The process shown
is actually a discrete-time noisy resonator with a known angular velocity. The state
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xk = (xk ẋk)
T is two dimensional and consists of the position of the resonator

xk and its time derivativėxk. The measurementsyk are scalar observations of the
resonator position (signal) and they are corrupted by measurement noise.

observed: y1 y2 y3 y4

hidden: x1 x2 x3 x4 . . .

Figure 1.4: In discrete-time filtering a sequence of hidden statesxk is indirectly observed
through noisy measurementsyk.
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Figure 1.5: An example of time series, which models a discrete-time resonator. The actual
resonator state (signal) is hidden and only observed through the noisy measurements.

The purpose of thestatistical inversionat hand is to estimate the hidden states
{x1, . . . ,xT } given the observed measurements{y1, . . . ,yT }, which means that
in the Bayesian sense (Bernardo and Smith, 1994; Gelman et al., 1995) all we have
to do is to compute the joint posterior distribution of all the states given all the
measurements. This can be done by straightforward application of Bayes’ rule:

p(x1, . . . ,xT |y1, . . . ,yT ) =
p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT )

p(y1, . . . ,yT )
, (1.1)

where

• p(x1, . . . ,xT ), is the prior distribution defined by the dynamic model,
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• p(y1, . . . ,yT |x1, . . . ,xT ) is the likelihood model for the measurements,

• p(y1, . . . ,yT ) is the normalization constant defined as

p(y1, . . . ,yT ) =

∫

p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT ) d(x1, . . . ,xT ).

(1.2)

Unfortunately, this full posterior formulation has the serious disadvantagethat each
time we obtain a new measurement, the full posterior distribution would have to be
recomputed. This is particularly a problem in dynamic estimation (which is exactly
the problem we are solving here!), where measurements are typically obtained one
at a time and we would want to compute the best possible estimate after each
measurement. When the number of time steps increases, the dimensionality of
the full posterior distribution also increases, which means that the computational
complexity of a single time step increases. Thus eventually the computations will
become intractable, no matter how much computational power is available. With-
out additional information or restrictive approximations, there is no way of getting
over this problem in the full posterior computation.

However, the above problem only arises when we want to compute thefull
posterior distribution of the states at each time step. If we are willing to relax this a
bit and be satisfied with selected marginal distributions of the states, the computa-
tions become order of magnitude lighter. In order to achieve this, we also need to
restrict the class of dynamic models to probabilistic Markov sequences, which is
not as restrictive as it may first seem. The model for the states and measurements
will be assumed to be of the following type:

• Initial distribution specifies theprior distributionp(x0) of the hidden state
x0 at initial time stepk = 0.

• Dynamic model describes the system dynamics and its uncertainties as a
Markov sequence, defined in terms of the transition distributionp(xk |xk−1).

• Measurement modeldescribes how the measurementyk depends on the
current statexk. This dependence is modeled by specifying the distribution
of the measurement given the state,p(yk |xk).

Because computing the full joint distribution of the states at all time steps is com-
putationally very inefficient and unnecessary in real-time applications, inoptimal
(Bayesian) filteringthe following marginal distributions are considered instead:

• Filtering distributionsare the marginal distributions ofthe current statexk

giventhe current and previous measurements{y1, . . . ,yk}:

p(xk |y1, . . . ,yk), k = 1, . . . , T. (1.3)
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• Prediction distributionsare the marginal distributions of the future state,n
steps after the current time step:

p(xk+n |y1, . . . ,yk), k = 1, . . . , T, n = 1, 2, . . . , (1.4)

• Smoothing distributionsare the marginal distributions of the statexk given
a certain interval{y1, . . . ,yT } of measurements withT > k:

p(xk |y1, . . . ,yT ), k = 1, . . . , T. (1.5)

Figure 1.6: State estimation problems can be divided into optimal prediction, filtering
and smoothing depending on the time span of measurements available with respect to the
estimated state’s time.

1.2.4 Algorithms for Optimal Filtering and Smoothing

There exists a few classes of filtering and smoothing problems which have closed
form solutions:

• Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
tion is exactly Gaussian and no numerical approximations are needed.

• Rauch-Tung-Striebel smoother(RTSS) is the corresponding closed form smoother
to linear Gaussian state space models.

• Grid filters and smoothersare solutions to Markov models with finite state
spaces.

But because the Bayesian optimal filtering and smoothing equations are generally
computationally intractable, many kinds of numerical approximation methods have
been developed, for example:
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Figure 1.7: The result of computing the filtering distributions for the discrete-time res-
onator model. Theestimatesare the means of the filtering distributions and the quantiles
are the 95% quantiles of the filtering distributions.

• Extended Kalman filter(EKF) approximates the non-linear and non-Gaussian
measurement and dynamic models by linearization, that is, by forming a
Taylor series expansion at the nominal (or Maximum a Posteriori, MAP) so-
lution. This results in a Gaussian approximation to the filtering distribution.

• Extended Rauch-Tung-Striebel smoother(ERTSS) is the approximate non-
linear smoothing algorithm corresponding to EKF.

• Unscented Kalman filter(UKF) approximates the propagation of densities
through the non-linearities of measurement and noise processes by theun-
scented transform. This also results in a Gaussian approximation.

• Unscented Rauch-Tung-Striebel smoother(URTSS) is the approximate non-
linear smoothing algorithm corresponding to UKF.

• Sequential Monte Carlo methodsor particle filters and smoothersrepresent
the posterior distribution as a weighted set of Monte Carlo samples.

• Unscented particle filter(UPF) andlocal linearizationbased methods use
UKFs and EKFs, respectively, for approximating the importance distribu-
tions in sequential importance sampling.

• Rao-Blackwellized particle filters and smoothersuse closed form integration
(e.g., Kalman filters and RTS smoothers) for some of the state variables and
Monte Carlo integration for others.
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Figure 1.8: The result of computing the smoothing distributions for thediscrete-time res-
onator model. Theestimatesare the means of the smoothing distributions and the quantiles
are the 95% quantiles of the smoothing distributions. The smoothing distributions are
actually the marginal distributions of the full state posterior distribution.

• Interacting multiple models(IMM), and othermultiple modelmethods ap-
proximate the posterior distributions with a mixture of Gaussian distribu-
tions.

• Grid based methodsapproximate the distribution as a discrete distribution
on a finite grid.

• Other methodsalso exist, for example, based on series expansions, describ-
ing functions, basis function expansions, exponential family of distributions,
variational Bayesian methods, batch Monte Carlo (e.g., MCMC), Galerkin
approximations etc.



Chapter 2

From Bayesian Inference to
Bayesian Optimal Filtering

2.1 Bayesian Inference

This section provides a brief presentation of the philosophical and mathematical
foundations of Bayesian inference. The connections to classical statistical infer-
ence are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, 1994; Gelmanet al.,
1995) is to provide a mathematical machinery that can be used for modeling sys-
tems, where the uncertainties of the system are taken into account and the decisions
are made according to rational principles. The tools of this machinery are the
probability distributions and the rules of probability calculus.

If we compare the so called frequentist philosophy of statistical analysis to
Bayesian inference the difference is that in Bayesian inference the probability of an
event does not mean the proportion of the event in an infinite number of trials, but
the uncertainty of the event in a single trial. Because models in Bayesian inference
are formulated in terms of probability distributions, the probability axioms and
computation rules of the probability theory (see, e.g., Shiryaev, 1996) alsoapply
in the Bayesian inference.

2.1.2 Connection to Maximum Likelihood Estimation

Consider a situation where we know the conditional distributionp(yk |θ) of con-
ditionally independent random variables (measurements)y1, . . . ,yn, but the pa-
rameterθ ∈ R

d is unknown. The classical statistical method for estimating the
parameter is themaximum likelihood method(Milton and Arnold, 1995), where
we maximize the joint probability of the measurements, also called the likelihood
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function
L(θ) =

∏

k

p(yk |θ). (2.1)

The maximum of the likelihood function with respect toθ gives themaximum
likelihood estimate(ML-estimate)

θ̂ = argmax
θ

L(θ). (2.2)

The difference between the Bayesian inference and the maximum likelihood method
is that the starting point of Bayesian inference is to formally consider the parameter
θ as a random variable. Then the posterior distribution of the parameterθ can be
computed by using theBayes’ rule

p(θ |y1, . . . ,yn) =
p(y1, . . . ,yn |θ) p(θ)

p(y1, . . . ,yn)
, (2.3)

wherep(θ) is the prior distribution, which models the prior beliefs of the parameter
before we have seen any data andp(y1, . . . ,yn) is a normalization term, which is
independent of the parameterθ. Often this normalization constant is left out and if
the measurementsy1, . . . ,yn are conditionally independent givenθ, the posterior
distribution of the parameter can be written as

p(θ |y1, . . . ,yn) ∝ p(θ)
∏

k

p(yk |θ). (2.4)

Because we are dealing with a distribution, we might now choose the most probable
value of the random variable (MAP-estimate), which is given by the maximum of
the posterior distribution. However, an optimal estimate in mean squared sense
is the posterior mean of the parameter (MMSE-estimate). There are an infinite
number of other ways of choosing the point estimate from the distribution and
the best way depends on the assumed loss function (or utility function). TheML-
estimate can be considered as a MAP-estimate with uniform prior on the parameter
θ.

One can also interpret Bayesian inference as a convenient method for includ-
ing regularization terms into maximum likelihood estimation. The basic ML-
framework does not have a self-consistent method for including regularization
terms or prior information into statistical models. However, this regularization in-
terpretation of Bayesian inference is not entirely right, because Bayesian inference
is much more than this.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are theprior modelcontaining the prelim-
inary information on the parameter and themeasurement modeldetermining the
stochastic mapping from the parameter to the measurements. Using the combina-
tion rules, namely Bayes’ rule, it is possible to infer an estimate of the parameters
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from the measurements. The probability distribution of the parameters, conditional
on the observed measurements is called theposterior distributionand it is the
distribution representing the state of knowledge about the parameters whenall the
information in the observed measurements and the model is used. Thepredictive
posterior distributionis the distribution of new (not yet observed) measurements
when all the information in the observed measurements and the model is used.

• Prior model
The prior information consists of subjective experience based beliefs about
the possible and impossible parameter values and their relative likelihoods
before anything has been observed. The prior distribution is a mathematical
representation of this information:

p(θ) = Information on parameterθ before seeing any observations. (2.5)

The lack of prior information can be expressed by using a non-informative
prior. The non-informative prior distribution can be selected in various dif-
ferent ways (Gelman et al., 1995).

• Measurement model
Between the true parameters and the measurements there often is a causal,
but inaccurate or noisy relationship. This relationship is mathematically
modeled using the measurement model:

p(y |θ) = Distribution of observationy given the parametersθ. (2.6)

• Posterior distribution
Posterior distribution is the conditional distribution of the parameters, and
it represents the information we have after the measurementy has been
obtained. It can be computed by using the Bayes’ rule:

p(θ |y) = p(y |θ) p(θ)
p(y)

∝ p(y |θ) p(θ), (2.7)

where the normalization constant is given as

p(y) =

∫

Rd

p(y |θ) p(θ) dθ. (2.8)

In the case of multiple measurementsy1, . . . ,yn, if the measurements are
conditionally independent the joint likelihood of all measurements is the
product of distributions of individual measurements and the posterior dis-
tribution is

p(θ |y1, . . . ,yn) ∝ p(θ)
∏

k

p(yk |θ), (2.9)

where the normalization term can be computed by integrating the right hand
side overθ. If the random variable is discrete the integration is replaced by
summation.
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• Predictive posterior distribution
The predictive posterior distribution is the distribution of new measurements
yn+1:

p(yn+1 |y1, . . . ,yn) =

∫

Rd

p(yn+1 |θ) p(θ |y1, . . . ,yn) dθ. (2.10)

After obtaining the measurementsy1, . . . ,yn the predictive posterior distri-
bution can be used for computing the probability distribution forn + 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parameter is the sequence of
dynamic states of a target, where the state contains the position and velocity. Or
in the continuous-discrete setting the parameter would be the random function
describing the trajectory of the target at a given time interval. In both casesthe
measurements could be, for example, noisy distance and direction measurements
produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, but also in Bayesian compu-
tations finite dimensional summaries (point estimates) are needed. This selection
of a point based on observed values of random variables is a statistical decision,
and therefore this selection procedure is most naturally formulated in terms of
statistical decision theory(Berger, 1985; Bernardo and Smith, 1994; Raiffa and
Schlaifer, 2000).

Definition 2.1 (Loss Function). A loss functionL(θ,a) is a scalar valued function
which determines the loss of taking theactiona when the true parameter value
is θ. The action (or control) is the statistical decision to be made based on the
currently available information.

Instead of loss functions it is also possible to work with utility functionsU(θ,a),
which determine the reward from taking the actiona with parameter valuesθ.
Loss functions can be converted to utility functions and vice versa by defining
U(θ,a) = −L(θ,a).

If the value of parameterθ is not known, but the knowledge of the parameter
can be expressed in terms of the posterior distributionp(θ |y1, . . . ,yn), then the
natural choice is the action which gives theminimum (maximum) of the expected
loss (utility)(Berger, 1985):

E[L(θ,a) |y1, . . . ,yn] =

∫

Rd

L(θ,a) p(θ |y1, . . . ,yn) dθ. (2.11)

Commonly used loss functions are the following:
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• Quadratic error loss: If the loss function is quadratic

L(θ,a) = (θ − a)T (θ − a), (2.12)

then the optimal choiceao is themeanof the posterior distribution ofθ:

ao =

∫

Rd

θ p(θ |y1, . . . ,yn) dθ. (2.13)

This posterior mean based estimate is often called theminimum mean squar-
ed error (MMSE)estimate of the parameterθ. The quadratic loss is the most
commonly used loss function, because it is easy to handle mathematically
and because in the case of Gaussian posterior distribution the MAP estimate
and the median coincide with the posterior mean.

• Absolute error loss: The loss function of the form

L(θ,a) =
∑

i

|θi − ai|, (2.14)

is called an absolute error loss and in this case the optimal choice is the
medianof the distribution (i.e., medians of the marginal distributions in
multidimensional case).

• 0-1 loss: If the loss function is of the form

L(θ,a) = −δ(a− θ), (2.15)

whereδ(·) is the Dirac’s delta function, then the optimal choice is the max-
imum (mode) of the posterior distribution, that is, themaximum a posterior
(MAP) estimate of the parameter. If the random variablea is discrete the
corresponding loss function can be defined as

L(θ,a) =

{
0 , if θ = a

1 , if θ 6= a.
(2.16)

2.1.5 Numerical Methods

In principle, Bayesian inference provides the equations for computing theposte-
rior distributions and point estimates for any model once the model specification
has been set up. However, the practical difficulty is that computation of theinte-
grals involved in the equations can rarely be performed analytically and numerical
methods are needed. Here we shall briefly describe numerical methods which are
also applicable in higher dimensional problems: Gaussian approximations, multi-
dimensional quadratures, Monte Carlo methods, and importance sampling.
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• Very common types of approximations areGaussian approximations(Gel-
man et al., 1995), where the posterior distribution is approximated with a
Gaussian distribution

p(θ |y1, . . . ,yn) ≈ N(θ |m,P). (2.17)

The meanm and covarianceP of the Gaussian approximation can be either
computed by matching the first two moments of the posterior distribution,
or by using the mode of the distribution as the approximation ofm and by
approximatingP using the curvature of the posterior at the mode.

• Multi-dimensional quadrature or cubature integration methodssuch as Gauss-
Hermite quadrature can also be often used if the dimensionality of the inte-
gral is moderate. In those methods the idea is to deterministically form a
representative set of sample pointsΘ = {θ(i) | i = 1, . . . , N} (sometimes
calledsigma points) and form the approximation of the integral as weighted
average:

E[g(θ) |y1, . . . ,yn] ≈
N∑

i=1

W (i) g(θ(i)), (2.18)

where the numerical values of the weightsW (i) are determined by the al-
gorithm. The sample points and weights can be selected, for example, to
give exact answers for polynomials up to certain degree or to account for the
moments up to certain degree.

• In directMonte Carlo methodsa set ofN samples from the posterior distri-
bution is randomly drawn

θ(i) ∼ p(θ |y1, . . . ,yn), i = 1, . . . , N, (2.19)

and expectation of any functiong(·) can be then approximated as the sample
average

E[g(θ) |y1, . . . ,yn] ≈
1

N

∑

i

g(θ(i)). (2.20)

Another interpretation of this is that Monte Carlo methods form an approxi-
mation of the posterior density of the form

p(θ |y1, . . . ,yn) ≈
1

N

N∑

i=1

δ(x− x(i)), (2.21)

whereδ(·) is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by thecentral limit theorem (CLT)(see, e.g.,
Liu, 2001) and the error term is, at least in theory, independent of the dimen-
sionality ofθ. The rule of thumb is that the error decreases like the square
root of the number of samples, regardless of the dimensions.
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• Efficient methods for generating non-independent Monte Carlo samples are
the Markov chain Monte Carlo(MCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed such that it has the
target distribution as its stationary distribution. By simulating the Markov
chain, samples from the target distribution can be generated.

• Importance sampling(see, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of the particles
contains a weight, which corrects the difference between the actual target
distribution and the approximation obtained from an importance distribution
π(·).
Importance sampling estimate can be formed by drawingN samples from
the importance distribution

θ(i) ∼ π(θ |y1, . . . ,yn), i = 1, . . . , N. (2.22)

The importance weightsare then computed as

w(i) =
p(θ(i) |y1, . . . ,yn)

π(θ(i) |y1, . . . ,yn)
, (2.23)

and the expectation of any functiong(·) can be then approximated as

E[g(θ) |y1, . . . ,yn] ≈
∑N

i=1w
(i) g(θ(i))

∑N
i=1w

(i)
. (2.24)

2.2 Batch and Recursive Estimation

In order to understand the meaning and applicability of optimal filtering and its
relationship with recursive estimation, it is useful to go through an example where
we solve a simple and familiar linear regression problem in a recursive manner.
After that we shall generalize this concept to include a dynamic model in order to
illustrate the differences in dynamic and batch estimation.

2.2.1 Batch Linear Regression

Consider the linear regression model

yk = θ1 + θ2 tk + ǫk, (2.25)

where we assume that the measurement noise is zero mean Gaussian with a given
varianceǫk ∼ N(0, σ2) and the prior distribution for parameters is Gaussian with
known mean and covariance,θ ∼ N(m0,P0). In the classical linear regression
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Figure 2.1: The underlying truth and the measurement data in the simple linear regression
problem.

problem we want to estimate the parametersθ = (θ1 θ2)
T from a set of measure-

ment dataD = {(y1, t1), ..., (yK , tK)}. The measurement data and the true linear
function used in simulation are illustrated in Figure 2.1.

In compact probabilistic notation the linear regression model can be written as

p(yk |θ) = N(yk |Hk θ, σ
2)

p(θ) = N(θ |m0,P0).
(2.26)

where we have introduced the matrixHk = (1 tk) andN(·) denotes the Gaussian
probability density function (see Appendix A.1). The likelihood ofyk is, of course,
conditional on the regressorstk also (or equivalentlyHk), but because the regres-
sors are assumed to be known, we will not denote this dependence explicitlyto
simplify the notation and from now on this dependence is assumed to be understood
from the context.

Thebatch solutionto this linear regression problem can be obtained by straight-
forward application of Bayes’ rule:

p(θ | y1:k) ∝ p(θ)
∏

k

p(yk |θ)

= N(θ |m0,P0)
∏

k

N(yk |Hk θ, σ
2).
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Also in the posterior distribution above, we assume the conditioning ontk and
Hk, but will not denote it explicitly. Thus the posterior distribution is denoted
to be conditional ony1:k = {y1, . . . , yk}, and not on the data setD containing
the regressor valuestk also. The reason for this simplification is that the simplified
notation will also work in more general filtering problems, where there is no natural
way of defining the associated regressor variables.

Because the prior and likelihood are Gaussian, the posterior distribution will
also be Gaussian:

p(θ | y1:k) = N(θ |mK ,PK). (2.27)

The mean and covariance can be obtained by completing the quadratic form inthe
exponent, which gives:

mK =

[

P−1
0 +

1

σ2
HTH

]−1 [ 1

σ2
HTy +P−1

0 m0

]

PK =

[

P−1
0 +

1

σ2
HTH

]−1

,

(2.28)

whereHk = (1 tk) and

H =






H1
...

HK




 =






1 t1
...

...
1 tK




 , y =






y1
...
yK




 . (2.29)

Figure 2.2 shows the result of batch linear regression, where the posterior mean
parameter values are used as the linear regression parameters.

2.2.2 Recursive Linear Regression

A recursive solutionto the regression problem (2.26) can be obtained by assuming
that we already have obtained the posterior distribution conditioned on the previous
measurements1, . . . , k − 1:

p(θ | y1:k−1) = N(θ |mk−1,Pk−1).

Now assume that we have obtained a new measurementyk and we want to compute
the posterior distribution ofθ given the old measurementsy1:k−1 and the new
measurementyk. According to the model specification the new measurement has
the likelihood

p(yk |θ) = N(yk |Hk θ, σ
2).

Using the batch version equations such that we interpret the previous posterior as
the prior, we can calculate the distribution

p(θ | y1:k) ∝ p(yk |θ) p(θ | y1:k−1)

∝ N(θ |mk,Pk),
(2.30)
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Figure 2.2: The result of simple linear regression with a slight regularization prior used
for the regression parameters. For simplicity, the variance was assumed to be known.

where the Gaussian distribution parameters are

mk =

[

P−1
k−1 +

1

σ2
HT

kHk

]−1 [ 1

σ2
HT

k yk +P−1
k−1mk−1

]

Pk =

[

P−1
k−1 +

1

σ2
HT

kHk

]−1

.

(2.31)

By using the matrix inversion lemma , the covariance calculation can be written as

Pk = Pk−1 −Pk−1H
T
k

[
HkPk−1H

T
k + σ2

]−1
HkPk−1.

By introducing temporary variablesSk andKk the calculation of mean and covari-
ance can be written in the form

Sk = HkPk−1H
T
k + σ2

Kk = Pk−1H
T
k S

−1
k

mk = mk−1 +Kk[yk −Hkmk−1]

Pk = Pk−1 −KkSkK
T
k .

(2.32)

Note thatSk = HkPk−1H
T
k +σ2 is a scalar, because measurements are scalar and

thus no matrix inversion is required.
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The equations above actually are special cases of the Kalman filter update
equations. Only the update part of the equations is required, because theestimated
parameters are assumed to be constant, that is, there is no stochastic dynamics
model for the parametersθ. Figure 2.3 illustrates the convergence of the means
and variances of parameters during the recursive estimation.

2.2.3 Batch vs. Recursive Estimation

In this section we shall generalize the recursion idea used in the previous section
to general probabilistic models. The underlying idea is simply that at each mea-
surement we treat the posterior distribution of previous time step as the prior for
the current time step. This way we can compute the same solution in a recursive
manner that we would obtain by direct application of Bayes’ rule to the whole
(batch) data set.

Thebatch Bayesian solutionto a statistical estimation problem can be formu-
lated as follows:

1. Specify the likelihood model of measurementsp(yk |θ) given the parameter
θ. Typically the measurementsyk are assumed to be conditionally indepen-
dent such that

p(y1:K |θ) =
∏

k

p(yk |θ).

2. The prior information about the parameterθ is encoded into the prior distri-
butionp(θ).

3. The observed data set isD = {(t1,y1), . . . , (tK ,yK)}, or if we drop the
explicit conditioning ontk, the data isD = y1:K .

4. The batch Bayesian solution to the statistical estimation problem can be
computed by applying Bayes’ rule

p(θ |y1:K) =
1

Z
p(θ)

∏

k

p(yk |θ).

For example, the batch solution of the above kind to the linear regression problem
(2.26) was given by Equations (2.27) and (2.28).

Therecursive Bayesian solutionto the above statistical estimation problem can
be formulated as follows:

1. The distribution of measurements is again modeled by the likelihood func-
tion p(yk |θ) and the measurements are assumed to be conditionally inde-
pendent.

