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Chapter 1

Introduction

1.1 Why The Bayesian Approach?

The mathematical treatment of the models and algorithms in this document is
Bayesian, which means that all the results are treated as being approxsnation
to certain probability distributions or their parameters. Probability distributions
are used to represent both the uncertainties in the models and for modeling the
physical randomness. The theory of non-linear optimal filtering is formdilete
terms of Bayesian inference, and both the classical and recent filtdgioagtlhms
are derived using the same Bayesian notation and formalism.

The selection of the Bayesian approach is more a practical engineerimg tha
a philosophical decision. It simply is easier to develop a consistent, pictica
applicable theory of recursive inference under the Bayesian phitgsban under,
for example, the least squares or the maximum likelihood philosophy. Another
useful consequence of selecting the Bayesian approach is thatqeasts, max-
imum likelihood and many other philosophically different results can be olataine
as special cases or re-interpretations of the Bayesian results. Ge¢quite often
the same thing applies also the other way around.

Modeling uncertainty as randomness is a very “engineering” way of maglelin
the world. It is exactly the approach also chosen in statistical physics laasve
in financial analysis. The Bayesian approach to optimal filtering is far fnem
(see, e.g., Ho and Lee, 1964, Lee, 1964; Jazwinski, 1966; Strathnd\O68;
Jazwinski, 1970), because the theory already existed at the same timenthalse
article of Kalman (1960b) was published. The Kalman filter was first definam
the least squares point of view, but non-linear filtering theory has Bagesian
from the beginning (see, e.g., Jazwinski, 1970).

One should not take the Bayesian way of modeling unknown parameters as
random variables too literally. It does not imply that one believes that tieatlyr
is something random in the parameters — it is just a convenient way of repre-
senting uncertainty using the same formalism that is used for representing ra
domness. Random or stochastic processes appearing in the mathematiels mod
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are not necessarily really random in a physical sense, instead, tthemaess is
just a mathematical device for taking into account the uncertainty in a dynamic
phenomenon.

But it does not matter if the randomness is interpreted as physical randsmne
or as a representation of uncertainty, as long as the randomness bageld mo
succeed in modeling the real world. In the above engineering philosoplgotit
troversy between so called “frequentists” and “Bayesians” is as futilesasnnec-
essary controversy about interpretations of quantum mechanics, thdtather,
for example, the Copenhagen interpretation or many worlds interpretatior is th
correct one. The philosophical interpretation does not matter as long agetv
meaningful predictions from the theory.

1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
state of a time-varying system which is indirectly observed through noisyureas
ments. Thestateof the system refers to the collection of dynamic variables such as
position, velocity, orientation, and angular velocity, which define the phystate

of the system. Thaoisein the measurements means that the measurements are
uncertain in the sense that even if we knew the true system state the meadareme
would not be deterministic functions of the state, but would have a distribution o
possible values. The time evolution of the state is modeled as a dynamic system
which is perturbed by a certaprocess noiseThis noise is used for modeling the
uncertainties in the system dynamics. In most cases the system is not trhlgsstoc
tic, but the stochasticity is only used for representing the model uncertainties.

1.2.1 Applications of Optimal Filtering

Phenomena which can be modeled as time varying systems of the above type are
very common in engineering applications. These kind of models can be ffmind,
example, in navigation, aerospace engineering, space engineentggersurveil-

lance, telecommunications, physics, audio signal processing, congiioleening,
finance and several other fields. Examples of such applications ar@ltheifg:

e Global positioning system (GP®aplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measures arrival times of
signals from several GPS satellites and computes its position based on these
measurements. The GPS receiver typically uses an extended Kalman filter
or some other optimal filtering algorithm for computing the position and
velocity such that the measurements and the assumed dynamics (laws of
physics) are taken into account. Also the ephemeris information, which is
the satellite reference information transmitted from the satellites to the GPS
receivers, is typically generated using optimal filters.
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Figure 1.1: In GPS system, the measurements are time delays of sasailitals and the
optimal filter (e.g., EKF) computes the position and the aattime.

e Target tracking(Bar-Shalom et al., 2001; Crassidis and Junkins, 2004) refers
to the methodology where a set of sensors such as active or pastavs, ra
radio frequency sensors, acoustic arrays, infrared sensorsthadtypes
of sensors are used for determining the position and velocity of a remote
target. When this tracking is done continuously, the dynamics of the target
and measurements from the different sensors are most naturally combined
using an optimal filter. The target in this (single) target tracking case can be
for example, a robot, a satellite, a car or an airplane.

(_ . target

Sensor

Figure 1.2: In target tracking, a sensor generates measurements @ngle measure-
ments) of the target, and the purpose is to determine thetargjectory.

e Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoli,
1999; Stone et al., 1999; Sarkka et al., 2007b) systems are usedinfotere
surveillance in the cases where there are multiple targets moving at the
same time in the same geographical area. This raises the concept of data
association (which measurement was from which target?) and the problem
of estimating the number of targets. Multiple target tracking systems are
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typically used in remote surveillance for military purposes, but possible civil
applications are, for example, monitoring of car tunnels, automatic alarm
systems and people tracking in buildings.
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Figure 1.3: In multiple target tracking the data association problenstta be solved,
because it is impossible to know without any additionalrimf@tion which target produced
which measurement.

e Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopes for comihating
position and velocity of a device such as a car, an airplane or a missile.
When the inaccuracies in sensor measurements are taken into account the
natural way of computing the estimates is by using an optimal filter. Also
in sensor calibration, which is typically done in time varying environment
optimal filters are often applied.