2. In the beginning of estimation (i.e, at step 0), all the information about the
parameterθ we have is contained in the prior distributionp(θ).
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3. The measurements are assumed to be obtained one at a time, firsty1, theny2

and so on. At each step we use the posterior distribution from the previous
time step as the current prior distribution:

p(θ |y1) =
1

Z1
p(y1 |θ)p(θ)

p(θ |y1:2) =
1

Z2
p(y2 |θ)p(θ |y1)

p(θ |y1:3) =
1

Z3
p(y3 |θ)p(θ |y1:2)

...

p(θ |y1:K) =
1

ZK
p(yK |θ)p(θ |y1:K−1).

It is easy to show that the posterior distribution at the final step above is
exactly the posterior distribution obtained by the batch solution. Also, re-
ordering of measurements does not change the final solution.

For example, the Equations (2.30) and (2.31) give the one step update rulefor the
linear regression problem in Equation (2.26).

The recursive formulation of Bayesian estimation has many useful properties:

• The recursive solution can be considered as theonline learningsolution to
the Bayesian learning problem. That is, the information on the parameters is
updated in online manner using new pieces of information as they arrive.

• Because each step in the recursive estimation is a full Bayesian update step,
batchBayesian inference is aspecial case of recursiveBayesian inference.

• Due to the sequential nature of estimation we can also model the effect of
time on the parameters. That is, we can model what happens to the parameter
θ between the measurements – this is actually thebasis of filtering theory,
where time behavior is modeled by assuming the parameter to be a time-
dependent stochastic processθ(t).

2.3 Towards Bayesian Filtering

Now that we are able to solve the static linear regression problem in a recursive
manner, we can proceed towards Bayesian filtering by allowing the parameters to
change between the measurements. By generalizing this idea, we encounterthe
Kalman filter, which is the workhorse of dynamic estimation.

2.3.1 Drift Model for Linear Regression

Assume that we have a similar linear regression model as in Equation (2.26), but
the parameterθ is allowed to performGaussian random walkbetween the mea-
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surements:

p(yk |θk) = N(yk |Hk θk, σ
2)

p(θk |θk−1) = N(θk |θk−1,Q)

p(θ0) = N(θ0 |m0,P0),

(2.33)

whereQ is the covariance of the random walk. Now, given the distribution

p(θk−1 | y1:k−1) = N(θk−1 |mk−1,Pk−1),

the joint distribution ofθk andθk−1 is1

p(θk,θk−1 | y1:k−1) = p(θk |θk−1) p(θk−1 | y1:k−1).

The distribution ofθk given the measurement history up to time stepk − 1 can be
calculated by integrating overθk−1

p(θk | y1:k−1) =

∫

p(θk |θk−1) p(θk−1 | y1:k−1) dθk−1.

This relationship is sometimes called theChapman-Kolmogorov equation. Because
p(θk |θk−1) andp(θk−1 | y1:k−1) are Gaussian, the result of the marginalization is
Gaussian:

p(θk | y1:k−1) = N(θk |m−
k ,P

−
k ),

where

m−
k = mk−1

P−
k = Pk−1 +Q.

By using this as the prior distribution for the measurement likelihoodp(yk |θk) we
get the parameters of the posterior distribution

p(θk | y1:k) = N(θk |mk,Pk),

which are given by equations (2.32), whenmk−1 andPk−1 are replaced bym−
k

andP−
k :

Sk = HkP
−
k H

T
k + σ2

Kk = P−
k H

T
k S

−1
k

mk = m−
k +Kk[yk −Hkm

−
k ]

Pk = P−
k −KkSkK

T
k .

(2.34)

This recursive computational algorithm for the time-varying linear regression weights
is again a special case of the Kalman filter algorithm. Figure 2.4 shows the result
of recursive estimation of a sine signal assuming a small diagonal Gaussiandrift
model for the parameters.

1Note that this formula is correct only for Markovian dynamic models, where
p(θk |θk−1, y1:k−1) = p(θk |θk−1).
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At this point we shall change from theregression notationused so far intostate
space model notation, which is commonly used in Kalman filtering and related
dynamic estimation literature. Because this notation easily causes confusion to
people who have got used to regression notation, this point is emphasized:

• In state space notationx means the unknown state of the system, that is, the
vector ofunknown parameters in the system. It is not the regressor, covariate
or input variable of the system.

• For example, the time-varying linear regression model with drift presented
in this section can be transformed into more standardstate space model
notationby replacing the variableθk = (θ1,k θ2,k)

T with the variablexk =
(x1,k x2,k)

T :

p(yk |xk) = N(yk |Hk xk, σ
2)

p(xk |xk−1) = N(xk |xk−1,Q)

p(x0) = N(x0 |m0,P0).

(2.35)

2.3.2 Kalman Filter for Linear Model with Drift

The linear model with drift in the previous section had the disadvantage that the
covariatestk occurred explicitly in the model specification. The problem with
this is that when we get more and more measurements, the parametertk grows
without a bound. Thus the conditioning of the problem also gets worse in time.
For practical reasons it also would be desirable to have time-invariant model, that
is, a model which is not dependent on the absolute time, but only on the relative
positions of states and measurements in time.

The alternative state space formulation of the linear model with drift, without
using explicit covariates can be done as follows. Let’s denote time difference
between consecutive times as∆tk−1 = tk − tk−1. The idea is that if the under-
lying phenomenon (signal, state, parameter)xk was exactly linear, the difference
between adjacent time points could be written exactly as

xk − xk−1 = ẋ∆tk−1 (2.36)

whereẋ is the derivative, which is constant in the exactly linear case. The diver-
gence from the exactly linear function can be modeled by assuming that the above
equation does not hold exactly, but there is a small noise term on the right hand
side. The derivative can also be assumed to perform small random walk and thus
not be exactly constant. This model can be written as follows:

x1,k = x1,k−1 +∆tk−1x2,k−1 + w1

x2,k = x2,k−1 + w2

yk = x1,k + e,

(2.37)



2.3 Towards Bayesian Filtering 27

where the signal is the first components of the statex1,k and the derivative is the
secondx2,k. The noises aree ∼ N(0, σ2), (w1;w2) ∼ N(0,Q). The model can
also be written in form

p(yk |xk) = N(yk |Hxk, σ
2)

p(xk |xk−1) = N(xk |Ak−1 xk−1,Q),
(2.38)

where

Ak−1 =

(
1 ∆tk−1

0 1

)

, H =
(
1 0

)
.

With suitableQ this model is actually equivalent to model (2.33), but in this for-
mulation we explicitly estimate the state of the signal (point on the regression line)
instead of the linear regression parameters.

We could now explicitly derive the recursion equations in the same manner as
we did in the previous sections. However, we can also use theKalman filter, which
is a readily derived recursive solution to generic linear Gaussian models of the form

p(yk |xk) = N(yk |Hk xk,Rk)

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1).

Our alternative linear regression model in Equation (2.37) can be seen to be a
special case of these models. The Kalman filter equations are often expressed as
prediction and update steps as follows:

1. Prediction step:

m−
k = Ak−1mk−1

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1.

2. Update step:

Sk = Hk P
−
k HT

k +Rk

Kk = P−
k HT

k S−1
k

mk = m−
k +Kk [yk −Hk m

−
k ]

Pk = P−
k −Kk Sk K

T
k .

The result of tracking the sine signal with Kalman filter is shown in Figure 2.5. All
the mean and covariance calculation equations given in this document so farhave
been special cases of the above equations, including the batch solution to the scalar
measurement case (which is a one-step solution). The Kalman filter recursively
computes the mean and covariance of the posterior distributions of the form

p(xk |y1, . . . ,yk) = N(xk |mk,Pk).

Note that the estimates ofxk derived from this distribution are non-anticipative in
the sense that they are only conditional to measurements obtained before and at the
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time stepk. However, after we have obtained measurementsy1, . . . ,yk, we could
compute estimates ofxk−1,xk−2, . . ., which are also conditional to the measure-
ments after the corresponding state time steps. Because more measurements and
more information is available for the estimator, these estimates can be expected to
be more accurate than the non-anticipative measurements computed by the filter.

The above mentioned problem of computing estimates of the state by con-
ditioning not only on previous measurements, but also on future measurements
is calledoptimal smoothingas already mentioned in Section 1.2.3. The optimal
smoothing solution to the linear Gaussian state space models is given by theRauch-
Tung-Striebel smoother. The full Bayesian theory of optimal smoothing as well as
the related algorithms will be presented in Chapter 4.

It is also possible to predict the time behavior of the state in the future that we
have not yet measured. This procedure is calledoptimal prediction. Because op-
timal prediction can always be done by iterating the prediction step of the optimal
filter, no specialized algorithms are needed for this.

The non-linear generalizations of optimal prediction, filtering and smoothing
can be obtained by replacing the Gaussian distributions and linear functionsin
model (2.38) with non-Gaussian and non-linear ones. The Bayesian dynamic es-
timation theory described in this document can be applied to generic non-linear
filtering models of the following form:

measurement model:yk ∼ p(yk |xk)

state model:xk ∼ p(xk |xk−1).

To understand the generality of this model is it useful to note that if we dropped
the time-dependence from the state we would get the model

measurement model:yk ∼ p(yk |x)
state model: x ∼ p(x).

Becausex denotes an arbitrary set of parameters or hyper-parameters of the sys-
tem, all static Bayesian models are special cases of this model. Thus in dynamic
estimation context we extend the static models by allowing a Markov model for
the time-behavior of the (hyper)parameters.

The Markovianity also is less of a restriction than it sounds, because whatwe
have is a vector valued Markov process, not a scalar one. The reader may recall
from elementary calculus that differential equations of an arbitrary order can be
always transformed into vector valued differential equations of the firstorder. In
analogous manner, Markov processes of an arbitrary order can be transformed into
vector valued first order Markov processes.



2.3 Towards Bayesian Filtering 29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

 

 

Recursive E[θ
1
]

Batch E[θ
1
]

Recursive E[θ
2
]

Batch E[θ
2
]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

Time

 

 
Recursive Var[θ

1
]

Batch Var[θ
1
]

Recursive Var[θ
2
]

Batch Var[θ
2
]

(b)

Figure 2.3: (a) Convergence of the recursive linear regression means. The final value is
exactly the same as that was obtained with batch linear regression. Note that time has been
scaled to1 at k = K. (b) Convergence of the variances plotted on logarithmic scale. As
can be seen, every measurement brings more information and the uncertainty decreases
monotonically. The final values are the same as the variancesobtained from the batch
solution.
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Figure 2.4: Example of tracking a sine signal with linear model with drift, where the
parameters are allowed to vary according to Gaussian randomwalk model.
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Figure 2.5: Example of tracking a sine signal with a locally linear statespace model. The
result differs a bit from the random walk parameter model, because of slightly different
choice of process noise. It could be made equivalent if desired.



Chapter 3

Optimal Filtering

In this chapter we first present the classical formulation of discrete-time optimal
filtering as recursive Bayesian inference. Then the classical Kalman filter, extended
Kalman filters and statistical linearization based filters are presented in terms ofthe
general theory. In addition to the classical algorithms the unscented Kalman filter,
general Gaussian filters, Gauss-Hermite Kalman filters, Fourier-Hermite Kalman
filters, and cubature Kalman filters are also presented. Sequential importance re-
sampling based particle filtering, as well as Rao-Blackwellized particle filteringare
also covered.

For more information, reader is referred to various articles and books citedin
the appropriate sections. The following books also contain useful information on
the subject:

• Classic books: Lee (1964); Bucy and Joseph (1968); Meditch (1969); Jazwin-
ski (1970); Sage and Melsa (1971); Gelb (1974); Anderson and Moore (1979);
Maybeck (1979, 1982a).

• More recent books on linear and non-linear Kalman filtering: Bar-Shalom
et al. (2001); Grewal and Andrews (2001); Crassidis and Junkins (2004).

• Recent books with particle filters also: Ristic et al. (2004); Candy (2009);
Challa et al. (2011); Crisan and Rozovskii (2011).

3.1 Formal Filtering Equations and Exact Solutions

3.1.1 Probabilistic State Space Models

Before going into the practical non-linear filtering algorithms, in the next sections
the theory of probabilistic (Bayesian) filtering is presented. The Kalman filtering
equations, which are the closed form solutions to the linear Gaussian discrete-time
optimal filtering problem, are also derived.
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Definition 3.1 (State space model). A discrete-time state space modelor proba-
bilistic non-linear filtering model consists of a sequence of conditional probability
distributions:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk),
(3.1)

for k = 1, 2, . . ., where

• xk ∈ R
n is thestateof the system at time stepk.

• yk ∈ R
m is the measurement at time stepk.

• p(xk |xk−1) is thedynamic modelwhich describes the stochastic dynamics
of the system. The dynamic model can be a probability density, a counting
measure or a combination of them depending on whether the statexk is
continuous, discrete or hybrid.

• p(yk |xk) is themeasurement model, which is the distribution of measure-
ments given the state.

The model is assumed to be Markovian, which means that it has the following
two properties:

Property 3.1 (Markov property of states).

The states{xk : k = 0, 1, 2, . . .} form a Markov sequence (or Markov chain if
the state is discrete). This Markov property means thatxk (and actually the whole
futurexk+1,xk+2, . . .) givenxk−1 is independent of anything that has happened
before the time stepk − 1:

p(xk |x1:k−1,y1:k−1) = p(xk |xk−1). (3.2)

Also the past is independent of the future given the present:

p(xk−1 |xk:T ,yk:T ) = p(xk−1 |xk). (3.3)

Property 3.2 (Conditional independence of measurements).

The current measurementyk given the current statexk is conditionally indepen-
dent of the measurement and state histories:

p(yk |x1:k,y1:k−1) = p(yk |xk). (3.4)

A simple example of a Markovian sequence is the Gaussian random walk.
When this is combined with noisy measurements, we obtain the following example
of a probabilistic state space model.
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Example 3.1 (Gaussian random walk). A Gaussian random walk model can be
written as

xk = xk−1 + wk−1, wk−1 ∼ N(0, q)

yk = xk + ek, ek ∼ N(0, r),
(3.5)

wherexk is the hidden state andyk is the measurement. In terms of probability
densities the model can be written as

p(xk |xk−1) = N(xk |xk−1, q)

=
1√
2πq

exp

(

− 1

2q
(xk − xk−1)

2

)

p(yk |xk) = N(yk |xk, r)

=
1√
2πr

exp

(

− 1

2r
(yk − xk)

2

)

,

(3.6)

which is a discrete-time state space model.

With the Markovian assumption and the filtering model (3.1), the joint prior
distribution of the states(x0, . . . ,xT ), and the joint likelihood of the measurements
(y0, . . . ,yT ) are, respectively

p(x0, . . . ,xT ) = p(x0)
T∏

k=1

p(xk |xk−1) (3.7)

p(y1, . . . ,yT |x0, . . . ,xT ) =
T∏

k=1

p(yk |xk). (3.8)

In principle, for a givenT we could simply compute the posterior distribution of
the states by Bayes’ rule:

p(x0, . . . ,xT |y1, . . . ,yT ) =
p(y1, . . . ,yT |x0, . . . ,xT ) p(x0, . . . ,xT )

p(y1, . . . ,yT )

∝ p(y1, . . . ,yT |x0, . . . ,xT ) p(x0, . . . ,xT ).

(3.9)

However, this kind of explicit usage of the full Bayes’ rule is not feasiblein real-
time applications, because the amount of computations per time step increases as
new observations arrive. Thus, this way we could only work with small datasets,
because if the amount of data is unbounded (as in real time-sensoring applications),
then at some point of time the computations would become intractable. To cope
with real-time data we need to have an algorithm which does constant amount of
computations per time step.

As discussed in Section 1.2.3,filtering distributions, prediction distributions
andsmoothing distributionscan be computed recursively such that only constant
amount of computations is done on each time step. For this reason we shall notcon-
sider the full posterior computation at all, but concentrate to the above-mentioned
distributions instead. In this chapter, we mainly consider computation of the fil-
tering and prediction distributions, and algorithms for computing the smoothing
distributions will be considered in the next chapter.



34 Optimal Filtering

3.1.2 Optimal Filtering Equations

The purpose ofoptimal filteringis to compute themarginal posterior distribution
of the statexk at each time stepk given the history of the measurements up to the
time stepk:

p(xk |y1:k). (3.10)

The fundamental equations of the Bayesian filtering theory are given by the fol-
lowing theorem:

Theorem 3.1(Bayesian optimal filtering equations). The recursive equations for
computing thepredicted distributionp(xk |y1:k−1) and thefiltering distribution
p(xk |y1:k) at the time stepk are given by the followingBayesian filtering equa-
tions:

• Initialization. The recursion starts from the prior distributionp(x0).

• Prediction.The predictive distribution of the statexk on time stepk given
the dynamic model can be computed by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1. (3.11)

• Update.Given the measurementyk at time stepk the posterior distribution
of the statexk can be computed by Bayes’ rule

p(xk |y1:k) =
1

Zk
p(yk |xk) p(xk |y1:k−1), (3.12)

where the normalization constantZk is given as

Zk =

∫

p(yk |xk) p(xk |y1:k−1) dxk. (3.13)

If some of the components of the state are discrete, the corresponding integrals are
replaced with summations.

Proof. The joint distribution ofxk andxk−1 giveny1:k−1 can be computed as

p(xk,xk−1 |y1:k−1) = p(xk |xk−1,y1:k−1) p(xk−1 |y1:k−1)

= p(xk |xk−1) p(xk−1 |y1:k−1),
(3.14)

where the disappearance of the measurement historyy1:k−1 is due to the Markov
property of the sequence{xk, k = 1, 2, . . .}. The marginal distribution ofxk given
y1:k−1 can be obtained by integrating the distribution (3.14) overxk−1, which
gives theChapman-Kolmogorov equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1. (3.15)
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Figure 3.1: Visualization of the prediction step: the prediction propagates the state
distribution of the previous measurement step through the dynamic model such that the
uncertainties (stochastic terms) in the dynamic model are taken into account.

(a) (b)

Figure 3.2: Visualization of the update step: (a) Prior distribution from prediction and the
likelihood of measurement just before the update step. (b) The posterior distribution after
combining the prior and likelihood by Bayes’ rule.

If xk−1 is discrete, then the above integral is replaced with summation overxk−1.
The distribution ofxk givenyk andy1:k−1, that is, giveny1:k can be computed by
Bayes’ rule

p(xk |y1:k) =
1

Zk
p(yk |xk,y1:k−1) p(xk |y1:k−1)

=
1

Zk
p(yk |xk) p(xk |y1:k−1)

(3.16)

where the normalization constant is given by Equation (3.13). The disappearance
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of the measurement historyy1:k−1 in Equation (3.16) is due to the conditional
independence ofyk of the measurement history, givenxk.

3.1.3 Kalman Filter

The Kalman filter(Kalman, 1960b) is the closed form solution to the optimal
filtering equations of the discrete-time filtering model, where the dynamic and
measurements models are linear Gaussian:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk,
(3.17)

wherexk ∈ R
n is the state,yk ∈ R

m is the measurement,qk−1 ∼ N(0,Qk−1) is
the process noise,rk ∼ N(0,Rk) is the measurement noise and the prior distribu-
tion is Gaussianx0 ∼ N(m0,P0). The matrixAk−1 is the transition matrix of the
dynamic model andHk is the measurement model matrix. In probabilistic terms
the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk) = N(yk |Hk xk,Rk).
(3.18)

Algorithm 3.1 (Kalman filter). The optimal filtering equations for the linear fil-
tering model(3.17)can be evaluated in closed form and the resulting distributions
are Gaussian:

p(xk |y1:k−1) = N(xk |m−
k ,P

−
k )

p(xk |y1:k) = N(xk |mk,Pk)

p(yk |y1:k−1) = N(yk |Hkm
−
k ,Sk).

(3.19)

The parameters of the distributions above can be computed with the following
Kalman filterpredictionandupdate steps:

• The prediction stepis

m−
k = Ak−1mk−1

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1.

(3.20)

• The update stepis

vk = yk −Hk m
−
k

Sk = Hk P
−
k HT

k +Rk

Kk = P−
k HT

k S−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k .

(3.21)
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The initial state has a given Gaussian prior distributionx0 ∼ N(m0,P0), which
also defines the initial mean and covariance.

The Kalman filter equations can be derived as follows:

1. By Lemma A.1 on page 119, the joint distribution ofxk andxk−1 given
y1:k−1 is

p(xk−1,xk |y1:k−1) = p(xk |xk−1) p(xk−1 |y1:k−1)

= N(xk |Ak−1 xk−1,Qk−1) N(xk−1 |mk−1,Pk−1)

= N

([
xk−1

xk

] ∣
∣
∣m

′,P′

)

,

(3.22)

where

m′ =

(
mk−1

Ak−1mk−1

)

, P′ =

(
Pk−1 Pk−1A

T
k−1

Ak−1Pk−1 Ak−1Pk−1A
T
k−1 +Qk−1

)

.

(3.23)
and the marginal distribution ofxk is by Lemma A.2

p(xk |y1:k−1) = N(xk |m−
k ,P

−
k ), (3.24)

where

m−
k = Ak−1mk−1, P−

k = Ak−1Pk−1A
T
k−1 +Qk−1. (3.25)

2. By Lemma A.1, the joint distribution ofyk andxk is

p(xk,yk |y1:k−1) = p(yk |xk) p(xk |y1:k−1)

= N(yk |Hk xk,Rk) N(xk |m−
k ,P

−
k )

= N

([
xk

yk

] ∣
∣
∣m

′′,P′′

)

,

(3.26)

where

m′′ =

(
m−

k

Hk m
−
k

)

, P′′ =

(
P−

k P−
k HT

k

Hk P
−
k Hk P

−
k HT

k +Rk

)

. (3.27)

3. By Lemma A.2 the conditional distribution ofxk is

p(xk |yk,y1:k−1) = p(xk |y1:k)

= N(xk |mk,Pk),
(3.28)

where

mk = m−
k +P−

k HT
k (Hk P

−
k HT

k +Rk)
−1[yk −Hk m

−
k ]

Pk = P−
k −P−

k HT
k (Hk P

−
k HT

k +Rk)
−1Hk P

−
k

(3.29)

which can be also written in form (3.21).
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The functional form of the Kalman filter equations given here is not the onlypos-
sible one. From a numerical stability point of view it would be better to work with
matrix square roots of covariances instead of plain covariance matrices. The theory
and details of implementation of this kind of methods is well covered, for example,
in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walk). Assume that we are ob-
serving measurementsyk of the Gaussian random walk model given in Example 3.1
and we want to estimate the statexk at each time step. The information obtained
up to time stepk − 1 is summarized by the Gaussian filtering density

p(xk−1 | y1:k−1) = N(xk−1 |mk−1, Pk−1). (3.30)

The Kalman filter prediction and update equations are now given as

m−
k = mk−1

P−
k = Pk−1 + q

mk = m−
k +

P−
k

P−
k + r

(yk −m−
k )

Pk = P−
k − (P−

k )2

P−
k + r

.

(3.31)
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Figure 3.3: Simulated signal and measurements of the Kalman filtering example (Example
3.2).
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Figure 3.4: Signal, measurements and filtering estimate of the Kalman filtering example
(Example 3.2).

3.2 Extended and Unscented Kalman Filtering

Often the dynamic and measurement processes in practical applications arenot
linear and the Kalman filter cannot be applied as such. However, often the fil-
tering distributions of this kind of processes can be approximated with Gaussian
distributions. In this section, four types of methods for forming the Gaussian
approximations are considered, the Taylor series based extended Kalmanfilters
(EKF), statistical linearization based statistically linearized filters (SLF), Fourier-
Hermite expansion based Fourier-Hermite Kalman filters (FHKF), and unscented
transform based unscented Kalman filters (UKF). Among these, UKF differs from
the other filters in this section in the sense that it is not a series expansion based
method per se — even though it was originally justified by considering a series
expansion of the non-linear function.

3.2.1 Taylor Series Expansions

Consider the following transformation of a Gaussian random variablex into an-
other random variabley:

x ∼ N(m,P)

y = g(x).
(3.32)

wherex ∈ R
n, y ∈ R

m, andg : Rn 7→ R
m is a general non-linear function.

Formally, the probability density of the random variabley is1 (see, e.g, Gelman
1This actually only applies to invertibleg(·), but it can be easily generalized to the non-invertible

case.
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et al., 1995)
p(y) = |J(y)| N(g−1(y) |m,P), (3.33)

where|J(y)| is the determinant of the Jacobian matrix of the inverse transform
g−1(y). However, it is not generally possible to handle this distribution directly,
because it is non-Gaussian for all but linearg.

A first order Taylor series based Gaussian approximation to the distributionof
y can be now formed as follows. If we letx = m+ δx, whereδx ∼ N(0,P), we
can form the Taylor series expansion of the functiong(·) as follows:

g(x) = g(m+δx) = g(m)+Gx(m) δx+
∑

i

1

2
δxT G

(i)
xx(m) δxei+. . . (3.34)

whereGx(m) is the Jacobian matrix ofg with elements

[Gx(m)]j,j′ =
∂gj(x)

∂xj′

∣
∣
∣
∣
∣
x=m

. (3.35)

andG(i)
xx(m) is the Hessian matrix ofgi(·) evaluated atm:

[

G
(i)
xx(m)

]

j,j′
=

∂2gi(x)

∂xj ∂xj′
,

∣
∣
∣
∣
∣
x=m

. (3.36)

Also, ei = (0 · · · 0 1 0 · · · 0)T is a vector with 1 at positioni and other elements
are zero, that is, it is the unit vector in direction of the coordinate axisi.

The linear approximation can be obtained by approximating the function by
the first two terms in the Taylor series:

g(x) ≈ g(m) +Gx(m) δx. (3.37)

Computing the expected value with respect tox gives:

E[g(x)] ≈ E[g(m) +Gx(m) δx]

= g(m) +Gx(m) E[δx]

= g(m).

(3.38)

The covariance can then be approximated as

E
[

(g(x)− E[g(x)]) (g(x)− E[g(x)])T
]

≈ E
[

(g(x)− g(m)) (g(x)− g(m))T
]

≈ E
[

(g(m) +Gx(m) δx− g(m)]) (g(m) +Gx(m) δx− g(m))T
]

= E
[

(Gx(m) δx) (Gx(m) δx)T
]

= Gx(m) E
[
δx δxT

]
GT

x (m)

= Gx(m)PGT
x (m).

(3.39)
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We are also often interested in the the joint covariance between the variablesx

andy. Approximation of the joint covariance can be achieved by considering the
augmented transformation

g̃(x) =

(
x

g(x)

)

. (3.40)

The resulting mean and covariance are:

E[g̃(x)] ≈
(

m

g(m)

)

Cov[g̃(x)] ≈
(

I

Gx(m)

)

P

(
I

Gx(m)

)T

=

(
P PGT

x (m)
Gx(m)P Gx(m)PGT

x (m)

)

.

(3.41)

In the derivation of the extended Kalman filter equations, we need a slightly more
general transformation of the form

x ∼ N(m,P)

q ∼ N(0,Q)

y = g(x) + q,

(3.42)

whereq is independent ofx. The joint distribution ofx andy, as defined above,
is now the same as in Equations (3.41) except that the covarianceQ is added to
the lower right block of the covariance matrix ofg̃(·). Thus we get the following
algorithm:

Algorithm 3.2 (Linear approximation of an additive transform). The linear ap-
proximation based Gaussian approximation to the joint distribution ofx and the
transformed random variabley = g(x) + q, wherex ∼ N(m,P) and q ∼
N(0,Q) is given as

(
x

y

)

∼ N

((
m

µL

)

,

(
P CL

CT
L SL

))

, (3.43)

where

µL = g(m)

SL = Gx(m)PGT
x (m) +Q

CL = PGT
x (m),

(3.44)

andGx(m) is the Jacobian matrix ofg with respect tox, evaluated atx = m

with elements

[Gx(m)]j,j′ =
∂gj(x)

∂xj′

∣
∣
∣
∣
∣
x=m

. (3.45)
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Furthermore, in filtering models where the process noise is not additive, we
often need to approximate transformations of the form

x ∼ N(m,P)

q ∼ N(0,Q)

y = g(x,q),

(3.46)

wherex andq are uncorrelated random variables. The mean and covariance can
now be computed by substituting the augmented vector(x,q) to the vectorx
in Equation (3.41). The joint Jacobian matrix can then be written asGx,q =
(Gx Gq). HereGq is the Jacobian matrix ofg(·) with respect toq and both
Jacobian matrices are evaluated atx = m,q = 0. The approximations to the
mean and covariance of the augmented transform as in Equation (3.41) arethen
given as

E[g̃(x,q)] ≈ g(m,0)

Cov[g̃(x,q)] ≈
(

I 0

Gx(m) Gq(m)

)(
P 0

0 Q

) (
I 0

Gx(m) Gq()

)T

=

(
P PGT

x (m)
Gx(m)P Gx(m)PGT

x (m) +Gq(m)QGT
q (m)

)

.

(3.47)

The approximation above can be formulated as the following algorithm:

Algorithm 3.3 (Linear approximation of a non-additive transform). The linear
approximation based Gaussian approximation to the joint distribution ofx and the
transformed random variabley = g(x,q) whenx ∼ N(m,P) andq ∼ N(0,Q)
is given as

(
x

y

)

∼ N

((
m

µL

)

,

(
P CL

CT
L SL

))

, (3.48)

where

µL = g(m)

SL = Gx(m)PGT
x (m) +Gq(m)QGT

q (m)

CL = PGT
x (m),

(3.49)

andGx(m) is the Jacobian matrix ofg with respect tox, evaluated atx = m,q =
0 with elements

[Gx(m)]j,j′ =
∂gj(x,q)

∂xj′

∣
∣
∣
∣
∣
x=m,q=0

. (3.50)

andGq(m) is the corresponding Jacobian matrix with respect toq:

[Gq(m)]j,j′ =
∂gj(x,q)

∂qj′

∣
∣
∣
∣
∣
x=m,q=0

. (3.51)
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In quadratic approximations, in addition to the first order terms also the second
order terms in the Taylor series expansion of the non-linear function are retained:

Algorithm 3.4 (Quadratic approximation of an additive non-linear transform). The
second order approximation is of the form

(
x

y

)

∼ N

((
m

µQ

)

,

(
P CQ

CT
Q SQ

))

, (3.52)

where the parameters are

µQ = g(m) +
1

2

∑

i

ei tr
{

G
(i)
xx(m)P

}

SQ = Gx(m)PGT
x (m) +

1

2

∑

i,i′

ei e
T
i′ tr

{

G
(i)
xx(m)PG

(i′)
xx (m)P

}

CQ = PGT
x (m),

(3.53)

andGx(m) is the Jacobian matrix(3.45), andG(i)
xx(m) is the Hessian matrix of

gi(·) evaluated atm:

[

G
(i)
xx(m)

]

j,j′
=

∂2gi(x)

∂xj ∂xj′

∣
∣
∣
∣
∣
x=m

, (3.54)

whereei = (0 · · · 0 1 0 · · · 0)T is a vector with 1 at positioni and other elements
are zero, that is, it is the unit vector in direction of the coordinate axisi.

3.2.2 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 1970; Maybeck,1982a;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is an extension of the Kalman
filter to non-linear optimal filtering problems. If process and measurement noises
can be assumed to be additive, the EKF model can be written as

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(3.55)

wherexk ∈ R
n is the state,yk ∈ R

m is the measurement,qk−1 ∼ N(0,Qk−1)
is the Gaussian process noise,rk ∼ N(0,Rk) is the Gaussian measurement noise,
f(·) is the dynamic model function andh(·) is the measurement model function.
The functionsf andh can also depend on the step numberk, but for notational
convenience, this dependence has not been explicitly denoted.

The idea of the extended Kalman filter is to form Gaussian approximations

p(xk |y1:k) ≈ N(xk |mk,Pk) (3.56)

to the filtering densities. In EKF this is done by utilizing linear approximations to
the non-linearities and the result is the following algorithm.
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Algorithm 3.5 (Extended Kalman filter I). The prediction and update steps of the
first order additive noise extended Kalman filter (EKF) are:

• Prediction:

m−
k = f(mk−1)

P−
k = Fx(mk−1)Pk−1F

T
x (mk−1) +Qk−1.

(3.57)

• Update:

vk = yk − h(m−
k )

Sk = Hx(m
−
k )P

−
k HT

x (m
−
k ) +Rk

Kk = P−
k HT

x (m
−
k )S

−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k .

(3.58)

These filtering equations can be derived by repeating the same steps as in
the derivation of the Kalman filter in Section 3.1.3 and by applying Taylor series
approximations on the appropriate steps:

1. The joint distribution ofxk andxk−1 is non-Gaussian, but we can form a
Gaussian approximation to it by applying the approximation Algorithm 3.2
to the function

f(xk−1) + qk−1, (3.59)

which results in the Gaussian approximation

p(xk−1,xk, |y1:k−1) ≈ N

([
xk−1

xk

] ∣
∣
∣m

′,P′

)

, (3.60)

where

m′ =

(
mk−1

f(mk−1)

)

P′ =

(
Pk−1 Pk−1F

T
x

FxPk−1 FxPk−1F
T
x +Qk−1

)

,

(3.61)

and the Jacobian matrixFx of f(x) is evaluated atx = mk−1. The marginal
mean and covariance ofxk are thus

m−
k = f(mk−1)

P−
k = FxPk−1F

T
x +Qk−1.

(3.62)
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2. The joint distribution ofyk andxk is also non-Gaussian, but we can again
approximate it by applying Algorithm 3.2 to the function

h(xk) + rk. (3.63)

We get the approximation

p(xk,yk |y1:k−1) ≈ N

([
xk

yk

] ∣
∣
∣m

′′,P′′

)

, (3.64)

where

m′′ =

(
m−

k

h(m−
k )

)

, P′′ =

(
P−

k P−
k HT

x

HxP
−
k HxP

−
k HT

x +Rk

)

, (3.65)

and the Jacobian matrixHx of h(x) is evaluated atx = m−
k .

3. By Lemma A.2 the conditional distribution ofxk is approximately

p(xk |yk,y1:k−1) ≈ N(xk |mk,Pk), (3.66)

where

mk = m−
k +P−

k HT
x (HxP

−
k HT

x +Rk)
−1[yk − h(m−

k )]

Pk = P−
k −P−

k HT
x (HxP

−
k HT

x +Rk)
−1HxP

−
k .

(3.67)

A more general non-additive noise EKF filtering model can be written as

xk = f(xk−1,qk−1)

yk = h(xk, rk),
(3.68)

whereqk−1 ∼ N(0,Qk−1) and rk ∼ N(0,Rk) are the Gaussian process and
measurement noises, respectively. Again, the functionsf andh can also depend on
the step numberk.

Algorithm 3.6 (Extended Kalman filter II). The prediction and update steps of the
(first order) extended Kalman filter (EKF) in the non-additive noise caseare:

• Prediction:

m−
k = f(mk−1,0)

P−
k = Fx(mk−1)Pk−1F

T
x (mk−1) + Fq(mk−1)Qk−1F

T
q (mk−1).

(3.69)

• Update:

vk = yk − h(m−
k ,0)

Sk = Hx(m
−
k )P

−
k HT

x (m
−
k ) +Hr(m

−
k )Rk H

T
r (m

−
k )

Kk = P−
k HT

x (m
−
k )S

−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k .

(3.70)
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where the matricesFx(m), Fq(m), Hx(m), andHr(m), are the Jacobian ma-
trices off andh with respect to state and noise, with elements

[Fx(m)]j,j′ =
∂fj(x,q)

∂xj′

∣
∣
∣
∣
∣
x=m,q=0

(3.71)

[Fq(m)]j,j′ =
∂fj(x,q)

∂qj′

∣
∣
∣
∣
∣
x=m,q=0

(3.72)

[Hx(m)]j,j′ =
∂hj(x, r)

∂xj′

∣
∣
∣
∣
∣
x=m,r=0

(3.73)

[Hr(m)]j,j′ =
∂hj(x, r)

∂rj′

∣
∣
∣
∣
∣
x=m,r=0

. (3.74)

These filtering equations can be derived by repeating the same steps as in the
derivation of the extended Kalman filter above, but instead of using Algorithm 3.2,
we use Algorithm 3.3 for computing the approximations.

The advantage of EKF over other non-linear filtering methods is its relative
simplicity compared to its performance. Linearization is very common engineering
way of constructing approximations to non-linear systems and thus it is very easy
to understand and apply. A disadvantage is that because it is based on a local linear
approximation, it will not work in problems with considerable non-linearities. Also
the filtering model is restricted in the sense that only Gaussian noise processes are
allowed and thus the model cannot contain, for example, discrete valued random
variables. The Gaussian restriction also prevents handling of hierarchical models
or other models where significantly non-Gaussian distribution models would be
needed.

The EKF also requires the measurement model and the dynamic model func-
tions to be differentiable. This as such might be a restriction, but in some cases
it might also be simply impossible to compute the required Jacobian matrices,
which renders the usage of EKF impossible. And even when the Jacobian matrices
exist and could be computed, the actual computation and programming of Jacobian
matrices can be quite error prone and hard to debug.

In so called second order EKF the non-linearity is approximated by retaining
the second order terms in the Taylor series expansion as in Algorithm 3.4:

Algorithm 3.7 (Extended Kalman filter III). The prediction and update steps of
the second order extended Kalman filter (in additive noise case) are:
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• Prediction:

m−
k = f(mk−1) +

1

2

∑

i

ei tr
{

F
(i)
xx(mk−1)Pk−1

}

P−
k = Fx(mk−1)Pk−1F

T
x (mk−1)

+
1

2

∑

i,i′

ei e
T
i′ tr

{

F
(i)
xx(mk−1)Pk−1F

(i′)
xx (mk−1)Pk−1

}

+Qk−1.

(3.75)

• Update:

vk = yk − h(m−
k )−

1

2

∑

i

ei tr
{

H
(i)
xx(m

−
k )P

−
k

}

Sk = Hx(m
−
k )P

−
k HT

x (m
−
k )

+
1

2

∑

i,i′

ei e
T
i′ tr

{

H
(i)
xx(m

−
k )P

−
k H

(i′)
xx (m

−
k )P

−
k

}

+Rk

Kk = P−
k HT

x (m
−
k )S

−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k ,

(3.76)

where the matricesFx(m) and Hx(m) are given by the Equations(3.71) and

(3.73). The matricesF(i)
xx(m) andH(i)

xx(m) are the Hessian matrices offi andhi
respectively:

[

F
(i)
xx(m)

]

j,j′
=

∂2fi(x)

∂xj ∂xj′

∣
∣
∣
∣
∣
x=m

(3.77)

[

H
(i)
xx(m)

]

j,j′
=

∂2hi(x)

∂xj ∂xj′

∣
∣
∣
∣
∣
x=m

. (3.78)

The non-additive version can be derived in analogous manner, but due to its
complicated appearance, it is not presented here.

3.2.3 Statistical Linearization

In statistically linearized filter (Gelb, 1974) the first order Taylor series approxima-
tion used in the first order EKF is replaced by statistical linearization. Recallthe
transformation problem considered in Section 3.2.1, which was stated as

x ∼ N(m,P)

y = g(x).
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In statistical linearization we form a linear approximation to the transformation as
follows:

g(x) ≈ b+A δx, (3.79)

whereδx = x−m, such that the mean squared error is minimized:

MSE(b,A) = E[(g(x)− b−A δx)T (g(x)− b−A δx)]. (3.80)

Setting derivatives with respect tob andA zero gives

b = E[g(x)]

A = E[g(x) δxT ]P−1.
(3.81)

In this approximation to the transformg(x), b is now exactly the mean and the
approximate covariance is given as

E[(g(x)− E[g(x)]) (g(x)− E[g(x)])T ]

≈ APAT

= E[g(x) δxT ]P−1 E[g(x) δxT ]T .

(3.82)

We may now apply this approximation to the augmented functiong̃(x) = (x,g(x))
in Equation (3.40) of Section 3.2.1, where we get the approximation

E[g̃(x)] ≈
(

m

E[g(x)]

)

Cov[g̃(x)] ≈
(

P E[g(x) δx]T

E[g(x) δxT ] E[g(x) δxT ]P−1 E[g(x) δxT ]T

)

.

(3.83)

We now get the following algorithm corresponding to Algorithm 3.2:

Algorithm 3.8 (Statistically linearized approximation of an additive transform).
The statistical linearization based Gaussian approximation to the joint distribution
ofx and the transformed random variabley = g(x)+q wherex ∼ N(m,P) and
q ∼ N(0,Q) is given as

(
x

y

)

∼ N

((
m

µS

)

,

(
P CS

CT
S SS

))

, (3.84)

where

µS = E[g(x)]

SS = E[g(x) δxT ]P−1 E[g(x) δxT ]T +Q

CS = E[g(x) δxT ]T .

(3.85)

The expectations are taken with respect to the distribution ofx.
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Applying the same approximation with(x,q) in place ofx we obtain the
following mean and covariance:

E[g̃(x,q)] ≈
(

m

E[g(x,q)]

)

Cov[g̃(x,q)] ≈





P E[g(x,q) δxT ]T

E[g(x,q) δxT ] E[g(x,q) δxT ]P−1 E[g(x,q) δxT ]T

+E[g(x,q)qT ]Q−1 E[g(x,q)qT ]T





(3.86)

Thus we get the following algorithm for non-additive transform:

Algorithm 3.9 (Statistically linearized approximation of a non-additive transform).
The statistical linearization based Gaussian approximation to the joint distribution
of x and the transformed random variabley = g(x,q) whenx ∼ N(m,P) and
q ∼ N(0,Q) is given as

(
x

y

)

∼ N

((
m

µS

)

,

(
P CS

CT
S SS

))

, (3.87)

where

µS = E[g(x,q)]

SS = E[g(x,q) δxT ]P−1 E[g(x,q) δxT ]T + E[g(x,q)qT ]Q−1 E[g(x,q)qT ]T

CS = E[g(x,q) δxT ]T .

(3.88)

The expectations are taken with respect to the variablesx andq.

If the functiong(x) is differentiable, it is possible to use the following well
known property of Gaussian random variables for simplifying the expressions:

E[g(x) (x−m)T ] = E[Gx(x)]P, (3.89)

whereE[·] denotes the expected value with respect tox ∼ N(m,P), andGx(x)
is the Jacobian matrix ofg(x). The statistical linearization equations then reduce
to the same form as Taylor series based linearization, except that instead of the
Jacobians we have the expected values of the Jacobians (see exercises). Algorithm
3.8 can be then written in the following form:

Algorithm 3.10 (Statistically linearized approximation of an additive transform II).
The statistical linearization based Gaussian approximation to the joint distribution
ofx and the transformed random variabley = g(x)+q wherex ∼ N(m,P) and
q ∼ N(0,Q), can be written as

(
x

y

)

∼ N

((
m

µS

)

,

(
P CS

CT
S SS

))

, (3.90)
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where

µS = E[g(x)]

SS = E[Gx(x)]P E[Gx(x)]
T +Q

CS = P E[Gx(x)]
T ,

(3.91)

andGx(x) is the Jacobian matrix ofg. The expectations are taken with respect to
the distribution ofx.

Note that we actually only need to compute the expectationE[g(x)], because
if we know the function

µS(m) = E[g(x)], (3.92)

whereE[·] denotes the expected value with respect toN(x |m,P), then

∂µS(m)

∂m
= E[Gx(x)]. (3.93)

3.2.4 Statistically Linearized Filter

Statistically linearized filter (SLF) (Gelb, 1974) or quasi-linear filter (Stengel, 1994)
is a Gaussian approximation based filter which can be applied to the same kind of
models as EKF, that is, to models of the form (3.55) or (3.68). The filter is similar
to EKF, except that statistical linearizations in Algorithms 3.8, 3.9 and 3.10 are
used instead of the Taylor series approximations.

Algorithm 3.11 (Statistically linearized filter I). The prediction and update steps
of the additive noise statistically linearized (Kalman) filter are:

• Prediction:

m−
k = E[f(xk−1)]

P−
k = E[f(xk−1) δx

T
k−1]P

−1
k−1 E[f(xk−1) δx

T
k−1]

T +Qk−1,
(3.94)

whereδxk−1 = xk−1 − mk−1 and the expectations are taken with respect
to the variablexk−1 ∼ N(mk−1,Pk−1).

• Update:

vk = yk − E[h(xk)]

Sk = E[h(xk) δx
T
k ] (P

−
k )

−1 E[h(xk) δx
T
k ]

T +Rk

Kk = E[h(xk) δx
T
k ]

T S−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k ,

(3.95)

where the expectations are taken with respect to the variablexk ∼ N(m−
k ,P

−
k ).
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The above filter can also be rewritten using the expectations of Jacobians by
using the Algorithm 3.10 instead of 3.8 (see exercises).

Algorithm 3.12 (Statistically linearized filter II). The prediction and update steps
of the non-additive statistically linearized (Kalman) filter are:

• Prediction:

m−
k = E[f(xk−1,qk−1)]

P−
k = E[f(xk−1,qk−1) δx

T
k−1]P

−1
k−1 E[f(xk−1,qk−1) δx

T
k−1]

T

+ E[f(xk−1,qk−1)q
T
k−1]Q

−1
k−1 E[f(xk−1,qk−1)q

T
k−1]

T ,

(3.96)

whereδxk−1 = xk−1 − mk−1 and the expectations are taken with respect
to the variablesxk−1 ∼ N(mk−1,Pk−1) andqk−1 ∼ N(0,Qk−1).

• Update:

vk = yk − E[h(xk, rk)]

Sk = E[h(xk, rk) δx
T
k ] (P

−
k )

−1 E[h(xk, rk) δx
T
k ]

T

+ E[h(xk, rk) r
T
k ]R

−1
k E[h(xk, rk) r

T
k ]

T

Kk = E[h(xk, rk) δx
T
k ]

T S−1
k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k ,

(3.97)

where the expectations are taken with respect to the variablesxk ∼ N(m−
k ,P

−
k )

andrk ∼ N(0,Rk).

Both the filters above can be derived by following the derivation of the EKFin
Section 3.2.2 and by utilizing the statistical linearization approximations instead of
the linear approximations on the appropriate steps.

The advantage of SLF over EKF is that it is a more global approximation than
EKF, because the linearization is not only based on the local region around the
mean but on a whole range of function values. The non-linearities also do not have
to be differentiable nor do we need to derive their Jacobian matrices. However, if
the non-linearities are differentiable, then we can use the Gaussian random variable
property (3.89) for rewriting the equations in EKF-like form. The clear disadvan-
tage of SLF over EKF is that certain expected values of the non-linear functions
have to be computed in closed form. Naturally, it is not possible for all functions.
Fortunately, the expected values involved are of such type that one is likelyto find
many of them tabulated in older physics and control engineering books (see, e.g.
Gelb and Vander Velde, 1968).

The statistically linearized filter (SLF) is a special case of the Fourier-Hermite
Kalman filter (FHKF), when the first order truncation of the series is used (Sar-
mavuori and Särkkä, 2012). Many of the sigma-point methods can also beinter-
preted as approximations to the Fourier-Hermite Kalman filters and statistically
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linearized filters (cf. Van der Merwe and Wan, 2003; Särkkä and Hartikainen,
2010b; Sarmavuori and Särkkä, 2012).

3.2.5 Unscented Transform

The unscented transform(UT) (Julier and Uhlmann, 1995; Julier et al., 2000) is
a relatively recent numerical method that can be also used for approximating the
joint distribution of random variablesx andy defined as

x ∼ N(m,P)

y = g(x).

However, the philosophy in UT differs from linearization and statistical lineariza-
tion in the sense that it tries to directly approximate the mean and covariance of the
target distribution instead of trying to approximate the non-linear function (Julier
and Uhlmann, 1995).

The idea of UT is to deterministically choose a fixed number of sigma-points
that capture the mean and covariance of the original distribution ofx exactly. These
sigma-points are then propagated through the non-linearity and the mean andco-
variance of the transformed variable are estimated from them. Note that although
the unscented transform resembles Monte Carlo estimation the approaches are sig-
nificantly different, because in UT the sigma points are selected deterministically
(Julier and Uhlmann, 2004). The difference between linear approximationand UT
is illustrated in Figures 3.5, 3.6 and 3.7.

(a) Original (b) Transformed

Figure 3.5: Example of applying a non-linear transformation to a randomvariable on the
left, which results in the random variable on the right.