¢ Integrated inertial navigatiorfGrewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sensors, sutimas a
ters and landmark trackers, and biased but locally accurate inertiarsens
Combining of these different sources of information is most naturally per-
formed using an optimal filter such as the extended Kalman filter. This kind
of approach was used, for example, in the guidance system of the Agdollo 1
lunar module (Eagle), which landed on the moon in 1969.

e GPS/INS navigatiofGrewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation where the inertial sensors are combined with
a GPS receiver unit. In GPS/INS navigation system the short term fluctua-
tions of the GPS can be compensated with the inertial sensors and the inertial
sensor biases can be compensated with the GPS receiver. An additional
advantage of this approach is that it is possible to temporarily switch to pure
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inertial navigation when the GPS receiver is unable to compute its position
(i.e., has no fix) for some reason. This happens, for example, indioors,
tunnels and in other cases when there is no direct line-of-sight between th
GPS receiver and the satellites.

e Brain imagingmethods such as EEG, MEG and DOT are based on recon-
struction of the source or diffusion field from noisy sensor data by using
minimum norm estimates (MNE) and its variants (Hauk, 2004; Tarantola,
2004; Kaipio and Somersalo, 2005). The minimum norm solution can also
be interpreted in Bayesian sense as a problem of estimating the field with cer-
tain prior structure from Gaussian observations. With that interpretation the
estimation problem becomes equivalent to the familiar statistical inversion
or generalized Gaussian process regression problem (Kaipio andsadone
2005; Sarkka, 2011). Including dynamical priors then leads to a linear o
non-linear spatio-temporal estimation problem, which can be solved with
Kalman filters and smoothers (cf. Hiltunen et al., 2011; Sarkka et al., 2012b
The same can be done in inversion based approaches to functionattitagn
Resonance Imaging (fMRI) such as Inverse Imaging (Inl) (Lin et 8063.

e Spread of infectious diseas@snderson and May, 1991) can often be mod-
eled as differential equations for the number of susceptible, infected and
recovered/dead individuals. When uncertainties are introduced into/the d
namic equations, and when the measurements are not perfect, the estimation
of the spread of the disease can be formulated as an optimal filtering prob-
lem.

e Biological processegMurray, 1993) such as population growth, predator-
prey models and several other dynamic processes in biology can also be
modeled as (stochastic) differential equations. The estimation of the states
of these processes from inaccurate measurements can be formulated as a
optimal filtering problem.

e Telecommunicationg also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectors and phasdlock
loops can be interpreted to contain optimal filters (Van Trees, 1968, 1971)
as components. Also the celebrated Viterbi algorithm (Viterbi, 1967) can be
interpreted as a combination of optimal filtering and optimal smoothing of
the underlying hidden Markov model.

¢ Audio signal processingpplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et al., 2008) ux&e
TVAR (time varying autoregressive) models as the underlying audio signal
models. These kind of models can be efficiently estimated using optimal
filters and smoothers.



6 Introduction

e Stochastic optimal contrqMaybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic controllers can typically
be found in, for example, airplanes, cars and rockets. Optimal, in addition
to the statistical optimality, means that control signal is constructed to mini-
mize a performance cost, such as expected time to reach a predefined state,
the amount of fuel consumed or average distance from a desired position
trajectory. Optimal filters are typically used for estimating the states of
the stochastic system and a deterministic optimal controller is constructed
independently from the filter such that it uses the estimate of the filter as
the known state. In theory, the optimal controller and optimal filter are not
completely decoupled and the problem of constructing optimal stochastic
controllers is far more challenging than constructing optimal filters and (de-
terministic) optimal controllers separately.

e Learning systemer adaptive systems can often be mathematically formu-
lated in terms of optimal filters. The theory of stochastic differential equa-
tions has close relationship with Bayesian non-parametric modeling, ma-
chine learning and neural network modeling (MacKay, 1998; Bishop5)19
Methods similar to the data association methods in multiple target tracking
are also applicable to on-line adaptive classification (Andrieu et al., 2002)
The connection between Gaussian process regression and optimalgfilterin
has also been recently discussed in Sarkka et al. (2007a), Hartikaiden a
Sarkka (2010) and Sarkka and Hartikainen (2012).

e Physical systemshich are time varying and measured through nonideal sen-
sors can sometimes be formulated as stochastic state space models, and the
time evolution of the system can be estimated using optimal filters (Kaipio
and Somersalo, 2005). In Vauhkonen (1997) and more recentlydonge,
in Pikkarainen (2005) optimal filtering is applied to the Electrical Impedance
Tomography (EIT) problem in a time varying setting.

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behavior are in the fiefdio
mal linear filtering. The idea of constructing mathematically optimal recursive es
timators was first presented for linear systems due to their mathematical simplicity
and the most natural optimality criterion in both mathematical and modeling point
of view was the least squares optimality. For linear systems the optimal Bayesian
solution (with MMSE ultility) coincides with the least squares solution, that is, the
optimal least squares solution is exactly the posterior mean.

The history of optimal filtering starts from th&fiener filter(Wiener, 1950),
which is a frequency domain solution to the problem of least squares optiteal fi
ing of stationary Gaussian signals. The Wiener filter is still important in commu-
nication applications (Proakis, 2001), digital signal processing (Hayg%6) and
image processing (Gonzalez and Woods, 2008). The disadvantaties\fener
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filter are that it can only be applied to stationary signals and that the cotigiro€

a Wiener filter is often mathematically demanding and these mathematics cannot
be avoided (i.e., made transparent). Due to the demanding mathematics the Wiener
filter can only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due
to the seminal article of Kalman (1960b), which describes the recursivemsoto
the optimal discrete-time (sampled) linear filtering problem. The reason for the
success is that thikalman filtercan be understood and applied with very much
lighter mathematical machinery than the Wiener filter. Also, despite its mathemat-
ical simplicity, the Kalman filter (or actually the Kalman-Bucy filter; Kalman and
Bucy, 1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered to
belong to the class of Bayesian estimators (Ho and Lee, 1964; Lee, E6vind
ski, 1966, 1970). An interesting historical detail is that while Kalman andyBuc
were formulating the linear theory in the United States, Stratonovich was dang th
pioneering work on the probabilistic (Bayesian) approach in Russiad8tech,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in the sixties, Kalma
filter like recursive estimators were also used in the Bayesian community and it is
not clear whether the theory of Kalman filtering or the theorgwhamic linear
models(DLM) came first. Although these theories were originally derived from
slightly different starting points, they are equivalent. Because of Kalntian'di
useful connection to the theory and history of stochastic optimal controkitiais
ument approaches the Bayesian filtering problem from the Kalman filteriimg po
of view.