Theunscented transformforms the Gaussian approximation2 with the follow-
ing procedure:

2Note that this Gaussianity assumption is one interpretation, but unscented transform can also
be applied without the Gaussian assumption. However, because the assumption makes Bayesian
interpretation of UT much easier, we shall use it here.
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(a) Original (b) Transformed

Figure 3.6: Illustration of linearization based (EKF) approximation to the transformation
in Figure 3.5. The Gaussian approximation is formed by calculating the curvature at the
mean, which results in a bad approximation further away fromthe mean. The covariance
of the true distribution is presented by the blue dotted lineand the red solid line is the
approximation.

(a) Original (b) Transformed

Figure 3.7: Illustration of unscented transform based (UKF) approximation to the trans-
formation in Figure 3.5. The Gaussian approximation is formed by propagating the sigma
points through the non-linearity and the mean and covariance are estimated from the
transformed sigma points. The covariance of the true distribution is presented by the blue
dotted line and the red solid line is the approximation.
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1. Form a set of2n+ 1 sigma points as follows:

X (0) = m

X (i) = m+
√
n+ λ

[√
P
]

i

X (i+n) = m−
√
n+ λ

[√
P
]

i
, i = 1, . . . , n,

(3.98)

where[]i denotes theith column of the matrix, andλ is a scaling parameter,
which is defined in terms of algorithm parametersα andκ as follows:

λ = α2 (n+ κ)− n. (3.99)

The parametersα andκ determine the spread of the sigma points around the
mean (Wan and Van der Merwe, 2001). The matrix square root denotes a

matrix such that
√
P
√
P

T
= P. The sigma points are the columns of the

sigma point matrix.

2. Propagate the sigma points through the non-linear functiong(·):

Y(i) = g(X (i)), i = 0, . . . , 2n,

which results in transformed sigma pointsY(i).

3. Estimates of the mean and covariance of the transformed variable can be
computed from the sigma points as follows:

E[g(x)] ≈
2n∑

i=0

W
(m)
i Y(i)

Cov[g(x)] ≈
2n∑

i=0

W
(c)
i (Y(i) − µ) (Y(i) − µ)T ,

(3.100)

where the constant weightsW (m)
i andW (c)

i are given as follows (Wan and
Van der Merwe, 2001):

W
(m)
0 = λ/(n+ λ)

W
(c)
0 = λ/(n+ λ) + (1− α2 + β)

W
(m)
i = 1/{2(n+ λ)}, i = 1, . . . , 2n

W
(c)
i = 1/{2(n+ λ)}, i = 1, . . . , 2n,

(3.101)

andβ is an additional algorithm parameter that can be used for incorporating
prior information on the (non-Gaussian) distribution ofx (Wan and Van der
Merwe, 2001).
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If we apply the unscented transform to the augmented functiong̃(x) = (x,g(x)),
we simply get the set of sigma points, where the sigma pointsX (i) andY(i) have
been concatenated to the same vector. Thus, also forming approximation to the
joint distributionx andg(x) + q is straightforward and the result is:

Algorithm 3.13 (Unscented approximation of an additive transform). The un-
scented transform based Gaussian approximation to the joint distribution ofx

and the transformed random variabley = g(x) + q wherex ∼ N(m,P) and
q ∼ N(0,Q) is given as

(
x

y

)

∼ N

((
m

µU

)

,

(
P CU

CT
U SU

))

, (3.102)

where the sub-matrices can be computed as follows:

1. Form the set of2n+ 1 sigma points as follows:

X (0) = m

X (i) = m+
√
n+ λ

[√
P
]

i

X (i+n) = m−
√
n+ λ

[√
P
]

i
, i = 1, . . . , n

(3.103)

where the parameterλ is defined in Equation(3.99).

2. Propagate the sigma points through the non-linear functiong(·):

Y(i) = g(X (i)), i = 0, . . . , 2n.

3. The sub-matrices are then given as:

µU =
2n∑

i=0

W
(m)
i Y(i)

SU =
2n∑

i=0

W
(c)
i (Y(i) − µU ) (Y(i) − µU )

T +Q

CU =
2n∑

i=0

W
(c)
i (X (i) −m) (Y(i) − µU )

T ,

(3.104)

where the constant weightsW (m)
i andW

(c)
i were defined in the Equation

(3.101).

The unscented transform approximation to a transformation of the formy =
g(x,q) can be derived by considering the augmented random variablex̃ = (x,q)
as the random variable in the transform. The resulting algorithm is:



56 Optimal Filtering

Algorithm 3.14 (Unscented approximation of a non-additive transform). The un-
scented transform based Gaussian approximation to the joint distribution ofx

and the transformed random variabley = g(x,q) whenx ∼ N(m,P) and
q ∼ N(0,Q) is given as

(
x

y

)

∼ N

((
m

µU

)

,

(
P CU

CT
U SU

))

, (3.105)

where the sub-matrices can be computed as follows. Let the dimensionalitiesof x
andq ben andnq, respectively, and letn′ = n+ nq.

1. Form the sigma points for the augmented random variablex̃ = (x,q)

X̃ (0) = m̃

X̃ (i) = m̃+
√
n′ + λ′

[√

P̃
]

i

X̃ (i+n′) = m̃−
√
n′ + λ′

[√

P̃
]

i
, i = 1, . . . , n′,

(3.106)

where parameterλ′ is defined as in Equation(3.99), but withn replaced by
n′, and the augmented mean and covariance are defined by

m̃ =

(
m

0

)

P̃ =

(
P 0

0 Q

)

.

2. Propagate the sigma points through the function:

Ỹ(i) = g(X̃ (i),x, X̃ (i),q), i = 0, . . . , 2n′,

whereX̃ (i),x and X̃ (i),q denote the parts of the augmented sigma pointi,
which correspond tox andq, respectively.

3. Compute the predicted meanµU , the predicted covarianceSU and the cross-
covarianceCU :

µU =

2n′

∑

i=0

W
(m)′

i Ỹ(i)

SU =

2n′

∑

i=0

W
(c)′

i (Ỹ(i) − µU ) (Ỹ(i) − µU )
T

CU =

2n′

∑

i=0

W
(c)′

i (X̃ (i),x −m) (Ỹ(i) − µU )
T ,

where the definitions of the weightsW (m)′

i and W
(c)′

i are the same as in
Equation(3.101), but withn replaced byn′ andλ replaced byλ′.
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3.2.6 Unscented Kalman Filter (UKF)

Theunscented Kalman filter(UKF) (Julier et al., 1995; Julier and Uhlmann, 2004;
Wan and Van der Merwe, 2001) is an optimal filtering algorithm that utilizes the
unscented transform and can be used for approximating the filtering distributions
of models having the same form as with EKF and SLF, that is, models of the form
(3.55) or (3.68). As EKF and SLF, UKF forms a Gaussian approximation to the
filtering distribution:

p(xk | y1, . . . ,yk) ≈ N(xk | mk,Pk), (3.107)

wheremk andPk are the mean and covariance computed by the algorithm.

Algorithm 3.15 (unscented Kalman filter I). In the additive form unscented Kalman
filter (UKF) algorithm, which can be applied to additive models of the form(3.55),
the following operations are performed at each measurement stepk = 1, 2, 3, . . .:

1. Prediction step:

(a) Form the sigma points:

X (0)
k−1 = mk−1,

X (i)
k−1 = mk−1 +

√
n+ λ

[√

Pk−1

]

i

X (i+n)
k−1 = mk−1 −

√
n+ λ

[√

Pk−1

]

i
, i = 1, . . . , n

(3.108)

where the parameterλ is defined in Equation(3.99).

(b) Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X (i)

k−1), i = 0, . . . , 2n. (3.109)

(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

2n∑

i=0

W
(m)
i X̂ (i)

k

P−
k =

2n∑

i=0

W
(c)
i (X̂ (i)

k −m−
k ) (X̂

(i)
k −m−

k )
T +Qk−1,

(3.110)

where the weightsW (m)
i andW (c)

i were defined in Equation(3.101).

2. Update step:

(a) Form the sigma points:

X−(0)
k = m−

k ,

X−(i)
k = m−

k +
√
n+ λ

[√

P−
k

]

i

X−(i+n)
k = m−

k −
√
n+ λ

[√

P−
k

]

i

, i = 1, . . . , n.

(3.111)
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(b) Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X−(i)

k ), i = 0, . . . , 2n. (3.112)

(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and the measure-
mentCk:

µk =
2n∑

i=0

W
(m)
i Ŷ(i)

k

Sk =

2n∑

i=0

W
(c)
i (Ŷ(i)

k − µk) (Ŷ
(i)
k − µk)

T +Rk

Ck =
2n∑

i=0

W
(c)
i (X−(i)

k −m−
k ) (Ŷ

(i)
k − µk)

T .

(3.113)

(d) Compute the filter gainKk, the filtered state meanmk and the covari-
ancePk, conditional on the measurementyk:

Kk = Ck S
−1
k

mk = m−
k +Kk [yk − µk]

Pk = P−
k −Kk Sk K

T
k .

(3.114)

The filtering equations above can be derived in analogous manner to EKF
equations, but the unscented transform based approximations are usedinstead of
the linear approximations.

The non-additive form of UKF (Julier and Uhlmann, 2004) can be derived by
augmenting the process or measurement noises with the state vector and applying
UT approximation to that. Alternatively, one can first augment the state vector
with process noise, then approximate the prediction step and after that do thesame
with measurement noise on the update step. The different algorithms and ways
of doing this in practice are analyzed in article (Wu et al., 2005). However,if we
directly apply the non-additive UT in the Algorithm 3.14 separately to prediction
and update steps, we get the following algorithm:

Algorithm 3.16 (unscented Kalman filter II). In the augmented form unscented
Kalman filter (UKF) algorithm, which can be applied to non-additive models of
the form(3.68), the following operations are performed at each measurement step
k = 1, 2, 3, . . .:

1. Prediction step:



3.2 Extended and Unscented Kalman Filtering 59

(a) Form the sigma points for the augmented random variable(xk−1,qk−1):

X̃ (0)
k−1 = m̃k−1,

X̃ (i)
k−1 = m̃k−1 +

√
n′ + λ′

[√

P̃k−1

]

i

X̃ (i+n′)
k−1 = m̃k−1 −

√
n′ + λ′

[√

P̃k−1

]

i

, i = 1, . . . , n′,

(3.115)

where

m̃k−1 =

(
mk−1

0

)

P̃k−1 =

(
Pk−1 0

0 Qk−1

)

.

Heren′ = n+ nq, wheren is the dimensionality of the statexk−1 and
nq is the dimensionality of the noiseqk−1. The parameterλ′ is defined
as in Equation(3.99), but withn replaced byn′.

(b) Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X̃ (i),x

k−1 , X̃
(i),q
k−1 ), i = 0, . . . , 2n′. (3.116)

whereX̃ (i),x
k−1 denotes the firstn components iñX (i)

k−1 andX̃ (i),q
k−1 denotes

thenq last components.

(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

2n∑

i=0

W
(m)′

i X̂ (i)
k

P−
k =

2n∑

i=0

W
(c)′

i (X̂ (i)
k −m−

k ) (X̂
(i)
k −m−

k )
T .

(3.117)

where the weightsW (m)′

i andW (c)′

i are the same as in Equation(3.101),
but withn replaced byn′ andλ byλ′.

2. Update step:

(a) Form the sigma points for the augmented random variable(xk, rk):

X̃−(0)
k = m̃−

k ,

X̃−(i)
k = m̃−

k +
√
n′′ + λ′′

[√

P̃−
k

]

i

X̃−(i+n′′)
k = m−

k −
√
n′′ + λ′′

[√

P̃−
k

]

i

, i = 1, . . . , n′′,

(3.118)

where

m̃−
k =

(
m−

k

0

)

P̃−
k =

(
P−

k 0

0 Rk

)

.
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Here we have definedn′′ = n+nr, wheren is the dimensionality of the
statexk andnr is the dimensionality of the noiserk. The parameter
λ′′ is defined as in Equation(3.99), but withn replaced byn′′.

(b) Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X̃−(i),x

k , X̃−(i),r
k ), i = 0, . . . , 2n′′, (3.119)

where X̃−(i),x
k denotes the firstn components inX̃−(i)

k and X̃−(i),r
k

denotes thenr last components.

(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and the measure-
mentCk:

µk =

2n′′

∑

i=0

W
(m)′′

i Ŷ(i)
k

Sk =

2n′′

∑

i=0

W
(c)′′

i−1 (Ŷ(i)
k − µk) (Ŷ

(i)
k − µk)

T

Ck =

2n′′

∑

i=0

W
(c)′′

i (X−(i),x
k −m−

k ) (Ŷ
(i)
k − µk)

T ,

(3.120)

where the weightsW (m)′′

i and W
(c)′′

i are the same as in Equation
(3.101), but withn replaced byn′′ andλ byλ′′.

(d) Compute the filter gainKk and the filtered state meanmk and covari-
ancePk, conditional to the measurementyk:

Kk = Ck S
−1
k

mk = m−
k +Kk [yk − µk]

Pk = P−
k −Kk Sk K

T
k .

(3.121)

The advantage of the UKF over EKF is that UKF is not based on a local linear
approximation, but uses a bit further points in approximating the non-linearity. As
discussed in Julier and Uhlmann (2004) the unscented transform is able to capture
the higher order moments caused by the non-linear transform better than theTaylor
series based approximations. However, an important point to note is that although
the mean estimate of UT is exact for polynomials up to order 3, the covariance
computation is only exact for polynomials up to the first order (as, e.g., in SLF).
In UT, the dynamic and model functions are also not required to be formally dif-
ferentiable nor do their Jacobian matrices need to be computed. The advantage of
UKF over SLF is that in UKF there is no need to compute any expected values in
closed form, only evaluations of the dynamic and measurement models are needed.
However, the accuracy of UKF cannot be expected to be as good as that of SLF,
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because SLF uses a larger area in the approximation, whereas UKF only selects a
fixed number of points in the area. The disadvantage over EKF is that UKF often
requires slightly more computational operations than EKF.

The UKF can be interpreted to belong to a wider class of filters called sigma-
point filters (Van der Merwe and Wan, 2003), which also includes other types of
filters such as central differences Kalman filter (CDKF), Gauss-Hermite Kalman
filter (GHKF) and a few others (Ito and Xiong, 2000; Wu et al., 2006; Nørgaard
et al., 2000; Arasaratnam and Haykin, 2009). The classification to sigma-point
methods by Van der Merwe and Wan (2003) is based on interpreting the methods
as special cases of (weighted) statistical linear regression (Lefebvreet al., 2002).
As discussed in (Van der Merwe and Wan, 2003), statistical linearization isclosely
related to sigma-point approximations, because they both are related to statisti-
cal linear regression. However, it is important to note that the statistical linear
regression (Lefebvre et al., 2002) which is the basis of sigma-point framework
(Van der Merwe and Wan, 2003) is not exactly equivalent to statistical lineariza-
tion (Gelb, 1974) as sometimes is claimed. The statistical linear regression can be
considered as a discrete approximation to statistical linearization.

3.2.7 Fourier-Hermite Series Expansions

In this section, we show how Fourier-Hermite series can be used for approximating
non-linear transformations of Gaussian random variables and how this approach
can be seen as a generalization of statistical linearization. The presentationhere is
based on the article by Sarmavuori and Särkkä (2012).

In Section 3.2.3 we formed the statistical linearization based approximation to
the transformation

x ∼ N(m,P)

y = g(x)
(3.122)

by postulating the approximation

g(x) ≈ b+A δx, (3.123)

and by finding the optimal matrixA and vectorb by minimizingE[||g(x) − b −
A δ x||2], whereδx = x −m. We could now attempt to generalize this such that
instead of the linear approximation, we use apth order polynomial approximation

g(x) ≈ b+A δx+ δxT C δx+ . . . (3.124)

By expanding the expression and setting derivatives to zero we could determine
the optimal polynomial coefficients. This indeed is possible, but with higher order
polynomials this approach quickly becomes tedious. Fortunately, we can formulate
the approximation more conveniently in terms of Hilbert space theory by defining
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an inner product for scalar functionsg andf as follows:

〈f, g〉 =
∫

f(x) g(x) N(x |m,P) dx

= E[f(x) g(x)],

(3.125)

wherex ∼ N(m,P). We can now form a Hilbert space of functions by defining a
norm as

||g||2 = 〈g, g〉. (3.126)

Hilbert space theory now tells that there exists an orthogonal polynomial basis of
the corresponding Hilbert space. It turns out that these polynomial basis functions
are scaled multivariate Hermite polynomials, which we here define as3

H[a1,...,ap](x;m,P) = H[a1,...,ap](L
−1 (x−m)), (3.127)

whereL is a matrix such thatP = LLT and

H[a1,...,ap](x) = (−1)p exp(||x||2/2) ∂n

∂xa1 · · · ∂xap
exp(−||x||2/2). (3.128)

We can now expand an arbitrary vector functiong(x) with 〈gi, gi〉 < ∞ into a
Fourier-Hermite series as follows:

g(x) =
∞∑

k=0

n∑

a1,...,ak=1

1

k!
E[g(x)H[a1,...,ak](x;m,P)]H[a1,...,ak](x;m,P).

(3.129)

Notice that becauseH[0,...,0](x;m,P) = 1, the zeroth order term in the series is
just the expectationE[g(x)]. By using the orthogonality of the basis functions we
get that the sum of expectations of outer products is

E[g(x)gT (x)] =
∞∑

k=0

n∑

a1,...,ak=1

1

k!
E[g(x)H[a1,...,ak](x;m,P)]

× E[gT (x)H[a1,...,ak](x;m,P)].

(3.130)

By leaving out the zeroth order term we get the following exact representation for
the covariance ofg(x):

Cov[g(x)] =
∞∑

k=1

n∑

a1,...,ak=1

1

k!
E[g(x)H[a1,...,ak](x;m,P)]

× E[gT (x)H[a1,...,ak](x;m,P)].

(3.131)

3Note that this definition used here as well as in Kuznetsov et al. (1960); Sarmavuori and Särkkä
(2012) differs from the “natural” definitionH(p1,...,pn)(x;m,P) = H(p1,...,pn)(L

−1(x − m)),
with H(p1,...,pn)(x) = Hp1(x1) · · ·Hpn(xn), whereHpj are the univariate Hermite polynomials,
because this way the notation remains clearer (Sarmavuori and Särkkä, 2012). The different defini-
tions are of course equivalent.
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From Hilbert space theory we know that the bestpth polynomial approximation to
g(x) with respect to|| · ||2, that is, the polynomial expansion (3.124) is given by the
orthogonal projection on the Hermite polynomials up to orderp. Thus the optimal
pth order polynomial approximation is given by truncating the series (3.129) at
orderp.

We could now consider computing the coefficients of the series with some
numerical method and then pick the zeroth order term for the mean and compute
an approximation to the covariance by the truncated series above. However, this
does not make much sense, because with the same numerical method we could
equivalently directly compute the covariance as well. Fortunately, the Fourier-
Hermite series coefficients can be computed in an alternative way because of the
following result (Sarmavuori and Särkkä, 2012):

E[g(x)H[a1,...,ak](x;m,P)] =
n∑

b1,...,bk=1

E

[
∂kg(x)

∂xb1 · · · ∂xbk

] k∏

m=1

Lbm,am ,

(3.132)

which is a generalization of the derivative version of the statistical linearization
discussed in Section 3.2.3. Thus we can express the Fourier-Hermite series as
follows:

g(x) =
∞∑

k=0

n∑

a1,...,ak=1
b1,...,bk=1

1

k!
E

[
∂kg(x)

∂xb1 · · · ∂xbk

] k∏

m=1

Lbm,am H[a1,...,ak](x;m,P),

(3.133)

and the covariance as:

Cov[g(x)gT (x)] =

∞∑

k=1

n∑

a1,...,ak=1
b1,...,bk=1

1

k!
E

[
∂kg(x)

∂xb1 · · · ∂xbk

] k∏

m=1

Pbm,am

× E

[
∂kg(x)

∂xa1 · · · ∂xak

]T

.

(3.134)

It turns out that we do not even need to compute the expectations of the derivatives,
because they can be evaluated as follows (Sarmavuori and Särkkä, 2012):

• Assume that we can compute the following expectation in closed form:

ĝ(m,P) = E[g(x)] =

∫

g(x) N(x |m,P) dx, (3.135)

for an arbitrarym andP.

• Then we have

E

[
∂kg(x)

∂xb1 , . . . , ∂xbk

]

=
∂kĝ(m,P)

∂mb1 · · · ∂mbk

(3.136)
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In forming the approximation to the joint mean and covariance of the augmented
function g̃(x) = (x,g(x)) we also need the following term, which can also be
computed using the above result:

E[(x−m) (g(x)− E[g(x)])T ] = P E[Gx(x)]
T = PĜT , (3.137)

whereĜij = ∂ĝi/∂mj . We get the following algorithm:

Algorithm 3.17 (Fourier-Hermite series approximation of an additive transform).
The Fourier-Hermite series based Gaussian approximation to the joint distribution
ofx and the transformed random variabley = g(x)+q wherex ∼ N(m,P) and
q ∼ N(0,Q) is given as

(
x

y

)

∼ N

((
m

µF

)

,

(
P CF

CT
F SF

))

, (3.138)

where

µF = ĝ(m,P)

SF = Q+
∑

ij

ĝ
(1)
i (m,P)Pij [ĝ

(1)
j (m,P)]T

︸ ︷︷ ︸

ĜP ĜT

+
1

2!

∑

ijuv

ĝ
(2)
iu (m,P)Pij Puv [ĝ

(2)
jv (m,P)]T

+
1

3!

∑

ijuvpq

ĝ
(3)
iup(m,P)Pij Puv Ppq [ĝ

(3)
jvq(m,P)]T

+ . . .

CF = PĜT ,

(3.139)

and we have defined

ĝ(m,P) =

∫

g(x) N(x |m,P) dx

ĝ
(k)
b1,...,bk

(m,P) =
∂kĝ(m,P)

∂mb1 · · · ∂mbk

(3.140)

and the matrixĜ is defined as

Ĝij = [ĝ
(1)
j (m,P)]i. (3.141)

The mean and cross-covariance in the above approximation are always exact
(assuming that we can compute them exactly) and when the series is truncated
at orderp, the covariance is accurate for polynomials up to orderp. The first
order approximation is equivalent to the statistically linearized approximation. The
approximation to the non-additive transform can be obtained analogously.
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3.2.8 Fourier-Hermite Kalman Filter

In this section we present the Fourier-Hermite Kalman filter (FHKF, Sarmavuori
and Särkkä, 2012), which is based on the Fourier-Hermite series expansion in the
previous section and is a generalization of the statistically linearized filter. To
implement the algorithm, we need closed form expressions or good approximations
to the following expressions with arbitrarym andP:

f̂(m,P) =

∫

f(x) N(x |m,P) dx

f̂
(k)
b1,...,bk

(m,P) =
∂k f̂(m,P)

∂mb1 · · · ∂mbk

,

(3.142)

as well as to the following expressions:

ĥ(m,P) =

∫

h(x) N(x |m,P) dx

ĥ
(k)
b1,...,bk

(m,P) =
∂kĥ(m,P)

∂mb1 · · · ∂mbk

.

(3.143)

The filter is the following:

Algorithm 3.18 (Fourier-Hermite Kalman filter). The prediction and update steps
of the additive noise Fourier-Hermite Kalman filter (FHKF) are:

• Prediction:

m−
k = f̂(mk−1,Pk−1)

P−
k = Qk−1 +

∑

ij

f̂
(1)
i (mk−1,Pk−1) [Pk−1]ij [f̂

(1)
j (mk−1,Pk−1)]

T

+
1

2!

∑

ijuv

f̂
(2)
iu (mk−1,Pk−1) [Pk−1]ij [Pk−1]uv [f̂

(2)
jv (mk−1,Pk−1)]

T

+
1

3!

∑

ijuvpq

f̂
(3)
iup(mk−1,Pk−1) [Pk−1]ij [Pk−1]uv [Pk−1]pq

× [f̂
(3)
jvq(mk−1,Pk−1)]

T

+ . . .

(3.144)
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• Update:

vk = yk − ĥ(m−
k ,P

−
k )

Sk = Rk

∑

ij

ĥ
(1)
i (m−

k ,P
−
k ) [P

−
k ]ij [ĥ

(1)
j (m−

k ,P
−
k )]

T

+
1

2!

∑

ijuv

ĥ
(2)
iu (m−

k ,P
−
k ) [P

−
k ]ij [P

−
k ]uv [ĥ

(2)
jv (m

−
k ,P

−
k )]

T

+
1

3!