Although the original derivation of th&alman filterwas based on the least
squares approach, the same equations can be derived from thergplabifistic
Bayesian analysis. The Bayesian analysis of Kalman filtering is well cdvetbe
classical book of Jazwinski (1970) and more recently in the book of3dafom
et al. (2001). Kalman filtering, mostly because of its least squares intatipre
has widely been used in stochastic optimal control. A practical reasoni$oisth
that the inventor of the Kalman filter, Rudolph E. Kalman, has also made severa
contributions (Kalman, 1960a) to the theoryliofear quadratic GaussiafLQG)
regulators, which are fundamental tools of stochastic optimal control d&ten
1994; Maybeck, 1982h).

1.2.3 Optimal Filtering and Smoothing as Bayesian Inference

Optimal Bayesian filtering (see, e.g. Jazwinski, 1970; Bar-Shalom etQ01;2
Doucet et al., 2001; Ristic et al., 2004) considers statistical inversidolgms,
where the unknown quantity is a vector valued time sefigsxa, ...) which is
observed through noisy measuremgts, yo, . . .) as illustrated in the Figure 1.4.
An example of this kind of time series is shown in Figure 1.5. The processrshow
is actually a discrete-time noisy resonator with a known angular velocity. fake s
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x, = (z )7 is two dimensional and consists of the position of the resonator
x;, and its time derivative:;,. The measuremenig, are scalar observations of the
resonator position (signal) and they are corrupted by measurement noise

observed: Y1 Y2 Y3 Y4
hidden: X1 X2 X3 X4

Figure 1.4: In discrete-time filtering a sequence of hidden statess indirectly observed
through noisy measurements.

X Signal
0.25 1 O Measurement | |
0.2} 4
) o ]
0.15 o) o
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" x O O x
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x O ° o 5 .
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-0.25 1
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Time

Figure 1.5: An example of time series, which models a discrete-timerratw. The actual
resonator state (signal) is hidden and only observed ttrthgnoisy measurements.

The purpose of thetatistical inversiorat hand is to estimate the hidden states
{x1,...,xr} given the observed measuremefys, ..., yr}, which means that
in the Bayesian sense (Bernardo and Smith, 1994; Gelman et al., 199%) lzdive
to do is to compute the joint posterior distribution of all the states given all the
measurements. This can be done by straightforward application of Bayes’ r
p(Yl?'"7yT‘X1>"'7XT)p(X17"' 7XT)

P(Xla-~~7XT|Y1a-~-aYT): ’ (11)
Py, ¥T)

where

e p(x1,...,x7), is the prior distribution defined by the dynamic model,
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e p(yi,...,yr|x1,...,x7) is the likelihood model for the measurements,

e p(y1,...,yr) is the normalization constant defined as

p(¥1,...,¥1) = /p(yl,...,yT|x1,...,XT)p(x1,...,XT)d(xl,...,xT).
(1.2

Unfortunately, this full posterior formulation has the serious disadvarttegeach

time we obtain a new measurement, the full posterior distribution would have to be
recomputed. This is particularly a problem in dynamic estimation (which is exactly
the problem we are solving here!), where measurements are typically ethtzne

at a time and we would want to compute the best possible estimate after each
measurement. When the number of time steps increases, the dimensionality of
the full posterior distribution also increases, which means that the compuatiation
complexity of a single time step increases. Thus eventually the computations will
become intractable, no matter how much computational power is available. With-
out additional information or restrictive approximations, there is no wayetifrigy

over this problem in the full posterior computation.

However, the above problem only arises when we want to computéulthe
posterior distribution of the states at each time step. If we are willing to relax this a
bit and be satisfied with selected marginal distributions of the states, the ceamputa
tions become order of magnitude lighter. In order to achieve this, we alsbtoee
restrict the class of dynamic models to probabilistic Markov sequenceshighic
not as restrictive as it may first seem. The model for the states and measuse
will be assumed to be of the following type:

e Initial distribution specifies therior distribution p(x,) of the hidden state
xq at initial time stepk = 0.

e Dynamic model describes the system dynamics and its uncertainties as a
Markov sequencelefined in terms of the transition distributip(xy, | xx—1).

e Measurement modeldescribes how the measurement depends on the
current statex;,. This dependence is modeled by specifying the distribution
of the measurement given the statéy;, | xx).

Because computing the full joint distribution of the states at all time steps is com-
putationally very inefficient and unnecessary in real-time applicationsptimal
(Bayesian) filteringhe following marginal distributions are considered instead:

o Filtering distributionsare the marginal distributions difie current statex;
giventhe current and previous measuremefys, ...,y }:

P(Xk | Y1, V&), k=1,...,T. (1.3)
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e Prediction distributionsare the marginal distributions of the future state,
steps after the current time step:

p(xk+n|y1,...,yk), kZl,...,T, n:1,2,..., (14)
e Smoothing distributionare the marginal distributions of the statg given
a certain intervaly, . .., yr} of measurements with > k:
p(Xk | ¥1,--,¥T), k=1,...,T. (1.5)
0 k T

Prediction: ' | '
Filtering: ‘ ' '
Smoothing: ‘ ‘ ‘ '

Measurements Estimate

Figure 1.6: State estimation problems can be divided into optimal ptex, filtering
and smoothing depending on the time span of measuremeirilisdeavith respect to the
estimated state’s time.