∑

ijuvpq

ĥ
(3)
iup(m

−
k ,P

−
k ) [P

−
k ]ij [P

−
k ]uv [P

−
k ]pq

× [ĥ
(3)
jvq(m

−
k ,P

−
k )]

T

+ . . .

Kk = P−
k ĤT S−1

k

mk = m−
k +Kk vk

Pk = P−
k −Kk Sk K

T
k ,

(3.145)

where the matrix̂H is defined as

Ĥij = [ĥ
(1)
j (m−

k ,P
−
k )]i. (3.146)

3.3 Gaussian Filtering

Quite soon after the unscented Kalman filter (UKF) was published, Ito and Xiong
(2000) pointed out that UKF can be considered as a special case of socalled
Gaussian filters, where the non-linear filtering problem is solved using Gaussian
assumed density approximations. The generalized framework also enablesthe
usage of various powerful Gaussian quadrature and cubature integration methods
(Wu et al., 2006; Arasaratnam and Haykin, 2009). The series expansion based
filters presented in the previous sections can also be seen as approximations to the
general Gaussian filter. In this section we present the Gaussian filtering framework
and show how the Gauss-Hermite Kalman filter (GHKF) and the cubature Kalman
filter (CKF) can be derived as its approximations. We also show how UKF can be
seen as a generalization of CKF.

3.3.1 Gaussian Moment Matching

One way to unify various Gaussian approximation based approaches is to think all
of them as approximations to Gaussian integrals of the form:

∫

g(x) N(x |m,P) dx.
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If we can compute these, a straight-forward way to form the Gaussian approxima-
tion for (x,y) is to simply match the moments of the distributions, which gives the
following algorithm:

Algorithm 3.19 (Gaussian moment matching of an additive transform). The mo-
ment matching based Gaussian approximation to the joint distribution ofx and the
transformed random variabley = g(x)+qwherex ∼ N(m,P) andq ∼ N(0,Q)
is given as

(
x

y

)

∼ N

((
m

µM

)

,

(
P CM

CT
M SM

))

, (3.147)

where

µM =

∫

g(x) N(x |m,P) dx

SM =

∫

(g(x)− µM ) (g(x)− µM )T N(x |m,P) dx+Q

CM =

∫

(x−m) (g(x)− µM )T N(x |m,P) dx.

(3.148)

It is now easy to check by substituting the approximationg(x) = g(m) +
Gx(m) (x−m) to the above expression that in the linear case the integrals indeed
reduce to the linear approximations in the Algorithm 3.2. And the same applies
to statistical linearization. However, many other approximations can also be inter-
preted as such approximations as is discussed in the next section.

The non-additive version of the transform is the following:

Algorithm 3.20 (Gaussian moment matching of a non-additive transform). The
moment matching based Gaussian approximation to the joint distribution ofx and
the transformed random variabley = g(x,q) wherex ∼ N(m,P) and q ∼
N(0,Q) is given as

(
x

y

)

∼ N

((
m

µM

)

,

(
P CM

CT
M SM

))

, (3.149)

where

µM =

∫

g(x,q) N(x |m,P) N(q |0,Q) dx dq

SM =

∫

(g(x,q)− µM ) (g(x,q)− µM )T N(x |m,P) N(q |0,Q) dx dq

CM =

∫

(x−m) (g(x,q)− µM )T N(x |m,P) N(q |0,Q) dx dq.

(3.150)
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3.3.2 Gaussian Filter

If we replace the linear approximations in EKF with the moment matching approx-
imations in the previous section, we get the followingGaussian assumed density
filter (ADF) which is also calledGaussian filter(Maybeck, 1982a; Ito and Xiong,
2000; Wu et al., 2006):

Algorithm 3.21 (Gaussian filter I). The prediction and update steps of the additive
noise Gaussian (Kalman) filter are:

• Prediction:

m−
k =

∫

f(xk−1) N(xk−1 |mk−1,Pk−1) dxk−1

P−
k =

∫

(f(xk−1)−m−
k ) (f(xk−1)−m−

k )
T

×N(xk−1 |mk−1,Pk−1) dxk−1 +Qk−1.

(3.151)

• Update:

µk =

∫

h(xk) N(xk |m−
k ,P

−
k ) dxk

Sk =

∫

(h(xk)− µk) (h(xk)− µk)
T N(xk |m−

k ,P
−
k ) dxk +Rk

Ck =

∫

(xk −m−) (h(xk)− µk)
T N(xk |m−

k ,P
−
k ) dxk

Kk = Ck S
−1
k

mk = m−
k +Kk (yk − µk)

Pk = P−
k −Kk Sk K

T
k .

(3.152)

The advantage of the moment matching formulation is that it enables usage of
many well known numerical integration methods such as Gauss-Hermite quadra-
tures, cubature rules and central difference based methods (Ito and Xiong, 2000;
Wu et al., 2006; Nørgaard et al., 2000; Arasaratnam and Haykin, 2009). The
unscented transformation can also be interpreted as an approximation to these
integrals (Wu et al., 2006).

One interesting way to approximate the integrals is to use the Bayes-Hermite
quadrature (O’Hagan, 1991), which is based of fitting a Gaussian process regres-
sion model to the non-linear functions on finite set of training points. This approach
is used in the Gaussian process filter of Deisenroth et al. (2009). It is also possible
to approximate the integrals by Monte Carlo integration, which is the approach
used in Monte Carlo Kalman Filter (MCKF). That idea can also be extended to
non-Gaussian measurement models (Kotecha and Djuric, 2003).

The Gaussian filter can be extended to non-additive noise models as follows:
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Algorithm 3.22 (Gaussian filter II). The prediction and update steps of the non-
additive noise Gaussian (Kalman) filter are:

• Prediction:

m−
k =

∫

f(xk−1,qk−1)

×N(xk−1 |mk−1,Pk−1) N(qk−1 |0,Qk−1) dxk−1 dqk−1

P−
k =

∫

(f(xk−1,qk−1)−m−
k ) (f(xk−1,qk−1)−m−

k )
T

×N(xk−1 |mk−1,Pk−1) N(qk−1 |0,Qk−1) dxk−1 dqk−1.

(3.153)

• Update:

µk =

∫

h(xk, rk)

×N(xk |m−
k ,P

−
k ) N(rk |0,Rk) dxk drk

Sk =

∫

(h(xk, rk)− µk) (h(xk, rk)− µk)
T

×N(xk |m−
k ,P

−
k ) N(rk |0,Rk) dxk drk

Ck =

∫

(xk −m−) (h(xk, rk)− µk)
T

×N(xk |m−
k ,P

−
k ) N(rk |0,Rk) dxk drk

Kk = Ck S
−1
k

mk = m−
k +Kk (yk − µk)

Pk = P−
k −Kk Sk K

T
k .

(3.154)

3.3.3 Gauss-Hermite Integration

In the Gaussian filter (and later in smoother) we are interested in approximating
Gaussian integrals of the form

∫

g(x) N(x |m,P) dx

=
1

(2π)n/2 |P|1/2
∫

g(x) exp

(

−1

2
(x−m)T P−1 (x−m)

)

dx,

(3.155)

whereg(x) is an arbitrary function. In this section, we shall derive a Gauss-
Hermite based numerical cubature4 algorithm for computing such integrals. The

4As one-dimensional integrals arequadratures, multidimensional integrals have been tradition-
ally calledcubatures.
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algorithm is based on direct generalization of the one-dimensional Gauss-Hermite
rule into multiple dimensions by taking Cartesian product of one-dimensional quad-
ratures. The disadvantage of the method is that the required number of evaluation
points is exponential with respect to the number of dimensions.

In its basic form, one-dimensional Gauss-Hermite quadrature integration refers
to the special case of Gaussian quadratures with unit Gaussian weight function
w(x) = N(x | 0, 1), that is, to approximations of the form

∫ ∞

−∞
g(x) N(x | 0, 1) dx ≈

∑

i

W (i)g(x(i)), (3.156)

whereW (i), i = 1, . . . , p are the weights andx(i) are the evaluation points or
abscissas — also sometimes called sigma points. Note that the quadrature is often
defined for the weight functionexp(−x2), but here we shall use the “probabilists’
definition” above. The two versions of the quadrature are related by simplescaling
of variables.

Obviously, there is an infinite number of possible ways to select the weights and
evaluation points. In Gauss-Hermite integration, as in all Gaussian quadratures,
the weights and sigma points are chosen such that with polynomial integrand the
approximation becomes exact. It turns out that the polynomial order with given
number of points is maximized is we choose the sigma points to be roots of Hermite
polynomials. When usingpth order Hermite polynomialHp(x), the rule will be
exact for polynomials up to order2p − 1. The required weights can be computed
in closed form (see below).

The Hermite polynomial of orderp is defined as (these are so called “proba-
bilists’ Hermite polynomials”):

Hp(x) = (−1)p exp(x2/2)
dp

dxp
exp(−x2/2). (3.157)

The first few Hermite polynomials are:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3,

(3.158)

and further polynomials can be found from the recursion

Hp+1(x) = xHp(x)− pHp−1(x). (3.159)

Using the same weights and sigma points, integrals over non-unit Gaussian weights
functionsN(x |m,P ) can be evaluated using a simple change of integration vari-
able:

∫ ∞

−∞
g(x) N(x |m,P ) dx =

∫ ∞

−∞
g(P 1/2 ξ +m) N(ξ | 0, 1) dξ (3.160)
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The Gauss-Hermite integration can be written as the following algorithm:

Algorithm 3.23 (Gauss-Hermite quadrature). Thepth order Gauss-Hermite ap-
proximation to the 1-dimensional integral

∫ ∞

−∞
g(x) N(x |m,P ) dx (3.161)

can be computed as follows:

1. Compute the unit sigma points as the rootsξ(i), i = 1, . . . , p of Hermite
polynomialHp(x). Note that we do not need to form the polynomial and
them compute its roots, but instead it is numerically more stable to compute
the roots as eigenvalues of a suitable tridiagonal matrix (Golub and Welsch,
1969).

2. Compute the weights as

W (i) =
p!

p2 [Hp−1(ξ(i))]2
. (3.162)

3. Approximate the integral as

∫ ∞

−∞
g(x) N(x |m,P ) dx ≈

p
∑

i=1

W (i)g(P 1/2 ξ(i) +m). (3.163)

By generalizing the change of variables idea, we can form approximationsto

multidimensional integrals of the form (3.155). First letP =
√
P
√
P

T
, where√

P is the Cholesky factor of the covariance matrixP or some other similar square
root of the covariance matrix. If we define new integration variablesξ by

x = m+
√
P ξ, (3.164)

we get
∫

g(x) N(x |m,P) dx =

∫

g(m+
√
P ξ) N(ξ |0, I) dξ. (3.165)

The integration over the multidimensional unit Gaussian can be written as an it-
erated integral over one-dimensional Gaussian distributions, and each of the one-
dimensional integrals can be approximated with Gauss-Hermite quadrature:

∫

g(m+
√
P ξ) N(ξ |0, I) dξ

=

∫

· · ·
∫

g(m+
√
P ξ) N(ξ1 | 0, 1) dξ1 × · · · ×N(ξn | 0, 1) dξn

≈
∑

i1,...,in

W (i1) × · · · ×W (in)g(m+
√
P ξ(i1,...,in)).

(3.166)
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The weightsW (ik), k = 1, . . . , n are simply the corresponding one-dimensional
Gauss-Hermite weights andξ(i1,...,in) is an-dimensional vector with one-dimens-
ional unit sigma pointξ(ik) at elementk. The algorithm can be now written as
follows:

Algorithm 3.24 (Gauss-Hermite cubature). Thepth order Gauss-Hermite approx-
imation to the multidimensional integral

∫

g(x) N(x |m,P) dx (3.167)

can be computed as follows:

1. Compute the one-dimensional weightsW (i), i = 1, . . . , p and unit sigma
pointsξ(i) as in the one-dimensional Gauss-Hermite quadrature Algorithm
3.23.

2. Form multidimensional weights as the products of one-dimensional weights:

W (i1,...,in) = W (i1) × · · · ×W (in)

=
p!

p2 [Hp−1(ξ(i1))]2
× · · · × p!

p2 [Hp−1(ξ(in))]2
,

(3.168)

where eachik takes values1, . . . , p.

3. Form multidimensional unit sigma points as Cartesian product of the one-
dimensional unit sigma points:

ξ(i1,...,in) =






ξ(i1)

...
ξ(in)




 . (3.169)

4. Approximate the integral as

∫

g(x) N(x |m,P) dx ≈
∑

i1,...,in

W (i1,...,in)g(m+
√
P ξ(i1,...,in)),

(3.170)

where
√
P is a matrix square root defined byP =

√
P
√
P

T
.

Thepth order multidimensional Gauss-Hermite integration is exact for mono-
mials of the formxd1 xd2 · · ·xdn , and their arbitrary linear combinations, where
each of the ordersdi ≤ 2p − 1. The number of sigma points required forn-
dimensional integral withpth order rule ispn, which quickly becomes unfeasible
when the number of dimensions grows.
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3.3.4 Gauss-Hermite Kalman Filter (GHKF)

The additive form multidimensional Gauss-Hermite cubature based filter can be
derived by replacing the Gaussian integrals in the Gaussian filter Algorithm 3.21
with the Gauss-Hermite approximations in Algorithm 3.24:

Algorithm 3.25 (Gauss-Hermite Kalman filter). The additive form Gauss-Hermite
Kalman filter (GHKF) algorithm is the following:

1. Prediction step:

(a) Form the sigma points as:

X (i1,...,in)
k−1 = mk−1 +

√

Pk−1 ξ
(i1,...,in) i1, . . . , in = 1, . . . , p,

(3.171)

where the unit sigma pointsξ(i1,...,in) were defined in Equation(3.169).

(b) Propagate the sigma points through the dynamic model:

X̂ (i1,...,in)
k = f(X (i1,...,in)

k−1 ), i1, . . . , in = 1, . . . , p. (3.172)

(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

∑

i1,...,in

W (i1,...,in)X̂ (i1,...,in)
k

P−
k =

∑

i1,...,in

W (i1,...,in)(X̂ (i1,...,in)
k −m−

k ) (X̂
(i1,...,in)
k −m−

k )
T +Qk−1,

(3.173)

where the weightsW (i1,...,in) were defined in Equation(3.168).

2. Update step:

(a) Form the sigma points:

X−(i1,...,in)
k = m−

k +
√

P−
k ξ(i1,...,in), i1, . . . , in = 1, . . . , p,

(3.174)

where the unit sigma pointsξ(i1,...,in) were defined in Equation(3.169).

(b) Propagate sigma points through the measurement model:

Ŷ(i1,...,in)
k = h(X−(i1,...,in)

k ), i1, . . . , in = 1, . . . , p. (3.175)
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(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and the measure-
mentCk:

µk =
∑

i1,...,in

W (i1,...,in)Ŷ(i1,...,in)
k

Sk =
∑

i1,...,in

W (i1,...,in)(Ŷ(i1,...,in)
k − µk) (Ŷ

(i1,...,in)
k − µk)

T +Rk

Ck =
∑

i1,...,in

W (i1,...,in)(X−(i1,...,in)
k −m−

k ) (Ŷ
(i1,...,in)
k − µk)

T ,

(3.176)

where the weightsW (i1,...,in) were defined in Equation(3.168).

(d) Compute the filter gainKk, the filtered state meanmk and the covari-
ancePk, conditional on the measurementyk:

Kk = Ck S
−1
k

mk = m−
k +Kk [yk − µk]

Pk = P−
k −Kk Sk K

T
k .

(3.177)

The non-additive version can be obtained by applying the Gauss-Hermite quadra-
ture to the non-additive Gaussian filter Algorithm 3.22 in a similar manner. How-
ever, due to the rapid growth of computational requirements in state dimension
the augmented form is computationally quite heavy, because it requires roughly
doubling of the dimensionality of the integration variable.

3.3.5 Spherical Cubature Integration

In this section we shall derive the third order spherical cubature rule, which was
popularized by Arasaratnam and Haykin (2009). However, instead ofusing the
derivation of Arasaratnam and Haykin (2009), we shall use the derivation presented
by Wu et al. (2006), due to its simplicity. Although the derivation that we present
here is far simpler than the alternative, it is completely equivalent. Furthermore,
the derivation presented here can be more easily extended to more complicated
spherical cubatures.

Recall from Section 3.3.3 that expectation of a non-linear function over an
arbitrary Gaussian distributionN(x |m,P) can always be transformed into expec-
tation over unit Gaussian distributionN(ξ |0, I). Thus, we can start by considering
the multidimensional unit Gaussian integral

∫

g(ξ) N(ξ |0, I) dξ. (3.178)

We now wish to form a2n-point approximation of the form
∫

g(ξ) N(ξ |0, I) dξ ≈ W
∑

i

g(cu(i)), (3.179)
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where the pointsu(i) belong to the symmetric set[1] with generator(1, 0, . . . , 0)
(see, e.g., Wu et al., 2006; Arasaratnam and Haykin, 2009):

[1] =
















1
0
0
...
0










,










0
1
0
...
0










, · · ·










−1
0
0
...
0










,










0
−1
0
...
0










, · · ·







(3.180)

andW is a weight andc is a parameter yet to be determined.
Because the point set is symmetric, the rule is exact for all monomials of the

form xd11 xd22 · · ·xdnn , if at least one of the exponentsdi is odd. Thus we can
construct a rule which is exact up to third degree by determining the coefficients
W andc such that it is exact for selectionsgj(ξ) = 1 andgj(ξ) = ξ2j . Because the
true values of the integrals are

∫

N(ξ |0, I) dξ = 1
∫

ξ2j N(ξ |0, I) dξ = 1,

(3.181)

we get the equations

W
∑

i

1 = W 2n = 1

W
∑

i

[c u
(i)
j ]2 = W 2c2 = 1,

(3.182)

which have the solutions

W =
1

2n
c =

√
n.

(3.183)

That is, we get the following simple rule, which is exact for monomials up to third
degree: ∫

g(ξ) N(ξ |0, I) dξ ≈ 1

2n

∑

i

g(
√
nu(i)), (3.184)

We can now easily extend the method to arbitrary mean and covariance by using the
change of variables in Equations (3.164) and (3.165) and the result is thefollowing
algorithm:

Algorithm 3.26 (Spherical cubature integration). The 3rd order spherical cubature
approximation to the multidimensional integral

∫

g(x) N(x |m,P) dx (3.185)

can be computed as follows:
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1. Compute the unit sigma points as

ξ(i) =

{ √
n ei , i = 1, . . . , n

−√
n ei−n , i = n+ 1, . . . , 2n,

(3.186)

whereei denotes a unit vector to the direction of coordinate axisi.

2. Approximate the integral as

∫

g(x) N(x |m,P) dx ≈ 1

2n

2n∑

i=1

g(m+
√
P ξ(i)), (3.187)

where
√
P is a matrix square root defined byP =

√
P
√
P

T
.

It is easy to see that the approximation above is a special case of the unscented
transform (see Section 3.2.5) with parametersα = 1, β = 0, andκ = 0. With
this parameter selection the mean weight is zero and the unscented transformis
effectively a2n-point approximation as well.

The derivation presented by Arasaratnam and Haykin (2009) is a bit more
complicated than the derivation of Wu et al. (2006) presented above, as itis based
on converting the Gaussian integral into spherical coordinates and then considering
the even order monomials. However, Wu et al. (2006) actually did not present the
most useful special case given in the Algorithm 3.26, but instead, presented the
method for more general generators[u]. The method in the above Algorithm 3.26
has the useful property that its weights are always positive, which is notalways
true for more general methods (Wu et al., 2006).

We can generalize the above approach by using2n + 1 point approximation,
where the origin is also included:

∫

g(ξ) N(ξ |0, I) dξ ≈ W0 g(0) +W
∑

i

g(cu(i)). (3.188)

We can now solve the parametersW0, W andc such that we get the exact result
with selectionsgj(ξ) = 1 andgj(ξ) = ξ2j . The solution can be written in form

W0 =
κ

n+ κ

W =
1

2(n+ κ)

c =
√
n+ κ,

(3.189)

whereκ is a free parameter. This gives an integration rule that can be written as

∫

g(x) N(x |m,P) dx ≈ κ

n+ κ
g(m) +

1

2(n+ κ)

2n∑

i=1

g(m+
√
P ξ(i)),

(3.190)
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where

ξ(i) =

{ √
n+ κ ei , i = 1, . . . , n

−
√
n+ κ ei−n , i = n+ 1, . . . , 2n.

(3.191)

The rule can be seen to coincide with the original UT (Julier and Uhlmann, 1995),
which corresponds to the unscented transform presented in Section 3.2.5with α =
1, β = 0 and whereκ is left as a free parameter. With the selectionκ = 3− n, we
can also match the fourth order moments of the distribution (Julier and Uhlmann,
1995), but with the price that when the dimensionalityn > 3, we get negative
weights and approximation rules that can sometimes be unstable. But nothing
prevents us from using other values for the parameter.

Note that “third order” here means a different thing than in the Gauss-Hermite
Kalman filter — apth order Gauss-Hermite filter is exact for monomials up to order
2p− 1, which means that 3rd order GHKF is exact for monomials up to fifth order.
The 3rd order spherical cubature rule is exact only for monomials up to third order.
It is also possible to derive symmetric rules that are exact for higher than third order.
However, this is no longer possible with a number of sigma points, which is linear
O(n) in state dimension (Wu et al., 2006; Arasaratnam and Haykin, 2009). For
example, for fifth order rule, the required number of sigma points is proportional
to n2, the state dimension squared.

3.3.6 Cubature Kalman Filter (CKF)

When we apply the 3rd spherical cubature integration rule in Algorithm 3.26 to
the Gaussian filter equations in Algorithm 3.21, we get the cubature Kalman filter
(CKF) of Arasaratnam and Haykin (2009):

Algorithm 3.27 (Cubature Kalman filter I). The additive form cubature Kalman
filter (CKF) algorithm is the following:

1. Prediction step:

(a) Form the sigma points as:

X (i)
k−1 = mk−1 +

√

Pk−1 ξ
(i) i = 1, . . . , 2n, (3.192)

where the unit sigma points are defined as

ξ(i) =

{ √
n ei , i = 1, . . . , n

−√
n ei−n , i = n+ 1, . . . , 2n.

(3.193)

(b) Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X (i)

k−1), i = 1 . . . 2n. (3.194)
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(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

1

2n

2n∑

i=1

X̂ (i)
k

P−
k =

1

2n

2n∑

i=1

(X̂ (i)
k −m−

k ) (X̂
(i)
k −m−

k )
T +Qk−1.

(3.195)

2. Update step:

(a) Form the sigma points:

X−(i)
k = m−

k +
√

P−
k ξ(i), i = 1, . . . , 2n, (3.196)

where the unit sigma points are defined as in Equation(3.193).

(b) Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X−(i)

k ), i = 1 . . . 2n. (3.197)

(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and the measure-
mentCk:

µk =
1

2n

2n∑

i=1

Ŷ(i)
k

Sk =
1

2n

2n∑

i=1

(Ŷ(i)
k − µk) (Ŷ

(i)
k − µk)

T +Rk

Ck =
1

2n

2n∑

i=1

(X−(i)
k −m−

k ) (Ŷ
(i)
k − µk)

T .

(3.198)

(d) Compute the filter gainKk and the filtered state meanmk and covari-
ancePk, conditional on the measurementyk:

Kk = Ck S
−1
k

mk = m−
k +Kk [yk − µk]

Pk = P−
k −Kk Sk K

T
k .

(3.199)

By applying the cubature rule to the non-additive Gaussian filter in Algorithm
3.22 we get the following augmented form cubature Kalman filter (CKF):

Algorithm 3.28 (Cubature Kalman filter II). The augmented non-additive form
cubature Kalman filter (CKF) algorithm is the following:
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1. Prediction step:

(a) Form the matrix of sigma points for the augmented random variable
(xk−1,qk−1):

X̃ (i)
k−1 = m̃k−1 +

√

P̃k−1 ξ
(i)′ i = 1, . . . , 2n′, (3.200)

where

m̃k−1 =

(
mk−1

0

)

P̃k−1 =

(
Pk−1 0

0 Qk−1

)

.