1.2.4 Algorithms for Optimal Filtering and Smoothing

There exists a few classes of filtering and smoothing problems which hasedclo
form solutions:

e Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
tion is exactly Gaussian and no numerical approximations are needed.

e Rauch-Tung-Striebel smooth@®&TSS) is the corresponding closed form smoother
to linear Gaussian state space models.

e Grid filters and smootherare solutions to Markov models with finite state
spaces.

But because the Bayesian optimal filtering and smoothing equations anmaljene
computationally intractable, many kinds of numerical approximation methods have
been developed, for example:
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Figure 1.7: The result of computing the filtering distributions for thisatete-time res-
onator model. Thestimatesare the means of the filtering distributions and the quamntile
are the 95% quantiles of the filtering distributions.

¢ Extended Kalman filtgfEKF) approximates the non-linear and non-Gaussian
measurement and dynamic models by linearization, that is, by forming a
Taylor series expansion at the nominal (or Maximum a Posteriori, MAP) so-
lution. This results in a Gaussian approximation to the filtering distribution.

e Extended Rauch-Tung-Striebel smoot{teRTSS) is the approximate non-
linear smoothing algorithm corresponding to EKF.

e Unscented Kalman filte(UKF) approximates the propagation of densities
through the non-linearities of measurement and noise processes bg-the
scented transforniThis also results in a Gaussian approximation.

e Unscented Rauch-Tung-Striebel smooiti#RTSS) is the approximate non-
linear smoothing algorithm corresponding to UKF.

e Sequential Monte Carlo methods particle filters and smoothergpresent
the posterior distribution as a weighted set of Monte Carlo samples.

e Unscented particle filte(UPF) andlocal linearizationbased methods use
UKFs and EKFs, respectively, for approximating the importance distribu-
tions in sequential importance sampling.

e Rao-Blackwellized particle filters and smoothas® closed form integration
(e.g., Kalman filters and RTS smoothers) for some of the state variables and
Monte Carlo integration for others.
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Figure 1.8: The result of computing the smoothing distributions for digcrete-time res-
onator model. Thestimatesre the means of the smoothing distributions and the geantil
are the 95% quantiles of the smoothing distributions. Theathing distributions are
actually the marginal distributions of the full state postedistribution.

e Interacting multiple model§iIMM), and othermultiple modeimethods ap-
proximate the posterior distributions with a mixture of Gaussian distribu-
tions.

e Grid based methodapproximate the distribution as a discrete distribution
on a finite grid.

e Other methodsilso exist, for example, based on series expansions, describ-
ing functions, basis function expansions, exponential family of distribafion
variational Bayesian methods, batch Monte Carlo (e.g., MCMC), Galerkin
approximations etc.



Chapter 2

From Bayesian Inference to
Bayesian Optimal Filtering

2.1 Bayesian Inference

This section provides a brief presentation of the philosophical and mathainatic
foundations of Bayesian inference. The connections to classical stdtistier-
ence are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, 1994; Gedmah,
1995) is to provide a mathematical machinery that can be used for modeling sys-
tems, where the uncertainties of the system are taken into account anditierde

are made according to rational principles. The tools of this machinery are the
probability distributions and the rules of probability calculus.

If we compare the so called frequentist philosophy of statistical analysis to
Bayesian inference the difference is that in Bayesian inference thalpitity of an
event does not mean the proportion of the event in an infinite number of trigls
the uncertainty of the event in a single trial. Because models in Bayesiaarioter
are formulated in terms of probability distributions, the probability axioms and
computation rules of the probability theory (see, e.g., Shiryaev, 1996 pplsly
in the Bayesian inference.

2.1.2 Connection to Maximum Likelihood Estimation

Consider a situation where we know the conditional distributityy, | @) of con-
ditionally independent random variables (measurements). . , y,,, but the pa-
rameterd € R< is unknown. The classical statistical method for estimating the
parameter is thenaximum likelihood metho@Milton and Arnold, 1995), where
we maximize the joint probability of the measurements, also called the likelihood
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function

L(6) =[] p(vc|0). (2.1)
k

The maximum of the likelihood function with respect flogives themaximum
likelihood estimatéML-estimate)

0 = arg max L(6). (2.2)

The difference between the Bayesian inference and the maximum likelihdbdane
is that the starting point of Bayesian inference is to formally consider trapeter

0 as a random variable. Then the posterior distribution of the paramfieian be
computed by using thBayes’ rule

p(y1,.-,¥n|0)p(0) (2.3)

pe Yi,--.,Y = )
(6] n) p(Y1,---¥n)

wherep(0) is the prior distribution, which models the prior beliefs of the parameter
before we have seen any data aifgt, . . .,y,) is a normalization term, which is
independent of the paramet&rOften this normalization constant is left out and if
the measuremenjs,, . . ., y, are conditionally independent givéh the posterior
distribution of the parameter can be written as

POy, yn) < p(8) [ [ vk 6)- (2.4)
k

Because we are dealing with a distribution, we might now choose the mostiypeob
value of the random variable (MAP-estimate), which is given by the maximum of
the posterior distribution. However, an optimal estimate in mean squared sense
is the posterior mean of the parameter (MMSE-estimate). There are an infinite
number of other ways of choosing the point estimate from the distribution and
the best way depends on the assumed loss function (or utility function)MChe
estimate can be considered as a MAP-estimate with uniform prior on the paramete
0.