Heren′ = n+ nq, wheren is the dimensionality of the statexk−1 and
nq is the dimensionality of the noiseqk−1. The unit sigma points are
defined as

ξ(i)
′

=

{ √
n′ ei , i = 1, . . . , n′

−
√
n′ ei−n′ , i = n′ + 1, . . . , 2n′.

(3.201)

(b) Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X̃ (i),x

k−1 , X̃
(i),q
k−1 ), i = 1 . . . 2n′. (3.202)

whereX̃ (i),x
k−1 denotes the firstn components iñX (i)

k−1 andX̃ (i),q
k−1 denotes

thenq last components.

(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

1

2n

2n′

∑

i=1

X̂ (i)
k

P−
k =

1

2n

2n′

∑

i=1

(X̂ (i)
k −m−

k ) (X̂
(i)
k −m−

k )
T .

(3.203)

2. Update step:

(a) Letn′′ = n + nr, wheren is the dimensionality of the state andnr is
the dimensionality of the measurement noise. Form the sigma points
for the augmented vector(xk, rk) as follows:

X̃−(i)
k = m̃−

k +

√

P̃−
k ξ(i)

′′

, i = 1, . . . , 2n′′, (3.204)

where

m̃−
k =

(
m−

k

0

)

P̃−
k =

(
P−

k 0

0 Rk

)

.

The unit sigma pointsξ(i)
′′

are defined as in Equation(3.201), but with
n′ replaced byn′′.
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(b) Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X̃−(i),x

k , X̃−(i),r
k ), i = 1 . . . 2n′′, (3.205)

where X̃−(i),x
k denotes the firstn components inX̃−(i)

k and X̃−(i),r
k

denotes thenr last components.

(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and the measure-
mentCk:

µk =
1

2n′′

2n′′

∑

i=1

Ŷ(i)
k

Sk =
1

2n′′

2n′′

∑

i=1

(Ŷ(i)
k − µk) (Ŷ

(i)
k − µk)

T

Ck =
1

2n′′

2n′′

∑

i=1

(X−(i),x
k −m−

k ) (Ŷ
(i)
k − µk)

T .

(3.206)

(d) Compute the filter gainKk, the filtered state meanmk and the covari-
ancePk, conditional on the measurementyk:

Kk = Ck S
−1
k

mk = m−
k +Kk [yk − µk]

Pk = P−
k −Kk Sk K

T
k .

(3.207)

Note that although in cubature Kalman filter (CKF) literature the “third order”
characteristic of the cubature integration rule is often emphasized (cf. Arasaratnam
and Haykin, 2009), it is important to remember that in the covariance computation,
the rule is only exact for first order polynomials. Thus in that sense CKF isa first
order method.

3.4 Particle Filtering

Although in many filtering problems Gaussian approximations work well, some-
times the filtering distributions can be, for example, multi-modal or some of the
state components might be discrete, in which cases Gaussian approximations are
not appropriate. In such cases sequential importance resampling basedparticle
filters can be a better alternative. This section is concerned with particle filters,
which are methods for forming Monte Carlo approximations to the solutions of the
Bayesian optimal filtering equations.
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3.4.1 Monte Carlo Approximations in Bayesian Inference

In Bayesian inference, including Bayesian optimal filtering, the main inference
problem can often be reduced into computation of arbitrary expectations over the
posterior distribution5:

E[g(x) |y1:T ] =

∫

g(x) p(x |y1:T ) dx, (3.208)

whereg : R
n → R

m in an arbitrary function andp(x |y1:T ) is the posterior
probability density ofx given the measurementsy1, . . . ,yT . Now the problem is
that such an integral can be evaluated in closed form only in a few specialcases
and generally, numerical methods have to be used.

Monte Carlomethods provide a numerical method for calculating integrals of
the form (3.208). Monte Carlo refers to a general class of methods where closed
form computation of statistical quantities is replaced by drawing samples from the
distribution and estimating the quantities by sample averages.

In (perfect) Monte Carlo approximation, we drawN independent random sam-
ples fromx(i) ∼ p(x |y1:T ) and estimate the expectation as

E[g(x) |y1:T ] ≈
1

N

N∑

i=1

g(x(i)). (3.209)

Thus Monte Carlo methods approximate the target density by a set of samples
that are distributed according to the target density. Figure 3.8 representsa two
dimensional Gaussian distribution and its Monte Carlo representation.
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Figure 3.8: (a) Two dimensional Gaussian density. (b) Monte Carlo representation of the
same Gaussian density.

The convergence of Monte Carlo approximation is guaranteed by the Central
Limit Theorem (CLT) (see, e.g., Liu, 2001) and the error term isO(N−1/2), re-
gardless of dimensionality ofx. This invariance with respect to dimensionality is

5In this section we formally treatx as a continuous random variable with a density, but the
analogous results apply to discrete random variables.
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unique to Monte Carlo methods and makes them superior to practically all other
numerical methods when the dimensionality ofx is considerable. At least in theory,
not necessarily in practice.

3.4.2 Importance Sampling

Often in practical Bayesian models, it is not possible to obtain samples directly
fromp(x |y1:T ) due to its complicated formal appearance. Inimportance sampling
(IS) (see, e.g., Liu, 2001) we use an approximate distribution called the importance
distributionπ(x |y1:T ), from which we can easily draw samples. Importance sam-
pling is based on the following decomposition of the expectation over the posterior
probability densityp(x |y1:T ):

∫

g(x) p(x |y1:T ) dx =

∫ [

g(x)
p(x |y1:T )

π(x |y1:T )

]

π(x |y1:T ) dx, (3.210)

where the importance densityπ(x |y1:T ) is required to be non-zero whenever
p(x |y1:T ) is non-zero, that is, thesupportof π(x |y1:T ) needs to be greater or
equal to the support ofp(x |y1:T ). As the above expression is just the expectation
of the term in the brackets over the distributionπ(x |y1:T ), we can form Monte
Carlo approximation to it by drawingN samples from the importance density:

x(i) ∼ π(x |y1:T ), i = 1, . . . , N, (3.211)

and by forming the approximation as

E[g(x) |y1:T ] ≈
1

N

N∑

i=1

p(x(i) |y1:T )

π(x(i) |y1:T )
g(x(i))

=

N∑

i=1

w̃(i) g(x(i))

(3.212)

where the weights have been defined as

w̃(i) =
1

N

p(x(i) |y1:T )

π(x(i) |y1:T )
. (3.213)

Figure 3.9 illustrates the idea of importance sampling. We sample from the impor-
tance distribution, which is an approximation to the target distribution. Because
the distribution of samples is not exact, we need to correct the approximation by
associating a weight to each of the samples.

The disadvantage of this direct importance sampling is that we should be able
to evaluatep(x(i) |y1:T ) in order to use it directly. Recall that by Bayes’ rule the
posterior probability density can be written as

p(x(i) |y1:T ) =
p(y1:T |x(i)) p(x(i))
∫
p(y1:T |x) p(x) dx . (3.214)
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Figure 3.9: (a) Importance distribution approximates the target distribution (b) Weights
are associated to each of the samples to correct the approximation.

The likelihoodp(y1:T |x(i)) and prior termsp(x(i)) are usually easy to evaluate
but often the integral in the denominator — the normalization constant — cannot
be computed. To overcome this problem, we can form importance sampling based
approximation to the expectation integral by approximating also the normalization
constant by importance sampling. For this purpose we can decompose the expec-
tation integral and form the approximation as follows:

E[g(x) |y1:T ] =

∫

g(x) p(x |y1:T ) dx

=

∫
g(x) p(y1:T |x) p(x) dx
∫
p(y1:T |x) p(x) dx

=

∫ [p(y1:T |x) p(x)
π(x |y1:T ) g(x)

]

π(x |y1:T ) dx

∫ [p(y1:T |x) p(x)
π(x |y1:T )

]

π(x |y1:T ) dx

≈
1
N

∑N
i=1

p(y1:T |x(i)) p(x(i))

π(x(i) |y1:T )
g(x(i))

1
N

∑N
j=1

p(y1:T |x(j)) p(x(j))

π(x(j) |y1:T )

=
N∑

i=1





p(y1:T |x(i)) p(x(i))

π(x(i) |y1:T )
∑N

j=1
p(y1:T |x(j)) p(x(j))

π(x(j) |y1:T )





︸ ︷︷ ︸

w(i)

g(x(i)).

(3.215)

Thus we get the following algorithm:

Algorithm 3.29 (Importance sampling). Given a measurement modelp(y1:T |x)
and a priorp(x) we can form an importance sampling approximation to the pos-
terior as follows:



84 Optimal Filtering

1. DrawN samples from the importance distribution:

x(i) ∼ π(x |y1:T ), i = 1, . . . , N. (3.216)

2. Compute the unnormalized weights by

w∗(i) =
p(y1:T |x(i)) p(x(i))

π(x(i) |y1:T )
, (3.217)

and the normalized weights by

w(i) =
w∗(i)

∑N
j=1w

∗(j)
. (3.218)

3. The approximation to the posterior expectation ofg(x) is then given as

E[g(x) |y1:T ] ≈
N∑

i=1

w(i) g(x(i)). (3.219)

The approximation to the posterior probability density formed by the above
algorithm can then be formally written as

p(x |y1:T ) ≈
N∑

i=1

w(i) δ(x− x(i)), (3.220)

whereδ(·) is the Dirac delta function.

3.4.3 Sequential Importance Sampling

Sequential importance sampling(SIS) (see, e.g., Doucet et al., 2001) is a sequential
version of importance sampling. The SIS algorithm can be used for generating
importance sampling approximations to filtering distributions of generic state space
models of the form

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),
(3.221)

wherexk ∈ R
n is the state at time stepk andyk ∈ R

m is the measurement. The
state and measurements may contain both discrete and continuous components.

The SIS algorithm uses a weighted set ofparticles{(w(i)
k ,x

(i)
k ) : i = 1, . . . , N},

that is, samples from an importance distribution and their weights, for representing
the filtering distributionp(xk |y1:k) such that at every time stepk the approxi-
mation to the expectation of an arbitrary functiong(x) can be calculated as the
weighted sample average

E[g(xk) |y1:k] ≈
N∑

i=1

w
(i)
k g(x

(i)
k ). (3.222)
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Equivalently, SIS can be interpreted as forming an approximation to the filtering
distribution as

p(xk |y1:k) ≈
N∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (3.223)

whereδ(·) is the Dirac delta function.
To derive the algorithm, we consider the full posterior distribution of states

x0:k given the measurementsy1:k. By using the Markov properties of the model,
we get the following recursion for the posterior distribution:

p(x0:k |y1:k) ∝ p(yk |x0:k,y1:k−1) p(x0:k |y1:k−1)

= p(yk |xk) p(xk |x0:k−1,y1:k−1) p(x0:k−1 |y1:k−1)

= p(yk |xk) p(xk |xk−1) p(x0:k−1 |y1:k−1).

(3.224)

Using a similar rationale as in the previous section, we can now construct a impor-
tance sampling method, which draws samples from a given importance distribution
x
(i)
0:k ∼ π(x0:k |y1:k) and computes the importance weights by

w
(i)
k ∝

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1) p(x
(i)
0:k−1 |y1:k−1)

π(x
(i)
0:k |y1:k)

. (3.225)

If we form the importance distribution for the statesxk recursively as follows:

π(x0:k |y1:k) = π(xk |x0:k−1,y1:k)π(x0:k−1 |y1:k−1), (3.226)

then the expression for the weights can be written as

w
(i)
k ∝

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,y1:k)

p(x
(i)
0:k−1 |y1:k−1)

π(x
(i)
0:k−1 |y1:k−1)

. (3.227)

Let’s now assume that we have already drawn the samplesx
(i)
0:k−1 from the impor-

tance distributionπ(x0:k−1 |y1:k−1) and computed the corresponding importance

weightsw(i)
k−1. We can now draw samplesx(i)

0:k from the importance distribu-

tion π(x0:k |y1:k) by drawing the new state samples for the stepk as x
(i)
k ∼

π(xk |x(i)
0:k−1,y1:k). The importance weights from the previous step are propor-

tional to the last term in Equation (3.227):

w
(i)
k−1 ∝

p(x
(i)
0:k−1 |y1:k−1)

π(x
(i)
0:k−1 |y1:k−1)

, (3.228)

and thus the weights satisfy the recursion

w
(i)
k ∝

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,y1:k)
w

(i)
k−1. (3.229)

The generic sequential importance sampling algorithm can now be describedas
follows:
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Algorithm 3.30 (Sequential importance sampling). Steps of SIS are the following:

• DrawN samplesx(i)
0 from the prior

x
(i)
0 ∼ p(x0), i = 1, . . . , N, (3.230)

and setw(i)
0 = 1/N , for all i = 1, . . . , N .

• For eachk = 1, . . . , T do the following:

1. Draw samplesx(i)
k from the importance distributions

x
(i)
k ∼ π(xk |x(i)

0:k−1,y1:k), i = 1, . . . , N. (3.231)

2. Calculate new weights according to

w
(i)
k ∝ w

(i)
k−1

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,y1:k)
(3.232)

and normalize them to sum to unity.

Note that it is convenient to select the importance distribution to be Markovian
in the sense that:

π(xk |x0:k−1,y1:k) = π(xk |xk−1,y1:k). (3.233)

With this form of importance distribution we do not need to store the whole his-
toriesx(i)

0:k in the SIS algorithm, only the current statesx(i)
k . This form is also

convenient in SIR, because we do not need to worry about the state histories during
the resampling step as in the SIR particle smoother (see Section 4.5.1). Thus in
the following section we assume that the importance distribution has indeed been
selected to have the above Markovian form.

3.4.4 Sequential Importance Resampling

One problem in the SIS algorithm described in the previous section is that we
easily encounter the situation that almost all the particles have zero or nearlyzero
weights. This is called thedegeneracyproblem in particle filtering literature and it
prevented practical applications of particle filters for many years.

The degeneracy problem can be solved by using aresamplingprocedure. It
refers to a procedure where we drawN new samples from the discrete distribution
defined by the weights and replace the old set ofN samples with this new set. This
procedure can be be written as the following algorithm:

Algorithm 3.31 (Resampling). Resampling procedure can be described as fol-
lows:
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1. Interpret each weightw(i)
k as the probability of obtaining the sample indexi

in the set{x(i)
k | i = 1, . . . , N}.

2. DrawN samples from that discrete distribution and replace the old sample
set with this new one.

3. Set all weights to the constant valuew(i)
k = 1/N .

The idea of the resampling procedure is to remove particles with very small
weights and duplicate particles with large weights. Although the theoretical dis-
tribution represented by the weighted set of samples does not change, resampling
introduces additional variance to estimates. This variance introduced by theresam-
pling procedure can be reduced by proper choice of the resampling method. The
stratified resamplingalgorithm (Kitagawa, 1996) is optimal in terms of variance.

Sequential importance resampling (SIR)6 (Gordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001; Ristic et al., 2004), is a generalization of theparticle filtering
framework, in which the resampling step is included as part of the sequentialim-
portance sampling algorithm.

Usually the resampling is not performed at every time step, but only when it
is actually needed. One way of implementing this is to do resampling on every
nth step, wheren is some predefined constant. This method has the advantage that
it is unbiased. Another way, which is used here, isadaptive resampling. In this
method, the “effective” number of particles, which is estimated from the variance
of the particle weights (Liu and Chen, 1995), is used for monitoring the needfor
resampling. The estimate for the effective number of particles can be computed as:

neff ≈ 1
∑N

i=1

(

w
(i)
k

)2 , (3.234)

wherew(i)
k is the normalized weight of particlei at the time stepk (Liu and Chen,

1995). Resampling is performed when the effective number of particles is signifi-
cantly less than the total number of particles, for example,neff < N/10, whereN
is the total number of particles.

Algorithm 3.32 (Sequential importance resampling). The sequential importance
resampling (SIR) algorithm, which is also called the particle filter (PF) is the
following:

• DrawN samplesx(i)
0 from the prior

x
(i)
0 ∼ p(x0), i = 1, . . . , N, (3.235)

and setw(i)
0 = 1/N , for all i = 1, . . . , N .

6Sequential importance resampling (SIR)is also often referred to assampling importance resam-
pling (SIR) orsequential importance sampling resampling (SISR).
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• For eachk = 1, . . . , T do the following:

1. Draw samplesx(i)
k from the importance distributions

x
(i)
k ∼ π(xk |x(i)

k−1,y1:k), i = 1, . . . , N. (3.236)

2. Calculate new weights according to

w
(i)
k ∝ w

(i)
k−1

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

k−1,y1:k)
(3.237)

and normalize them to sum to unity.

3. If the effective number of particles(3.234)is too low, perform resam-
pling.

The performance of the SIR algorithm depends on the quality of the importance
distributionπ(·), which is an approximation to the posterior distribution of states
given the values at the previous step. The importance distribution should bein such
functional form that we can easily draw samples from it and that it is possible to
evaluate the probability densities of the sample points.The optimal importance
distribution in terms of variance (see, e.g., Doucet et al., 2001; Ristic et al., 2004)
is

π(xk | x0:k−1,y1:k) = p(xk | xk−1,yk). (3.238)

If the optimal importance distribution cannot be directly used, good importance
distributions can be obtained bylocal linearizationwhere a mixture of extended
Kalman filters (EKF), unscented Kalman filters (UKF) or other types of non-linear
Kalman filters are used for forming the importance distribution (Doucet et al.,
2000; Van der Merwe et al., 2001). Van der Merwe et al. (2001) also suggest a
Metropolis-Hastings step after (or in place of) the resampling step to smooth the
resulting distribution, but from their results, it seems that this extra computation
step has no significant performance effect. A particle filter with UKF importance
distribution is also referred to asunscented particle filter(UPF). Similarly, we
could call a particle filter with Gauss-Hermite Kalman filter importance distribu-
tion Gauss-Hermite particle filter(GHPF) and one with cubature Kalman filter
importance distributioncubature particle filter(CPF).

By tuning the resampling algorithm to specific estimation problems and pos-
sibly changing the order of weight computation and sampling, accuracy andcom-
putational efficiency of the algorithm can be improved (Fearnhead and Clifford,
2003). An important issue is that sampling is more efficient without replacement,
such that duplicate samples are not stored. There is also evidence that in some
situations it is more efficient to use a simple deterministic algorithm for preserving
theN most likely particles. In the article (Punskaya et al., 2002) it is shown that
in digital demodulation, where the sampled space is discrete and the optimization
criterion is the minimum error, the deterministic algorithm performs better.
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The bootstrap filter(Gordon et al., 1993) is a variation of SIR where the dy-
namic modelp(xk | xk−1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due to the inefficiency of the
importance distribution it may require a very large number of Monte Carlo samples
for accurate estimation results. In the bootstrap filter the resampling is normally
done at each time step.

Algorithm 3.33 (Bootstrap filter). The bootstrap filter algorithm is as follows:

1. Draw new pointx(i)
k for each point in the sample set{x(i)

k−1, i = 1, . . . , N}
from the dynamic model:

x
(i)
k ∼ p(xk | x(i)

k−1), i = 1, . . . , N. (3.239)

2. Calculate the weights

w
(i)
k ∝ p(yk | x(i)

k ), i = 1, . . . , N, (3.240)

and normalize them to sum to unity.

3. Do resampling.

Another variation of sequential importance resampling is the auxiliary SIR
(ASIR) filter (Pitt and Shephard, 1999). The idea of the ASIR is to mimic the
availability of the optimal importance distribution by performing the resampling at
stepk − 1 using the available measurement at timek.

One problem encountered in particle filtering, even when using a resampling
procedure, is calledsample impoverishment(see, e.g., Ristic et al., 2004). It refers
to the effect that when the noise in the dynamic model is very small, many of the
particles in the particle set will turn out to have exactly the same value. That is,
the resampling step simply multiplies a few (or one) particles and thus we end up
having a set of identical copies of certain high weighted particles. This problem can
be diminished by using, for example, the resample-move algorithm, regularization
or MCMC steps (Ristic et al., 2004).

Because low noise in the dynamic model causes sample impoverishment, it
also implies that pure recursive estimation with particle filters is challenging. This
is because in pure recursive estimation the process noise is formally zero and thus a
basic SIR based particle filter is likely to perform very badly. However, pure recur-
sive estimation, such as recursive estimation of static parameters can sometimesbe
done by applying a Rao-Blackwellized particle filter instead of a basic SIR particle
filter.

3.4.5 Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blackwellization. The
idea of theRao-Blackwellized particle filter(RBPF) (Akashi and Kumamoto, 1977;
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Doucet et al., 2001; Ristic et al., 2004), which is also calledmixture Kalman filter
(MKF) (Chen and Liu, 2000) is that sometimes it is possible to evaluate some of the
filtering equations analytically and the others with Monte Carlo sampling instead
of computing everything with pure sampling. According to theRao-Blackwell
theorem(see, e.g., Berger, 1985; Casella and Robert, 1996) this leads to estimators
with less variance than could be obtained with pure Monte Carlo sampling. An
intuitive way of understanding this is that the marginalization replaces the finite
Monte Carlo particle set representation with an infinite closed form particle set,
which is always more accurate than any finite set.

Most commonly Rao-Blackwellized particle filtering refers to marginalized
filtering of conditionally Gaussian Markov models of the form

p(xk |xk−1,θk−1) = N(xk |Ak−1(θk−1)xk−1,Qk−1(θk−1))

p(yk |xk,θk) = N(yk |Hk(θk)xk,Rk(θk))

p(θk | θk−1) = (any given form),

(3.241)

wherexk is the state,yk is the measurement, andθk is an arbitrary latent variable.
If also the prior ofxk is Gaussian, then due to the conditionally Gaussian structure
of the model the state variablesxk can be integrated out analytically and only the
latent variablesθk need to be sampled. The Rao-Blackwellized particle filter uses
SIR for the latent variables and computes the conditionally Gaussian part in closed
form.

To derive the filtering algorithm, first note that the full posterior distribution at
stepk can be factored as

p(θ0:k,x0:k |y1:k) = p(x0:k |θ0:k,y1:k) p(θ0:k |y1:k), (3.242)

where the first term is Gaussian and computable with Kalman filter and RTS smooth-
er. For the second term we get the following recursion analogously to Equation
(3.224):

p(θ0:k |y1:k) ∝ p(yk |θ0:k,y1:k−1) p(θ0:k |y1:k−1)

= p(yk |θ0:k,y1:k−1) p(θk |θ0:k−1,y1:k−1) p(θ0:k−1 |y1:k−1)

= p(yk |θ0:k,y1:k−1) p(θk |θk−1) p(θ0:k−1 |y1:k−1),

(3.243)

where we have used the Markovianity ofθk. Now the measurements are not condi-
tionally independent givenθk and thus the first term differs from the corresponding
term in Equation (3.224). The first term can be computed by running Kalman
filter with fixed θ0:k over the measurement sequence. The second term is just the
dynamic model and the third term is the posterior from the previous step.

If we form the importance distribution recursively as follows:

π(θ0:k |y1:k) = π(θk |θ0:k−1,y1:k)π(θ0:k−1 |y1:k−1), (3.244)
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then by following the same derivation as in Section 3.4.3, we get the following
recursion for the weights

w
(i)
k ∝

p(yk |θ(i)
0:k−1,y1:k−1) p(θ

(i)
k |θ(i)

k−1)

π(θ
(i)
k |θ(i)

0:k−1,y1:k)
w

(i)
k−1, (3.245)

which corresponds to Equation (3.229). Thus via the above recursion wecan
form an importance sampling based approximation to the marginal distribution
p(θ0:k |y1:k). But because givenθ0:k, the distributionp(x0:k |θ0:k,y1:k) is Gaus-
sian, we can form the full posterior distribution by using Equation (3.242).Com-
puting the distribution jointly for the full historyx0:k would require running both
the Kalman filter and the RTS smoother over the sequencesθ0:k andy1:k, but if we
are only interested in the posterior of the last time stepxk, we only need to run the
Kalman filter. The resulting algorithm is the following:

Algorithm 3.34 (Conditionally Gaussian Rao-Blackwellized particle filter). Given

a sequence of importance distributionsπ(θk | θ(i)
0:k−1,y1:k) and a set of weighted

samples{w(i)
k−1,θ

(i)
k−1,m

(i)
k−1,P

(i)
k−1 : i = 1, . . . , N}, the Rao-Blackwellized

particle filter (RBPF) processes the measurementyk as follows (Doucet et al.,
2001):

1. Perform Kalman filter predictions for each of the Kalman filter means and
covariances in the particlesi = 1, . . . , N conditional on the previously
drawn latent variable valuesθ(i)

k−1

m
−(i)
k = Ak−1(θ

(i)
k−1)m

(i)
k−1

P
−(i)
k = Ak−1(θ

(i)
k−1)P

(i)
k−1A

T
k−1(θ

(i)
k−1) +Qk−1(θ

(i)
k−1).