One can also interpret Bayesian inference as a convenient methodlfat-in
ing regularization terms into maximum likelihood estimation. The basic ML-
framework does not have a self-consistent method for including regaitimn
terms or prior information into statistical models. However, this regularization in-
terpretation of Bayesian inference is not entirely right, because Bayes@aence
is much more than this.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are pinier modelcontaining the prelim-

inary information on the parameter and tmeasurement moddktermining the
stochastic mapping from the parameter to the measurements. Using the combina-
tion rules, namely Bayes’ rule, it is possible to infer an estimate of the parameter
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from the measurements. The probability distribution of the parameters, cavaditio
on the observed measurements is calledpbsterior distributionand it is the
distribution representing the state of knowledge about the parametersall/ittes
information in the observed measurements and the model is usedordttietive
posterior distributionis the distribution of new (not yet observed) measurements
when all the information in the observed measurements and the model is used.

e Prior model
The prior information consists of subjective experience based beliefg ab
the possible and impossible parameter values and their relative likelihoods
before anything has been observed. The prior distribution is a mathematical
representation of this information:

p(0) = Information on paramete& before seeing any observations. (2.5)

The lack of prior information can be expressed by using a non-informativ
prior. The non-informative prior distribution can be selected in various dif
ferent ways (Gelman et al., 1995).

e Measurement model
Between the true parameters and the measurements there often is a causal,
but inaccurate or noisy relationship. This relationship is mathematically
modeled using the measurement model:

p(y | @) = Distribution of observatioly given the parametes  (2.6)

e Posterior distribution
Posterior distribution is the conditional distribution of the parameters, and
it represents the information we have after the measuremdrds been
obtained. It can be computed by using the Bayes’ rule:

_ p(y|0)p(0)

where the normalization constant is given as

o p(y|6)p(8), (2.7)

p(y) = /Rd p(y 0)p(6)de. (2.8)

In the case of multiple measuremests ..., y,, if the measurements are
conditionally independent the joint likelihood of all measurements is the
product of distributions of individual measurements and the posterior dis-
tribution is

POy, yn) < p(6) [ [ vk | 6), (2.9)
k

where the normalization term can be computed by integrating the right hand
side overd. If the random variable is discrete the integration is replaced by
summation.
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e Predictive posterior distribution
The predictive posterior distribution is the distribution of new measurements

Yn+ti1-

p(Y7L+1|YIa"'7Yn>—/de(Yn—i-l|0)p(9’}’17"'7}’n)d0- (2.10)

After obtaining the measurements, . . . , y,, the predictive posterior distri-
bution can be used for computing the probability distribution/fof 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parameter is the sequience o
dynamic states of a target, where the state contains the position and velocity. Or
in the continuous-discrete setting the parameter would be the random function
describing the trajectory of the target at a given time interval. In both dases
measurements could be, for example, noisy distance and direction measigreme
produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, but also in Bayesigue
tations finite dimensional summaries (point estimates) are needed. This selection
of a point based on observed values of random variables is a statisiwalah,

and therefore this selection procedure is most naturally formulated in terms of
statistical decision theoryBerger, 1985; Bernardo and Smith, 1994; Raiffa and
Schlaifer, 2000).

Definition 2.1 (Loss Function) A loss function.(6, a) is a scalar valued function
which determines the loss of taking thetiona when the true parameter value

is 8. The action (or control) is the statistical decision to be made based on the
currently available information.

Instead of loss functions it is also possible to work with utility functiohn®, a),
which determine the reward from taking the actimwith parameter value§.
Loss functions can be converted to utility functions and vice versa byidegfin
U(@,a) = —L(0,a).

If the value of paramete? is not known, but the knowledge of the parameter
can be expressed in terms of the posterior distribupi@h| y1, . ..,y»), then the
natural choice is the action which gives tmnimum (maximum) of the expected
loss (utility) (Berger, 1985):

E[L(6,a)|y1,...,yn] = /Rd L(6,a)p(0|y1,...,yn)d6. (2.11)

Commonly used loss functions are the following:
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e Quadratic error loss If the loss function is quadratic
L(6,a) = (0 —a)(6 —a), (2.12)

then the optimal choica, is themeanof the posterior distribution of:

aO:/dOp(Hlyl,...,yn)dB. (2.13)
R

This posterior mean based estimate is often calledninenum mean squar-

ed error (MMSE)estimate of the paramet@r The quadratic loss is the most
commonly used loss function, because it is easy to handle mathematically
and because in the case of Gaussian posterior distribution the MAP estimate
and the median coincide with the posterior mean.

e Absolute error lossThe loss function of the form

L(B,a) =) _|6; — ail, (2.14)

is called an absolute error loss and in this case the optimal choice is the
medianof the distribution (i.e., medians of the marginal distributions in
multidimensional case).

e 0-1loss If the loss function is of the form
L(#,a) = —d0(a—0), (2.15)

whered(-) is the Dirac’s delta function, then the optimal choice is the max-
imum (mode) of the posterior distribution, that is, theximum a posterior
(MAP) estimate of the parameter. If the random variablis discrete the
corresponding loss function can be defined as

0 , fd=a

L(O,a):{ L feza (2.16)

2.1.5 Numerical Methods

In principle, Bayesian inference provides the equations for computingdbie-

rior distributions and point estimates for any model once the model specificatio
has been set up. However, the practical difficulty is that computation ahtae
grals involved in the equations can rarely be performed analytically andnaahe
methods are needed. Here we shall briefly describe numerical methaoals avh

also applicable in higher dimensional problems: Gaussian approximations, multi-
dimensional quadratures, Monte Carlo methods, and importance sampling.



18

From Bayesian Inference to Bayesian Optimal Filtering

e \ery common types of approximations aeaussian approximation&el-

man et al., 1995), where the posterior distribution is approximated with a
Gaussian distribution

pO@]y1,...,yn) ® N(0|m,P). (2.17)

The meanm and covarianc® of the Gaussian approximation can be either
computed by matching the first two moments of the posterior distribution,
or by using the mode of the distribution as the approximatiomadnd by
approximatingP using the curvature of the posterior at the mode.

Multi-dimensional quadrature or cubature integration methedsh as Gauss-
Hermite quadrature can also be often used if the dimensionality of the inte-
gral is moderate. In those methods the idea is to deterministically form a
representative set of sample poifs= {#) | i = 1,..., N} (sometimes
calledsigma pointyand form the approximation of the integral as weighted
average:

N
Elg(0)|y1,--ya] =~ > W g(0"), (2.18)
=1

where the numerical values of the weighits®) are determined by the al-
gorithm. The sample points and weights can be selected, for example, to
give exact answers for polynomials up to certain degree or to acoouttef
moments up to certain degree.

In directMonte Carlo methoda set of N samples from the posterior distri-
bution is randomly drawn

09 ~p@|y1,...,yn), i=1,...,N, (2.19)

and expectation of any functigg(-) can be then approximated as the sample
average

Blg(0) [v1, - yal = 1 Y g(0%) 220

Another interpretation of this is that Monte Carlo methods form an approxi-
mation of the posterior density of the form

N
1 ,
pO[y1s-- yn) ® > o — 21), (2.21)
=1

where(-) is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by tbentral limit theorem (CLT)see, e.g.,
Liu, 2001) and the error term is, at least in theory, independent ofitherd
sionality of 8. The rule of thumb is that the error decreases like the square
root of the number of samples, regardless of the dimensions.
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o Efficient methods for generating non-independent Monte Carlo samiges a
the Markov chain Monte CarldMCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed such that it leas th
target distribution as its stationary distribution. By simulating the Markov
chain, samples from the target distribution can be generated.

e Importance samplingsee, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of the particles
contains a weight, which corrects the difference between the actuat targe
distribution and the approximation obtained from an importance distribution
().

Importance sampling estimate can be formed by drawNhgamples from
theimportance distribution

0" ~n(0|y1,....yn), i=1,...,N. (2.22)

Theimportance weightare then computed as

, (4)
(O | y1,...,¥n)

and the expectation of any functign-) can be then approximated as

vaﬂ w® g(g(i))
Zij\il w(® .

E[g(0)|y1,...,yn] = (2.24)

2.2 Batch and Recursive Estimation

In order to understand the meaning and applicability of optimal filtering and its
relationship with recursive estimation, it is useful to go through an exampéeaevh
we solve a simple and familiar linear regression problem in a recursive manne
After that we shall generalize this concept to include a dynamic model i twde
illustrate the differences in dynamic and batch estimation.

2.2.1 Batch Linear Regression
Consider the linear regression model
Y = 01+ O2ty + €y, (2.25)

where we assume that the measurement noise is zero mean Gaussian wéth a giv
variancee;, ~ N(0, 02) and the prior distribution for parameters is Gaussian with
known mean and covarianc@, ~ N(mg, Py). In the classical linear regression
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Figure 2.1: The underlying truth and the measurement data in the sirim@ar regression
problem.

problem we want to estimate the parametgrs (6; 6>)7 from a set of measure-
ment dateéD = {(yi1,%1), ..., (yx,tx)}. The measurement data and the true linear
function used in simulation are illustrated in Figure 2.1.

In compact probabilistic notation the linear regression model can be written as

p(yx |0) = N(yr | Hy. 6,07) (2.26)
p(8) = N(8 | mg, Py).
where we have introduced the matik;, = (1 ¢;) andN(-) denotes the Gaussian
probability density function (see Appendix A.1). The likelihood/giis, of course,
conditional on the regressots also (or equivalentlyH}), but because the regres-
sors are assumed to be known, we will not denote this dependence exdicitly
simplify the notation and from now on this dependence is assumed to be touders
from the context.

Thebatch solutiorto this linear regression problem can be obtained by straight-
forward application of Bayes’ rule:

p(0|y11) < p(0) [ [ p(yx |0)
k

= N(0|mo, Po) [ [ N(yx | H, 6, 0%).
K
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Also in the posterior distribution above, we assume the conditioning, cand
Hp, but will not denote it explicitly. Thus the posterior distribution is denoted
to be conditional ony.x = {v1,...,yx}, and not on the data s& containing
the regressor valugg also. The reason for this simplification is that the simplified
notation will also work in more general filtering problems, where there is hoala
way of defining the associated regressor variables.
Because the prior and likelihood are Gaussian, the posterior distribution will

also be Gaussian:

p(0|y1:k) = N(O | mg, Pr). (2.27)

The mean and covariance can be obtained by completing the quadratic ftren in
exponent, which gives:

1 11
mpg = |:P61 + O.QHTH:| |:O_2HTy + Po_lm()

: . (2.28)
Py = [Pgl + 2HTH] ,
ag
whereH;, = (1 t;) and
H; 1 4 Y1
Hjy 1 tg YK

Figure 2.2 shows the result of batch linear regression, where the ipostezan
parameter values are used as the linear regression parameters.

2.2.2 Recursive Linear Regression

A recursive solutiorto the regression problem (2.26) can be obtained by assuming
that we already have obtained the posterior distribution conditioned ondti®ps
measurements, ..., k — 1:

p(0]y15—1) =N(O |my_1,Pr_1).

Now assume that we have obtained a new measureypamid we want to compute
the posterior distribution 06 given the old measuremenis.._; and the new
measuremeny,. According to the model specification the new measurement has
the likelihood

p(y | 0) = Ny, | Hy, 0,02).

Using the batch version equations such that we interpret the previotesiposs
the prior, we can calculate the distribution

(0| y1k) < p(yr | 0) p(0 | y1:k—1)

2.30
o N(6 | my, Py), (2:30)
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Figure 2.2: The result of simple linear regression with a slight regaktion prior used
for the regression parameters. For simplicity, the vagamas assumed to be known.

where the Gaussian distribution parameters are

- 1 11 -
(2.31)
_ 1 !
Py = [Pk_ll + GzHng} :

By using the matrix inversion lemma , the covariance calculation can be written as
-1
Py =P — P, H] [HyP,_H] + 0% H;Pj_1.