(3.246)

2. Draw new latent variablesθ(i)
k for each particle ini = 1, . . . , N from the

corresponding importance distributions

θ
(i)
k ∼ π(θk | θ(i)

0:k−1,y1:k). (3.247)

3. Calculate new weights as follows:

w
(i)
k ∝ w

(i)
k−1

p(yk |θ(i)
0:k,y1:k−1) p(θ

(i)
k |θ(i)

k−1)

π(θ
(i)
k |θ(i)

0:k−1,y1:k)
, (3.248)

where the likelihood term is the marginal measurement likelihood of the
Kalman filter

p(yk |θ(i)
0:k,y1:k−1)

= N
(

yk

∣
∣
∣Hk(θ

(i)
k )m

−(i)
k ,Hk(θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) +Rk(θ

(i)
k )
)

.

(3.249)
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such that the model parameters in the Kalman filter are conditioned on the
drawn latent variable valueθ(i)

k . Then normalize the weights to sum to unity.

4. Perform Kalman filter updates for each of the particles conditional on the
drawn latent variablesθ(i)

k

v
(i)
k = yk −Hk(θ

(i)
k )m−

k

S
(i)
k = Hk(θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) +Rk(θ

(i)
k )

K
(i)
k = P

−(i)
k HT

k (θ
(i)
k )S−1

k

m
(i)
k = m

−(i)
k +K

(i)
k v

(i)
k

P
(i)
k = P

−(i)
k −K

(i)
k S

(i)
k [K

(i)
k ]T .

(3.250)

5. If the effective number of particles(3.234)is too low, performresampling.

The Rao-Blackwellized particle filter produces for each time stepk a set of
weighted samples{w(i)

k ,θ
(i)
k ,m

(i)
k ,P

(i)
k : i = 1, . . . , N} such that expectation of

a functiong(·) can be approximated as

E[g(xk,θk) |y1:k] ≈
N∑

i=1

w
(i)
k

∫

g(xk,θ
(i)
k ) N(xk |m(i)

k ,P
(i)
k ) dxk. (3.251)

Equivalently, RBPF can be interpreted to form an approximation to the filtering
distribution as

p(xk,θk |y1:k) ≈
N∑

i=1

w
(i)
k δ(θk − θ

(i)
k ) N(xk |m(i)

k ,P
(i)
k ). (3.252)

The optimal importance distribution, that is, the importance distribution that mini-
mizes the variance of the importance weights in the RBPF case is

p(θk | y1:k,θ
(i)
0:k) ∝ p(yk | θk,θ

(i)
0:k−1) p(θk | θ(i)

0:k−1,y1:k−1). (3.253)

In general, normalizing this distribution or drawing samples from this distribution
directly is not possible. But, if the latent variablesθk are discrete, we can normalize
this distribution and use this optimal importance distribution directly.

The class models, where Rao-Blackwellization of some linear state compo-
nents can be carried out, can be extended beyond the conditionally Gaussian mod-
els presented here. We can, for example, include additional latent-variable depen-
dent non-linear terms into the dynamic and measurement models (Schön et al.,
2005). In some cases, when the filtering model is not strictly Gaussian due to
slight non-linearities in either dynamic or measurement models, it is possible to
replace the exact Kalman filter update and prediction steps in RBPF with extended
Kalman filter (EKF) or unscented Kalman filter (UKF) prediction and update steps,
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or with any other Gaussian approximation based filters. This approximate Rao-
Blackwellization approach has been used, for example, by Särkkä et al.(2007b).

Another general class of models where Rao-Blackwellization can often beap-
plied are state space models with unknown static parameters. These models are of
the form (Storvik, 2002)

xk ∼ p(xk |xk−1,θ)

yk ∼ p(yk |xk,θ)

θ ∼ p(θ),

(3.254)

where vectorθ contains the unknown static parameters. If the posterior distribution
of parametersθ depends only on some sufficient statistics

Tk = Tk(x1:k,y1:k), (3.255)

and if the sufficient statistics are easy to update recursively, then samplingof
the state and parameters can be efficiently performed by recursively computing
the sufficient statistics conditionally on the sampled states and the measurements
(Storvik, 2002). This idea can be extended to time-varying case if the dynamic
model has such a form which keeps the predicted distribution within the same
class of distributions.

A particularly useful special case is obtained when the dynamic model is in-
dependent of the parametersθ. In this case, if conditionally to the statexk the
prior p(θ) belongs to the conjugate family of the likelihoodp(yk |xk,θ), the static
parametersθ can be marginalized out and only the states need to be sampled.
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Chapter 4

Optimal Smoothing

In this chapter we shall first present the Bayesian theory of smoothing. Then
we shall present the classical Rauch-Tung-Striebel smoother and its linearization
based non-linear extensions. We shall also cover unscented transform, Gauss-
Hermite, and cubature based non-linear RTS smoothers as well as some particle
smoothers.

In addition to the various articles cited in the text, the following books contain
useful information on non-linear smoothing:

• Linear smoothing can be found in classic books: Meditch (1969); Anderson
and Moore (1979); Maybeck (1982a); Lewis (1986).

• Linear and non-linear case is treated, for example in the following classic
books: Lee (1964); Sage and Melsa (1971); Gelb (1974) as well as inthe
more recent book of Crassidis and Junkins (2004).

4.1 Formal Equations and Exact Solutions

4.1.1 Optimal Smoothing Equations

The purpose ofoptimal smoothing1 is to compute the marginal posterior distribu-
tion of the statexk at the time stepk after receiving the measurements up to a time
stepT , whereT > k:

p(xk |y1:T ). (4.1)

The difference between filters and smoothers is thatthe optimal filtercomputes
its estimates using only the measurements obtained before and on the time step
k, but the optimal smootheruses also the future measurements for computing its
estimates. After obtaining the filtering posterior state distributions, the following
theorem gives the equations for computing the marginal posterior distributions for
each time step conditionally on all the measurements up to the time stepT :

1This definition actually applies to fixed-interval type of smoothing.
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Theorem 4.1 (Bayesian optimal smoothing equations). The backward recursive
equations for computing thesmoothed distributionsp(xk |y1:T ) for anyk < T are
given by the followingBayesian (fixed interval) smoothing equations

p(xk+1 |y1:k) =

∫

p(xk+1 |xk) p(xk |y1:k) dxk

p(xk |y1:T ) = p(xk |y1:k)

∫ [
p(xk+1 |xk) p(xk+1 |y1:T )

p(xk+1 |y1:k)

]

dxk+1,

(4.2)

wherep(xk |y1:k) is the filtering distribution of the time stepk. Note that the term
p(xk+1 |y1:k) is simply the predicted distribution of time stepk + 1. The integra-
tions are replaced by summations if some of the state components are discrete.

Proof. Due to the Markov properties the statexk is independent ofyk+1:T given
xk+1, which givesp(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k). By usingBayes’ rule
the distribution ofxk givenxk+1 andy1:T can be expressed as

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

=
p(xk,xk+1 |y1:k)

p(xk+1 |y1:k)

=
p(xk+1 |xk,y1:k) p(xk |y1:k)

p(xk+1 |y1:k)

=
p(xk+1 |xk) p(xk |y1:k)

p(xk+1 |y1:k)
.

(4.3)

The joint distribution ofxk andxk+1 giveny1:T can be now computed as

p(xk,xk+1 |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= p(xk |xk+1,y1:k) p(xk+1 |y1:T )

=
p(xk+1 |xk) p(xk |y1:k) p(xk+1 |y1:T )

p(xk+1 |y1:k)
,

(4.4)

wherep(xk+1 |y1:T ) is the smoothed distribution of the time stepk + 1. The
marginal distribution ofxk giveny1:T is given by integration (or summation) over
xk+1 in Equation (4.4), which gives the desired result.

4.1.2 Rauch-Tung-Striebel Smoother

The Rauch-Tung-Striebel (RTS) smoother2 (see, e.g., Rauch et al., 1965; Gelb,
1974; Bar-Shalom et al., 2001) can be used for computing the closed form smooth-
ing solution

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.5)

2Also sometimes called Kalman smoother.
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to the linear filtering model (3.17). The difference to the solution computed by the
Kalman filter is that the smoothed solution is conditional on the whole measure-
ment datay1:T , while the filtering solution is conditional only on the measurements
obtained before and on the time stepk, that is, on the measurementsy1:k.

Theorem 4.2(RTS smoother). The backward recursion equations for the discrete-
time fixed interval Rauch-Tung-Striebel smoother (Kalman smoother) are given as

m−
k+1 = Ak mk

P−
k+1 = Ak Pk A

T
k +Qk

Gk = Pk A
T
k [P−

k+1]
−1

ms
k = mk +Gk [m

s
k+1 −m−

k+1]

Ps
k = Pk +Gk [P

s
k+1 −P−

k+1]G
T
k ,

(4.6)

wheremk andPk are the mean and covariance computed by the Kalman filter. The
recursion is started from the last time stepT , withms

T = mT andPs
T = PT . Note

that the first two of the equations are simply the Kalman filter prediction equations.

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joint distribution of
xk andxk+1 giveny1:k is

p(xk,xk+1 |y1:k) = p(xk+1 |xk) p(xk |y1:k)

= N(xk+1 |Ak xk,Qk) N(xk |mk,Pk)

= N

([
xk

xk+1

] ∣
∣
∣m1,P1

)

,

(4.7)

where

m1 =

(
mk

Ak mk

)

, P1 =

(
Pk Pk A

T
k

Ak Pk Ak Pk A
T
k +Qk

)

. (4.8)

Due to the Markov property of the states we have

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k), (4.9)

and thus by Lemma A.2 we get the conditional distribution

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

= N(xk |m2,P2),
(4.10)

where

Gk = Pk A
T
k (Ak Pk A

T
k +Qk)

−1

m2 = mk +Gk (xk+1 −Ak mk)

P2 = Pk −Gk (Ak Pk A
T
k +Qk)G

T
k .

(4.11)
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The joint distribution ofxk andxk+1 given all the data is

p(xk+1,xk |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= N(xk |m2,P2) N(xk+1 |ms
k+1,P

s
k+1)

= N

([
xk+1

xk

] ∣
∣
∣m3,P3

) (4.12)

where

m3 =

(
ms

k+1

mk +Gk (m
s
k+1 −Ak mk)

)

P3 =

(
Ps

k+1 Ps
k+1G

T
k

Gk P
s
k+1 Gk P

s
k+1G

T
k +P2

)

.

(4.13)

Thus by Lemma A.2, the marginal distribution ofxk is given as

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.14)

where

ms
k = mk +Gk (m

s
k+1 −Ak mk)

Ps
k = Pk +Gk (P

s
k+1 −Ak Pk A

T
k −Qk)G

T
k .

(4.15)

Example 4.1(RTS smoother for Gaussian random walk). The RTS smoother for
the random walk model given in Example 3.1 is given by the equations

m−
k+1 = mk

P−
k+1 = Pk + q

ms
k = mk +

Pk

P−
k+1

(ms
k+1 −m−

k+1)

P s
k = Pk +

(

Pk

P−
k+1

)2

[P s
k+1 − P−

k+1],

(4.16)

wheremk andPk are the updated mean and covariance from the Kalman filter in
Example 3.2.

4.2 Extended and Unscented Smoothing

4.2.1 Extended Rauch-Tung-Striebel Smoother

The first order (i.e., linearized) extended Rauch-Tung-Striebel smoother (ERTSS)
(Cox, 1964; Sage and Melsa, 1971) can be obtained from the basic RTSsmoother
equations by replacing the prediction equations with first order approximations.
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Figure 4.1: Filter and smoother variances in the Kalman smoothing example (Example
4.1).
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Figure 4.2: Filter and smoother estimates in the Kalman smoothing example (Example
4.1).

Higher order extended Kalman smoothers are also possible (see, e.g., Cox, 1964;
Sage and Melsa, 1971), but only the first order version is presented here.

For the additive model Equation (3.55) the extended Rauch-Tung-Striebel smoother
algorithm is the following:

Algorithm 4.1 (Extended RTS smoother). The equations for the extended RTS
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smoother are

m−
k+1 = f(mk)

P−
k+1 = Fx(mk)Pk F

T
x (mk) +Qk

Gk = Pk F
T
x (mk) [P

−
k+1]

−1

ms
k = mk +Gk [m

s
k+1 −m−

k+1]

Ps
k = Pk +Gk [P

s
k+1 −P−

k+1]G
T
k ,

(4.17)

where the matrixFx(mk) is the Jacobian matrix off(x) evaluated atmk.
The above procedure is a recursion which can be used for computing the

smoothing distribution of stepk from the smoothing distribution of time stepk+1.
Because the smoothing distribution and filtering distribution of the last time stepT
are the same, we havems

T = mT , Ps
T = PT , and thus the recursion can be used

for computing the smoothing distributions of all time steps by starting from the last
stepk = T and proceeding backwards to the initial stepk = 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions

p(xk |y1:k) ≈ N(xk |mk,Pk),

for the model (3.55) have been computed by the extended Kalman filter or a similar
method. Further assume that the smoothing distribution of time stepk+1 is known
and approximately Gaussian

p(xk+1 |y1:T ) ≈ N(xk+1 |ms
k+1,P

s
k+1).

As in the derivation of the prediction step of EKF in Section 3.2.2, the approximate
joint distribution ofxk andxk+1 giveny1:k is

p(xk,xk+1 |y1:k) = N

([
xk

xk+1

] ∣
∣
∣m1,P1

)

, (4.18)

where

m1 =

(
mk

f(mk)

)

P1 =

(
Pk Pk F

T
x

FxPk FxPk F
T
x +Qk

)

.

(4.19)

where the Jacobian matrixFx of f(x) is evaluated atx = mk. By conditioning on
xk+1 as in RTS derivation in Section 4.1.2 we get

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

= N(xk |m2,P2),
(4.20)
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where

Gk = Pk F
T
x (FxPk F

T
x +Qk)

−1

m2 = mk +Gk (xk+1 − f(mk))

P2 = Pk −Gk (FxPk F
T
x +Qk)G

T
k .

(4.21)

The joint distribution ofxk andxk+1 given all the data is now

p(xk+1,xk |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= N

([
xk+1

xk

] ∣
∣
∣m3,P3

)
(4.22)

where

m3 =

(
ms

k+1

mk +Gk (m
s
k+1 − f(mk))

)

P3 =

(
Ps

k+1 Ps
k+1G

T
k

Gk P
s
k+1 Gk P

s
k+1G

T
k +P2

)

.

(4.23)

The marginal distribution ofxk is then

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.24)

where

ms
k = mk +Gk (m

s
k+1 − f(mk))

Ps
k = Pk +Gk (P

s
k+1 − FxPk F

T
x −Qk)G

T
k .

(4.25)

The generalization to non-additive model (3.68) is analogous to the filtering
case.

4.2.2 Statistically Linearized RTS Smoother

The statistically linearized Rauch-Tung-Striebel smoother for the additive model
(3.55) is the following:

Algorithm 4.2 (Statistically linearized RTS smoother). The equations for the sta-
tistically linearized RTS smoother are

m−
k+1 = E[f(xk)]

P−
k+1 = E[f(xk) δx

T
k ]P

−1
k E[f(xk) δx

T
k ]

T +Qk

Gk = E[f(xk) δx
T
k ]

T [P−
k+1]

−1

ms
k = mk +Gk [m

s
k+1 −m−

k+1]

Ps
k = Pk +Gk [P

s
k+1 −P−

k+1]G
T
k ,

(4.26)

where the expectations are taken with respect to the filtering distributionxk ∼
N(mk,Pk).
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Proof. Analogous to the ERTS case.

The generalization to the non-additive case is also straight-forward.

4.2.3 Unscented Rauch-Tung-Striebel (URTS) Smoother

Theunscented Rauch-Tung-Striebel (URTS) smoother(Särkkä, 2008) is a Gaussian
approximation based smoother where the non-linearity is approximated using the
unscented transform. The smoother equations for the additive model (3.68) are
given as follows:

Algorithm 4.3 (Unscented Rauch-Tung-Striebel smoother I). Theadditive form
unscented RTS smoother algorithmis the following:

1. Form the sigma points:

X (0)
k = mk,

X (i)
k = mk +

√
n+ λ

[√

Pk

]

i

X (i+n)
k = mk −

√
n+ λ

[√

Pk

]

i
, i = 1, . . . , n

(4.27)

where the parameterλ was defined in Equation(3.99).

2. Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X (i)

k ), i = 0, . . . , 2n.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

2n∑

i=0

W
(m)
i X̂ (i)

k+1

P−
k+1 =

2n∑

i=0

W
(c)
i (X̂ (i)

k+1 −m−
k+1) (X̂

(i)
k+1 −m−

k+1)
T +Qk

Dk+1 =
2n∑

i=0

W
(c)
i (X (i)

k −mk) (X̂ (i)
k+1 −m−

k+1)
T ,

(4.28)

where the weights were defined in Equation(3.101).

4. Compute the smoother gainGk, the smoothed meanms
k and the covariance

Ps
k as follows:

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk (m

s
k+1 −m−

k+1)

Ps
k = Pk +Gk (P

s
k+1 −P−

k+1)G
T
k .

(4.29)
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The above computations are started from the filtering result of the last time step
ms

T = mT , Ps
T = PT and the recursion runs backwards fork = T − 1, . . . , 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions are available:

p(xk |y1:k) ≈ N(xk |mk,Pk),

and the smoothing distribution of time stepk + 1 is known and approximately
Gaussian

p(xk+1 |y1:T ) ≈ N(xk+1 |ms
k+1,P

s
k+1).

An unscented transform based approximation to the optimal smoothing solution
can be derived as follows:

1. Generate unscented transform based Gaussian approximation to the joint
distribution ofxk andxk+1:

(
xk

xk+1

)

|y1:k ∼ N

((
mk

m−
k+1

)

,

(
Pk Dk+1

DT
k+1 P−

k+1

))

, (4.30)

This can be done by using the additive form of the unscented transformation
in Algorithm 3.13 for the nonlinearityxk+1 = f(xk) + qk. This is done in
Equations (4.28).

2. Because the distribution (4.30) is Gaussian, by the computation rules of
Gaussian distributions the conditional distribution ofxk is given as

xk |xk+1,y1:T ∼ N(m2,P2),

where

Gk = Dk+1 [P
−
k+1]

−1

m2 = mk +Gk(xk+1 −m−
k+1)

P2 = Pk −Gk P
−
k+1G

T
k .

3. The rest of the derivation is completely analogous to the derivation of ERTSS
in Section 4.2.1.

The corresponding augmented version of the smoother is almost the same,
except that the augmented UT in Algorithm 3.14 is used instead of the additive
UT in Algorithm 3.13. The smoother can be formulated as follows:

Algorithm 4.4 (Unscented Rauch-Tung-Striebel smoother II). A single step of the
augmented form unscented RTS smootheris as follows:
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1. Form the sigma points for then′ = n+ nq -dimensional augmented random
variable(xT

k qT
k )

T

X̃ (0)
k = m̃k,

X̃ (i)
k = m̃k +

√
n′ + λ′

[√

P̃k

]

i

X̃ (i+n′)
k = m̃k −

√
n′ + λ′

[√

P̃k

]

i

, i = 1, . . . , n′

(4.31)

where

m̃k =

(
mk

0

)

P̃k =

(
Pk 0

0 Qk

)

.

2. Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X̃ (i),x

k , X̃ (i),q
k ), i = 0, . . . , 2n′,

whereX̃ (i),x
k and X̃

(i),q
k denote the parts of the augmented sigma pointi,

which correspond toxk andqk, respectively.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

2n′

∑

i=0

W
(m)′

i X̂ (i)
k+1

P−
k+1 =

2n′

∑

i=0

W
(c)′

i (X̂ (i)
k+1 −m−

k+1) (X̂
(i)
k+1 −m−

k+1)
T

Dk+1 =
2n′

∑

i=0

W
(c)′

i (X̃ (i),x
k −mk) (X̂ (i)

k+1 −m−
k+1)

T ,

(4.32)

where the definitions of the parameterλ′ and the weightsW (m)′

i andW (c)′

i

are the same as in Section 3.2.5.

4. Compute the smoother gainGk, the smoothed meanms
k and the covariance

Ps
k:

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk

[
ms

k+1 −m−
k+1

]

Ps
k = Pk +Gk

[
Ps

k+1 −P−
k+1

]
GT

k .

(4.33)
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4.3 General Gaussian Smoothing

4.3.1 General Gaussian Rauch-Tung-Striebel Smoother

The Gaussian moment matching described in Section 3.3.1 can be used in smoothers
in analogous manner as in Gaussian assumed density filters in Section 3.3.2. Ifwe
follow the extended RTS smoother derivation in Section 4.2.1, we get the following
algorithm (Särkkä and Hartikainen, 2010a):

Algorithm 4.5 (Gaussian RTS smoother I). The equations of the additive form
Gaussian RTS smootherare the following:

m−
k+1 =

∫

f(xk)N(xk |mk,Pk) dxk

P−
k+1 =

∫

[f(xk)−m−
k+1] [f(xk)−m−

k+1]
TN(xk |mk,Pk) dxk +Qk

Dk+1 =

∫

[xk −mk] [f(xk)−m−
k+1]

TN(xk |mk,Pk) dxk

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk (m

s
k+1 −m−

k+1)

Ps
k = Pk +Gk (P

s
k+1 −P−

k+1)G
T
k .

(4.34)

The integrals above can be approximated using analogous numerical integra-
tion or analytical approximation schemes as in the filtering case, that is, with
Gauss-Hermite quadratures or central differences (Ito and Xiong, 2000; Nørgaard
et al., 2000; Wu et al., 2006), cubature rules (Arasaratnam and Haykin, 2009),
Monte Carlo (Kotecha and Djuric, 2003), Gaussian process / Bayes-Hermite based
integration (O’Hagan, 1991; Deisenroth et al., 2009), or with many other numerical
integration schemes.

Algorithm 4.6 (Gaussian RTS smoother II). The equations of the non-additive
formGaussian RTS smootherare the following:

m−
k+1 =

∫

f(xk,qk)N(xk |mk,Pk)N(qk |0,Qk) dxk dqk

P−
k+1 =

∫

[f(xk,qk)−m−
k+1] [f(xk,qk)−m−

k+1]
T

×N(xk |mk,Pk)N(qk |0,Qk) dxk dqk

Dk+1 =

∫

[xk −mk] [f(xk,qk)−m−
k+1]

T

×N(xk |mk,Pk)N(qk |0,Qk) dxk dqk

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk (m

s
k+1 −m−

k+1)

Ps
k = Pk +Gk (P

s
k+1 −P−

k+1)G
T
k .

(4.35)
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4.3.2 Gauss-Hermite Rauch-Tung-Striebel (GHRTS) Smoother

By using the Gauss-Hermite approximation to the additive form Gaussian RTS
smoother, we get the following algorithm:

Algorithm 4.7 (Gauss-Hermite Rauch-Tung-Striebel smoother). Theadditive form
Gauss-Hermite RTS smoother algorithmis the following:

1. Form the sigma points as:

X (i1,...,in)
k = mk +

√

Pk ξ
(i1,...,in) i1, . . . , in = 1, . . . , p, (4.36)

where the unit sigma pointsξ(i1,...,in) were defined in Equation(3.169).

2. Propagate the sigma points through the dynamic model:

X̂ (i1,...,in)
k+1 = f(X (i1,...,in)

k ), i1, . . . , in = 1, . . . , p, (4.37)

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

∑

i1,...,in

W (i1,...,in)X̂ (i1,...,in)
k+1

P−
k+1 =

∑

i1,...,in

W (i1,...,in)(X̂ (i1,...,in)
k+1 −m−

k+1) (X̂
(i1,...,in)
k+1 −m−

k+1)
T +Qk

Dk+1 =
∑

i1,...,in

W (i1,...,in)(X (i)
k −mk) (X̂ (i)

k+1 −m−
k+1)

T ,

(4.38)

where the weightsW (i1,...,in) were defined in Equation(3.168).