By introducing temporary variables, andK,, the calculation of mean and covari-
ance can be written in the form
Sy = HyP,_H 4 o2
K, =P,_HL S,
my, = my,_1 + Kg[yr — Hymy 4]
P, =P, — K S K},

(2.32)

Note thatS}, = HkPk,lH}f + 02 is a scalar, because measurements are scalar and
thus no matrix inversion is required.
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The equations above actually are special cases of the Kalman filter update
equations. Only the update part of the equations is required, becalestithated
parameters are assumed to be constant, that is, there is no stochastic dynamic
model for the paramete®. Figure 2.3 illustrates the convergence of the means
and variances of parameters during the recursive estimation.

2.2.3 Batch vs. Recursive Estimation

In this section we shall generalize the recursion idea used in the previciiense
to general probabilistic models. The underlying idea is simply that at each mea-
surement we treat the posterior distribution of previous time step as the grior f
the current time step. This way we can compute the same solution in a recursive
manner that we would obtain by direct application of Bayes’ rule to the whole
(batch) data set.

Thebatch Bayesian solutioto a statistical estimation problem can be formu-
lated as follows:

1. Specify the likelihood model of measuremen(g;. | @) given the parameter
6. Typically the measuremengs. are assumed to be conditionally indepen-
dent such that

p(yrk|0) = prkw

2. The prior information about the paramefkis encoded into the prior distri-
butionp(8).

3. The observed data set®» = {(t1,y1),..., (tx,yx)}, or if we drop the
explicit conditioning onty, the data ish = y.x.

4. The batch Bayesian solution to the statistical estimation problem can be
computed by applying Bayes' rule

p(0]y1k) = HPYk|9

For example, the batch solution of the above kind to the linear regressiblepro
(2.26) was given by Equations (2.27) and (2.28).

Therecursive Bayesian solutido the above statistical estimation problem can
be formulated as follows:

1. The distribution of measurements is again modeled by the likelihood func-
tion p(yx | @) and the measurements are assumed to be conditionally inde-
pendent.

2. In the beginning of estimation (i.e, at step 0), all the information about the
parametef we have is contained in the prior distributip(@).
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3. The measurements are assumed to be obtained one at a tima, fingny
and so on. At each step we use the posterior distribution from the previous
time step as the current prior distribution:

p(8]y1) = lepm 10)p(6)

p(0 \ Vi2) = 21217(}’2 \ 0)p(9 \ y1)

(8] y15) = lep<y3 10)p(6] y12)

1
p(0|y1.x) = TP(YK |0)p(0|y1:x-1)-
K

It is easy to show that the posterior distribution at the final step above is
exactly the posterior distribution obtained by the batch solution. Also, re-
ordering of measurements does not change the final solution.

For example, the Equations (2.30) and (2.31) give the one step updaferrtiie
linear regression problem in Equation (2.26).
The recursive formulation of Bayesian estimation has many useful pieser

e The recursive solution can be considered asathine learningsolution to
the Bayesian learning problem. That is, the information on the parameters is
updated in online manner using new pieces of information as they arrive.

e Because each step in the recursive estimation is a full Bayesian update step
batchBayesian inference isspecial case of recursii@ayesian inference.

e Due to the sequential nature of estimation we can also model the effect of
time on the parameters. That is, we can model what happens to the parameter
6 between the measurements — this is actuallybi&gs of filtering theory
where time behavior is modeled by assuming the parameter to be a time-
dependent stochastic proceXs).

2.3 Towards Bayesian Filtering

Now that we are able to solve the static linear regression problem in airecurs
manner, we can proceed towards Bayesian filtering by allowing the parsnete
change between the measurements. By generalizing this idea, we endbenter
Kalman filter, which is the workhorse of dynamic estimation.

2.3.1 Drift Model for Linear Regression

Assume that we have a similar linear regression model as in Equation (2.26), b
the paramete# is allowed to perfornfGaussian random walketween the mea-
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surements:

p(ur | 0k) = N(yi | Hy 04, 0°)
(01| 0r—1) = N(0;]0,-1,Q) (2.33)
p(60) = N(6o | mg, Py),

whereQ is the covariance of the random walk. Now, given the distribution

P(Ok—1|y1:—1) = N(Op_1 | my_1,Pp_1),

the joint distribution o®;, and@;,_; ist

POk, 0k—1 | y1:k—1) = POk | Ok—1) P(Ok—1 | Y1:6—-1)-

The distribution of@;. given the measurement history up to time step 1 can be
calculated by integrating ové,

POk | yik—1) = /p(ak |0k—1) p(Ok—1|y1:—1) dO)_1.

This relationship is sometimes called theapman-Kolmogorov equatioBecause
p(0y | Ox—1) andp(Ox_1 | y1.x—1) are Gaussian, the result of the marginalization is
Gaussian:
POk | Y1:6—1) = N(0y, |m, , P,),
where
m, =myj;_
PI; =Pr_1+ Q
By using this as the prior distribution for the measurement likelihe(ad | 6;) we
get the parameters of the posterior distribution
(O [y1:1) = N(Oy | my, Py),
which are given by equations (2.32), whar,_; andP;_; are replaced byn,
andP, :
Sy = H;P, H} + o?
Ky =P, HLS,'
P, =P, — K;SiKf.

(2.34)

This recursive computational algorithm for the time-varying linear regpasgeights

is again a special case of the Kalman filter algorithm. Figure 2.4 shows tHe resu
of recursive estimation of a sine signal assuming a small diagonal Gausgtan
model for the parameters.