4. Compute the gainGk, meanms
k and covariancePs

k as follows:

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk (m

s
k+1 −m−

k+1)

Ps
k = Pk +Gk (P

s
k+1 −P−

k+1)G
T
k .

(4.39)

4.3.3 Cubature Rauch-Tung-Striebel (CRTS) Smoother

By using the 3rd order spherical cubature approximation to the additive form Gaus-
sian RTS smoother, we get the following algorithm:

Algorithm 4.8 (Cubature Rauch-Tung-Striebel smoother I). Theadditive form cu-
bature RTS smoother algorithmis the following:
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1. Form the sigma points:

X (i)
k = mk +

√

Pk ξ
(i), i = 1, . . . , 2n, (4.40)

where the unit sigma points are defined as

ξ(i) =

{ √
n ei , i = 1, . . . , n

−√
n ei−n , i = n+ 1, . . . , 2n.

(4.41)

2. Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X (i)

k ), i = 1, . . . , 2n.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

1

2n

2n∑

i=1

X̂ (i)
k+1

P−
k+1 =

1

2n

2n∑

i=1

(X̂ (i)
k+1 −m−

k+1) (X̂
(i)
k+1 −m−

k+1)
T +Qk

Dk+1 =
1

2n

2n∑

i=1

(X (i)
k −mk) (X̂ (i)

k+1 −m−
k+1)

T .

(4.42)

4. Compute the gainGk, meanms
k and covariancePs

k as follows:

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk (m

s
k+1 −m−

k+1)

Ps
k = Pk +Gk (P

s
k+1 −P−

k+1)G
T
k .

(4.43)

By using the 3rd order spherical cubature approximation to the non-additive
form Gaussian RTS smoother, we get the following algorithm:

Algorithm 4.9 (Cubature Rauch-Tung-Striebel smoother II). A single step of the
augmented form cubature RTS smootheris as follows:

1. Form the sigma points for then′ = n+ nq -dimensional augmented random
variable(xT

k qT
k )

T

X̃ (i)
k = m̃k +

√

P̃k ξ
(i)′ i = 1, . . . , 2n′, (4.44)

where

m̃k =

(
mk

0

)

P̃k =

(
Pk 0

0 Qk

)

.
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2. Propagate the sigma points through the dynamic model:

X̂ (i)
k+1 = f(X̃ (i),x

k , X̃ (i),q
k ), i = 1, . . . , 2n′,

whereX̃ (i),x
k and X̃

(i),q
k denote the parts of the augmented sigma pointi,

which correspond toxk andqk, respectively.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

1

2n′

2n′

∑

i=1

X̂ (i)
k+1

P−
k+1 =

1

2n′

2n′

∑

i=1

(X̂ (i)
k+1 −m−

k+1) (X̂
(i)
k+1 −m−

k+1)
T

Dk+1 =
1

2n′

2n′

∑

i=1

(X̃ (i),x
k −mk) (X̂ (i)

k+1 −m−
k+1)

T .

(4.45)

4. Compute the gainGk, meanms
k and covariancePs

k:

Gk = Dk+1 [P
−
k+1]

−1

ms
k = mk +Gk

[
ms

k+1 −m−
k+1

]

Ps
k = Pk +Gk

[
Ps

k+1 −P−
k+1

]
GT

k .

(4.46)

4.4 Fixed-Point and Fixed-Lag Gaussian Smoothing

The smoother algorithms that we have considered this far have all beenfixed-
interval smoothing algorithms, which can be used for computing estimates of a
fixed time interval of states given the measurements on the same interval. However,
there exists a couple of other types of smoothing problems as well:

• Fixed-point smoothingrefers to a methodology which can be used for ef-
ficiently computing the optimal estimate of theinitial state or some other
fixed-time state of a state space model, given an increasing number of mea-
surements after it. This kind of estimation problem arises, for example,
in estimation of the state of a spacecraft at a given point of time in the
past (Meditch, 1969) or in alignment and calibration of inertial navigation
systems (Grewal et al., 1988).

• Fixed-lag smoothingis a methodology for computing delayed estimates of
state space models given measurements up to the current time and a constant
horizon in the future. Fixed-lag smoothing can be considered as optimal
filtering, where a constant delay is tolerated in the estimates. Potential ap-
plications of fixed-lag smoothing are all the problems where optimal filters
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are typically applied, and where the small delay is tolerated. An example of
such application is digital demodulation (Tam et al., 1973).

The presentation here is based on the results presented in (Särkkä and Hartikainen,
2010a), except that the derivations are presented in a bit more detail than in the
original reference.

4.4.1 General Fixed-Point Smoother Equations

The general fixed-interval RTS smoothers described in this document have the
property that given the gain sequence, we only need linear operations for per-
forming the smoothing, and in this sense, the smoothing is a completelylinear
operation. The only non-linear operations in the smoother are in the approxima-
tions of the Gaussian integrals. However, these operations are performed to the
filtering results and thus we can compute the smoothing gain sequenceGk from
the filtering results in a causal manner. Because of these properties we maynow
derive a fixed-point smoother using similar methods as have been used forderiving
the linear fixed-point smoother from the linear Rauch-Tung-Striebel smoother in
(Meditch, 1969).

We shall now denote the smoothing means and covariances using notation of
typemk|n andPk|n, which refer to the mean and covariance of the statexk, which
is conditioned to measurementy1, . . . ,yn. With this notation, the filter estimates
aremk|k, Pk|k and the RTS smoother estimates, which are conditioned toT mea-
surements have the formmk|T , Pk|T . The RTS smoothers have the following
common recursion equations:

Gk = Dk+1 [P
−
k+1]

−1

mk|T = mk +Gk

[
mk+1|T −m−

k+1

]

Pk|T = Pk +Gk

[
Pk+1|T −P−

k+1

]
GT

k .

(4.47)

which are indeed linear recursion equations for the smoother mean and covariance.
Note that the gainsGk only depend on the filtering results, not on the smoother
mean and covariance. Because the gainsGk are independent ofT , from the
equations (4.47) we get fori = j, . . . , k the identity:

mi|k −mi|i = Gi[mi+1|k −mi+1|i]. (4.48)

Similarly, for i = j, . . . , k − 1 we have

mi|k−1 −mi|i = Gi[mi+1|k−1 −mi+1|i]. (4.49)

Subtracting these equations gives the identity

mi|k −mi|k−1 = Gi[mi+1|k −mi+1|k−1]. (4.50)
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By varyingi from j to k − 1 we get the identities

mj|k −mj|k−1 = Gj [mj+1|k −mj+1|k−1]

mj+1|k −mj+1|k−1 = Gj+1[mj+2|k −mj+2|k−1]

...

mk−1|k −mk−1|k−1 = Gk−1[mk|k −mk|k−1].

(4.51)

If we sequentially substitute the above equations to each other starting from the
last and proceeding to the first, we get the equation

mj|k = mj|k−1 +Bj|k[mk|k −mk|k−1], (4.52)

where
Bj|k = Gj × · · · ×Gk−1. (4.53)

Analogously for the covariance we get

Pj|k = Pj|k−1 +Bj|k[Pk|k −Pk|k−1]B
T
j|k. (4.54)

The general fixed-point smootheralgorithm for smoothing the time pointj can
now be implemented by performing the following operations at each time step
k = 1, 2, 3, . . .:

1. Gain computation:Compute the predicted meanmk|k−1, predicted covari-
ancePk|k−1 and cross-covarianceDk from the filtering results using one
of equations in the smoother algorithms. Then compute the gain from the
equation

Gk−1 = Dk [P
−
k ]

−1. (4.55)

2. Fixed-point smoothing:

(a) If k < j, just store the filtering result.

(b) If k = j, setBj|j = I. The fixed-point smoothed mean and covariance
on stepj are equal to the filtered mean and covariancemj|j andPj|j .

(c) If k > j, compute the smoothing gain and the fixed-point smoother
mean and covariance:

Bj|k = Bj|k−1Gk−1

mj|k = mj|k−1 +Bj|k[mk|k −mk|k−1]

Pj|k = Pj|k−1 +Bj|k[Pk|k −Pk|k−1]B
T
j|k.

(4.56)

Because only a constant number of computations is needed on each time step,the
algorithm can be easily implemented in real time.
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4.4.2 General Fixed-Lag Smoother Equations

It is also possible to derive a general fixed-lag smoother by using a similar proce-
dure as in the previous section. However, this approach will lead to a numerically
unstable algorithm as will be seen shortly. Letn be the number of lags. From the
fixed-point smoother we get

mk−n−1|k = mk−n−1|k−1

+Bk−n−1|k[mk|k −mk|k−1].
(4.57)

From the fixed-interval smoother we get

mk−n−1|k = mk−n−1|k−n−1

+Gk−1−n[mk−n|k −mk−n|k−n−1].
(4.58)

Equating the right hand sides, and solving formk−n|k while remembering the
identityBk−n|k = G−1

k−n−1Bk−n−1|k results in the smoothing equation

mk−n|k = mk−n|k−n−1

+G−1
k−n−1[mk−n−1|k−1 −mk−n−1|k−n−1]

+Bk−n|k[mk|k −mk|k−1].

(4.59)

Similarly, for covariance we get

Pk−n|k = Pk−n|k−n−1

+G−1
k−n−1[Pk−n−1|k−1 −Pk−n−1|k−n−1]G

−T
k−n−1

+Bk−n|k[Pk|k −Pk|k−1]B
T
k−n|k.

(4.60)

The equations (4.59) and (4.60) can be,in principle, used for recursively com-
puting the fixed-lag smoothing solution. The number of computations does not
depend on the lag length. This solution can be seen to be of the same form as the
fixed-lag smoother given in (Rauch, 1963; Meditch, 1969; Crassidis and Junkins,
2004). Unfortunately, it has been shown (Kelly and Anderson, 1971)that this form
of smoother isnumerically unstableand thus not usable in practice. However,
sometimes the equations do indeed work and can be used if the user is willing to
take the risk of potential instability.

In (Moore, 1973; Moore and Tam, 1973) stable algorithms for optimal fixed-lag
smoothing are derived by augmenting then lagged states to a Kalman filter. This
approach ensures the stability of the algorithm. Using certain simplifications it is
possible to reduce the computations, and this is also possible when certain types of
extended Kalman filters are used (Moore, 1973; Moore and Tam, 1973).Unfortu-
nately, such simplifications cannot be done in more general case and, forexample,
when the unscented transformation (Julier et al., 1995, 2000) or a quadrature rule
(Ito and Xiong, 2000) is used, the required amount of computations becomes high,
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because the Cholesky factorization of the whole joint covariance of then lagged
states would be needed in the computations. Another possibility, which is em-
ployed here, is to take advantage of the fact that Rauch-Tung-Striebelsmoother
equations are numerically stable and can be used for fixed-lag smoothing. The
fixed-lag smoothing can be efficiently implemented by taking into account that the
gain sequence needs to be evaluated only once, and the same gains can beused
in different smoothers operating on different intervals. Thus thegeneral fixed-
lag smoothercan be implemented by performing the following on each time step
k = 1, 2, 3, . . .:

1. Gain computation:During the Gaussian filter prediction step compute and
store the predicted meanmk|k−1, predicted covariancePk|k−1 and cross-
covarianceDk using one of equations in the smoother algorithms. Also
compute and store the smoothing gain

Gk−1 = Dk [P
−
k ]

−1. (4.61)

2. Fixed-lag smoothing:Using the stored gain sequence, compute the smooth-
ing solutions for stepsj = k − n, . . . , k using the following backward
recursion, starting from the filtering solution on stepj = k:

mj|k = mj|j +Gj

[
mj+1|k −mj+1|j

]

Pj|k = Pj|j +Gj

[
Pj+1|k −Pj+1|j

]
GT

j .
(4.62)

The required number of computations per time step grows linearly with the length
of lag. Thus the computational requirements are comparable to algorithms pre-
sented in (Moore, 1973; Moore and Tam, 1973). The algorithm defined inequa-
tions (4.59) and (4.60) would be computationally more efficient, but as already
stated, it would be numerically unstable.

4.5 Monte Carlo Based Smoothers

4.5.1 SIR Particle Smoother

The SIR particle smootherof Kitagawa (1996) is based on direct usage of SIR
for smoothing. Recall that in Section 3.4.3 we derived the sequential importance
sampling (SIS) method to approximate the full posterior distribution, not just the
filtering distributions. We then discarded the sample historiesx

(i)
1:k and only kept

the current statesx(i)
k , because we were interested in the filtering distributions.

But we can get an approximation to the smoothing distribution by keeping the full
histories. To get the smoothing solution from sequential importance resampling
(SIR) we also need to resample the state histories, not only the current states, to
prevent the resampling from breaking the state histories. The resulting algorithm
is the following:
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Algorithm 4.10 (SIR particle smoother). The direct sequential importance resam-
pling (SIR) based smoother algorithm is the following:

• DrawN samplesx(i)
0 from the prior

x
(i)
0 ∼ p(x0), i = 1, . . . , N, (4.63)

and setw(i)
0 = 1/N , for all i = 1, . . . , N . Initialize the state histories to

contain the prior samplesx(i)
0 .

• For eachk = 1, . . . , T do the following:

1. DrawN new samplesx(i)
k from the importance distributions

x
(i)
k ∼ π(xk |x(i)

k−1,y1:k), i = 1, . . . , N, (4.64)

wherex(i)
k−1 is thek − 1th (last) element in the sample historyx(i)

1:k−1.

2. Calculate the new weights according to

w
(i)
k ∝ w

(i)
k−1

p(yk |x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

k−1,y1:k)
(4.65)

and normalize them to sum to unity.

3. Append the samples to the state histories:

x
(i)
1:k = (x

(i)
1:k−1,x

(i)
k ). (4.66)

4. If the effective number of particles(3.234)is too low, perform resam-
pling to the state histories.

The approximation to the full posterior (smoothed) distribution is (Kitagawa,
1996; Doucet et al., 2000):

p(x1:T |y1:T ) ≈
N∑

i=1

w
(i)
T δ(x1:T − x

(i)
1:T ). (4.67)

The approximation to the smoothed posterior distribution at time stepk, given the
measurements up to the time stepT > k is

p(xk |y1:T ) ≈
N∑

i=1

w
(i)
T δ(xk − x

(i)
k ), (4.68)

wherex(i)
k is the kth component inx(i)

1:T . However, ifT ≫ k the direct SIR
smoother algorithm is known to produce very degenerate approximations (Kita-
gawa, 1996; Doucet et al., 2000).
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4.5.2 Backward-Simulation Particle Smoother

A less degenerate particle smoother than the SIR particle smoother can be obtained
by reusing the filtering results instead of simply storing the full particle historiesin
SIR. Thebackward-simulation particle smootherof Godsill et al. (2004) is based
on simulation of individual trajectories backwards, starting from the last step and
proceeding to the first.

Assume that we have already simulated a trajectoryx̃k+1:T from the smoothing
distribution. By using the Equation (4.3) we get:

p(xk | x̃k+1,y1:T ) =
p(x̃k+1 |xk) p(x̃k |y1:k)

p(x̃k+1 |y1:k)

= Z p(x̃k+1 |xk) p(xk |y1:k),

(4.69)

whereZ is a normalization constant. By substituting the SIR filter approximation
we get

p(xk | x̃k+1,y1:T ) ≈ Z
∑

i

w
(i)
k p(x̃k+1 |x(i)

k ) δ(xk − x
(i)
k ). (4.70)

We can now draw a sample from this distribution by samplingx
(i)
k with probability

∝ w
(i)
k p(x̃k+1 |x(i)

k ). The resulting algorithm is the following:

Algorithm 4.11 (Backward-simulation particle smoother). Given the weighted set

of particles{w(i)
k ,x

(i)
k | i = 1, . . . , N, k = 1, . . . , T} representing the filtering

distributions:

• ChoosẽxT = x
(i)
T with probabilityw(i)

T .

• For k = T − 1, . . . , 0:

1. Compute new weights by

w
(i)
k|k+1 ∝ w

(i)
k p(x̃k+1 |x(i)

k ). (4.71)

2. Choosẽxk = x
(i)
k with probabilityw(i)

k|k+1.

GivenS iterations of the above procedure resulting in sample trajectoriesx̃
(j)
1:T

for j = 1, . . . , S the smoothing distribution can now be approximated as

p(x1:T |y1:T ) ≈
1

S

∑

j

δ(x1:T − x̃
(j)
1:T ). (4.72)

The marginal distribution samples for a stepk can be obtained by extracting the
kth components from the above trajectories. The computational complexity of the
method isO(S T N). However, the result is much less degenerate than of the
particle smoother of Kitagawa (1996).
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4.5.3 Reweighting Particle Smoother

The reweighting particle smoother of Hürzeler and Kunsch (1998) and Doucet et al.
(2000) is based on computing new weights for the SIR filtering particles suchthat
we get an approximation to the smoothing distribution. Assume that have already
computed the weights for the following approximation, where the particlesx

(i)
k+1

are from the SIR filter:

p(xk+1 |y1:T ) ≈
∑

i

w
(i)
k+1|T δ(xk+1 − x

(i)
k+1). (4.73)

The integral in the second of Equations (4.2) can be now approximated as:
∫

p(xk+1 |xk) p(xk+1 |y1:T )

p(xk+1 |y1:k)
dxk+1

≈
∫

p(xk+1 |xk)

p(xk+1 |y1:k)

∑

i

[

w
(i)
k+1|T δ(xk+1 − x

(i)
k+1)

]

dxk+1

=
∑

i

w
(i)
k+1|T

p(x
(i)
k+1 |xk)

p(x
(i)
k+1 |y1:k)

.

(4.74)

By using SIR filter approximation we get the following approximation for the
predicted distribution in the denominator:

p(xk+1 |y1:k) ≈
∑

j

w
(j)
k p(xk+1 |x(j)

k ), (4.75)

which gives

∫
p(xk+1 |y1:T ) p(xk+1 |xk)

p(xk+1 |y1:k)
dxk+1 ≈

∑

i

w
(i)
k+1|T

p(x
(i)
k+1 |xk)

[
∑

j w
(j)
k p(x

(i)
k+1 |x

(j)
k )
] .

(4.76)

By substituting the SIR filter approximation and the approximation above to the
Bayesian optimal smoothing equation we get:

p(xk |y1:T ) = p(xk |y1:k)

∫ [
p(xk+1 |xk) p(xk+1 |y1:T )

p(xk+1 |y1:k)

]

dxk+1

≈
∑

l

w
(l)
k δ(xk − x

(l)
k )
∑

i

w
(i)
k+1|T

p(x
(i)
k+1 |x

(l)
k )

[
∑

j w
(j)
k p(x

(i)
k+1 |x

(j)
k )
] ,

(4.77)

where we can identify the weights as

w
(l)
k|T ∝

∑

i

w
(i)
k+1|T

w
(l)
k p(x

(i)
k+1 |x

(l)
k )

[
∑

j w
(j)
k p(x

(i)
k+1 |x

(j)
k )
] . (4.78)

Thus we get the following algorithm:
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Algorithm 4.12 (Reweighting particle smoother). Given the weighted set of parti-

cles{w(i)
k ,x

(i)
k | i = 1, . . . , N} representing the filtering distribution, we can form

approximations to the marginal smoothing distributions as follows:

• Start by settingw(i)
T |T = w

(i)
T for i = 1, . . . , N .

• For eachk = T − 1, . . . , 0 do the following:

– Compute new importance weights by

w
(i)
k|T ∝

∑

j

w
(j)
k+1|T

w
(i)
k p(x

(j)
k+1 |x

(i)
k )

[
∑

l w
(l)
k p(x

(j)
k+1 |x

(l)
k )
] . (4.79)

• At each stepk the marginal smoothing distribution can be approximated as

p(xk |y1:T ) ≈
∑

i

w
(i)
k|T δ(xk − x

(i)
k ). (4.80)

The computational complexity of the method isO(T N2), that is, the same as
of the backward-simulation smoother withS = N simulated trajectories.

4.5.4 Rao-Blackwellized Particle Smoothers

Rao-Blackwellized particle smoothers(RFPS) can be used for computing approx-
imate smoothing solutions to conditionally Gaussian models defined in Equation
(3.241). A simple way to implement a RBPS is to store the histories instead of the
single states in RBPF, as in the case of SIR particle smoother (Algorithm 4.10).
The corresponding histories of the means and the covariances are then conditional
on thelatent variable historiesθ1:T . However, the means and covariances at time
stepk are only conditional on themeasurement historiesup tok, not on the later
measurements. In order to correct this, RTS smoothers have to be applied toeach
history of the means and the covariances:

Algorithm 4.13 (Rao-Blackwellized SIR particle smoother). A set of weighted

samples{ws,(i)
T ,θ

s,(i)
1:T ,m

s,(i)
1:T ,P

s,(i)
1:T : i = 1, . . . , N} representing the smoothed

distribution can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized state histories

{w(i)
T ,θ

(i)
1:T ,m

(i)
1:T ,P

(i)
1:T : i = 1, . . . , N} (4.81)

by storing histories in the Rao-Blackwellized particle filter analogously to
the SIR particle smoother in Algorithm 4.10.

2. Set

w
s,(i)
T = w

(i)
T

θ
s,(i)
1:T = θ

(i)
1:T .

(4.82)
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3. Apply the RTS smoother to each of the mean and covariance historiesm
(i)
1:T ,P

(i)
1:T

for i = 1, . . . , N to produce the smoothed mean and covariance histories
m

s,(i)
1:T ,P

s,(i)
1:T .

The Rao-Blackwellized particle smoother in this simple form also has the same
disadvantage as the SIR particle smoother, that is, the smoothed estimate ofθk can
be quite degenerate ifT ≫ k. Fortunately, the smoothed estimates of the actual
statesxk can still be relatively good, because their degeneracy is avoided by Rao-
Blackwellization.

To avoid the degeneracy in estimates ofθk it is possible to use better sampling
procedures for generating samples from the smoothing distributions analogously to
the plain particle smoothing. The backward-simulation has indeed been general-
ized to Rao-Blackwellized case, but the implementation of the Rao-Blackwellized
reweighting smoother seems to be quite problematic.

The Rao-Blackwellized backward-simulation smoother proposed by Särkkä
et al. (2012a) can be used for drawing backward trajectories from themarginal
posterior of the latent variablesθk and posterior of the conditionally Gaussian
part is obtained via Kalman filtering and RTS smoothing. The methods of Fong
et al. (2002) and Lindsten and Schön (2011) are based on simulating backward
trajectories from the joint distribution(xk,θk). However, these smoothers are not
really Rao-Blackwellized backward-simulation smoothers, because they require
sampling of the linear part of the state as well. It is also possible to construct
approximate (Kim’s approximation based) backward-simulation smoothers by re-
placing transition densityp(xk+1 |xk) in the Algorithm 4.11 withp(θk+1 |θk) (see
Särkkä et al., 2012a). Given a trajectory of the non-Gaussian variable, the linear
Gaussian part may be recovered with Kalman filter and RTS smoother.
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Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution). Random variablex ∈ R
n has Gaussian

distribution with meanm ∈ R
n and covarianceP ∈ R

n×n its probability density
has the form

N(x |m,P) =
1

(2π)n/2 |P|1/2 exp
(

−1

2
(x−m)T P−1 (x−m)

)

, (A.1)

where|P| is the determinant of matrixP.

Lemma A.1 (Joint density of Gaussian variables). If random variablesx ∈ R
n

andy ∈ R
m have the Gaussian probability densities

x ∼ N(x |m,P)

y |x ∼ N(y |Hx+ u,R),
(A.2)

then the joint density ofx,y and the marginal distribution ofy are given as
[
x

y

]

∼ N

([
m

Hm+ u

]

,

[
P PHT

HP HPHT +R

])

y ∼ N(Hm+ u,HPHT +R).

(A.3)

Lemma A.2 (Conditional density of Gaussian variables). If the random variables
x andy have the joint Gaussian probability density

x,y ∼ N

([
a

b

]

,

[
A C

CT B

])

, (A.4)

then the marginal and conditional densities ofx andy are given as follows:

x ∼ N(a,A)

y ∼ N(b,B)

x |y ∼ N(a+CB−1 (y − b),A−CB−1CT )

y |x ∼ N(b+CT A−1 (x− a),B−CT A−1C).

(A.5)
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