!Note that this formula is correct only for Markovian dynamic models, n@he
P(Ok | Ok—1,y1:6-1) = p(Ok [ Ok-1).
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At this point we shall change from thiegression notatiomsed so far intstate
space model notationwhich is commonly used in Kalman filtering and related
dynamic estimation literature. Because this notation easily causes confusion to
people who have got used to regression notation, this point is emphasized:

¢ In state space notatior means the unknown state of the system, that is, the
vector ofunknown parameters in the systeltris notthe regressor, covariate
or input variable of the system.

e For example, the time-varying linear regression model with drift presented
in this section can be transformed into more standdade space model
notationby replacing the variabl@, = (6, 027k)T with the variablex;, =
(1 xo8) "

p(yr | xk) = N(yi | H x5, 0%)
P(xp | Xp—1) = N(x | x4-1, Q) (2.35)
p(Xo) = N(XQ ’ my, Po)

2.3.2 Kalman Filter for Linear Model with Drift

The linear model with drift in the previous section had the disadvantage that th
covariatest; occurred explicitly in the model specification. The problem with
this is that when we get more and more measurements, the parametews
without a bound. Thus the conditioning of the problem also gets worse in time.
For practical reasons it also would be desirable to have time-invariant!bde

is, a model which is not dependent on the absolute time, but only on the eelativ
positions of states and measurements in time.

The alternative state space formulation of the linear model with drift, without
using explicit covariates can be done as follows. Let's denote time differen
between consecutive times A$;,_1 = t, — tx_1. The idea is that if the under-
lying phenomenon (signal, state, parametgr)vas exactly linear, the difference
between adjacent time points could be written exactly as

Tl — Tp—1 = i‘Atk,1 (236)

wherez is the derivative, which is constant in the exactly linear case. The diver-
gence from the exactly linear function can be modeled by assuming thatdtie ab
equation does not hold exactly, but there is a small noise term on the rigtit ha
side. The derivative can also be assumed to perform small random nalthas

not be exactly constant. This model can be written as follows:

1 g = X1 k-1 + Atg_122 1 + w1
To ) = T2 k-1 + W2 (2.37)
Yk =21 t 6
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where the signal is the first components of the siatg and the derivative is the
secondrz . The noises are ~ N(0,02), (w;ws2) ~ N(0,Q). The model can
also be written in form

p(yr | xxk) = N(ye | Hxy, 0?)
P(xp [ xp—1) = N(xp | Ap—1 x1—1, Q),

A,H:(1 At“), H=(1 0).

(2.38)

where

0 1

With suitableQ this model is actually equivalent to model (2.33), but in this for-
mulation we explicitly estimate the state of the signal (point on the regression line)
instead of the linear regression parameters.

We could now explicitly derive the recursion equations in the same manner as
we did in the previous sections. However, we can also uskahean filter which
is a readily derived recursive solution to generic linear Gaussian moidéaks fmrm

p(yr | xx) = N(yx | Hi x, Ry
P(Xk | Xp—1) = N(xXp | Ap—1 Xp—1, Qr—1).

Our alternative linear regression model in Equation (2.37) can be seem & b
special case of these models. The Kalman filter equations are often segiEs
prediction and update steps as follows:

1. Prediction step:

m, =A; 1m;
P]; =Ar 1 Pr Az_l + Qg1

2. Update step:

Sy = Hy P, Hf + Ry

K, =P, H]S,'

m; =m, +K; [y, —Hym,]
P, =P, - K;S;Ki.

The result of tracking the sine signal with Kalman filter is shown in Figure 215. A
the mean and covariance calculation equations given in this documentisa/éar
been special cases of the above equations, including the batch solutierstatar
measurement case (which is a one-step solution). The Kalman filter ragyrsi
computes the mean and covariance of the posterior distributions of the form

P(Xk Y1, ¥e) = N(xi | my, Py).

Note that the estimates &f, derived from this distribution are non-anticipative in
the sense that they are only conditional to measurements obtained baefaiaiaa
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time stepk. However, after we have obtained measuremgnis. . , yx, we could
compute estimates of;,_1, xx_o, . .., Which are also conditional to the measure-
ments after the corresponding state time steps. Because more measurements an
more information is available for the estimator, these estimates can be expected to
be more accurate than the non-anticipative measurements computed by the filter

The above mentioned problem of computing estimates of the state by con-
ditioning not only on previous measurements, but also on future measusmen
is calledoptimal smoothingas already mentioned in Section 1.2.3. The optimal
smoothing solution to the linear Gaussian state space models is givenRgubk-
Tung-Striebel smootheil he full Bayesian theory of optimal smoothing as well as
the related algorithms will be presented in Chapter 4.

It is also possible to predict the time behavior of the state in the future that we
have not yet measured. This procedure is calletimal prediction Because op-
timal prediction can always be done by iterating the prediction step of the optimal
filter, no specialized algorithms are needed for this.

The non-linear generalizations of optimal prediction, filtering and smoothing
can be obtained by replacing the Gaussian distributions and linear funations
model (2.38) with non-Gaussian and non-linear ones. The Bayesiamiyes-
timation theory described in this document can be applied to generic non-linear
filtering models of the following form:

measurement modek, ~ p(yx | Xx)
state model:xy ~ p(xx | Xx—1)-

To understand the generality of this model is it useful to note that if we @cpp
the time-dependence from the state we would get the model

measurement modek ~ p(yx | x)
state model: x ~ p(x).

Becausex denotes an arbitrary set of parameters or hyper-parameters of the sys
tem, all static Bayesian models are special cases of this model. Thus in dynamic
estimation context we extend the static models by allowing a Markov model for
the time-behavior of the (hyper)parameters.

The Markovianity also is less of a restriction than it sounds, becausewehat
have is a vector valued Markov process, not a scalar one. Therneegerecall
from elementary calculus that differential equations of an arbitraryrarde be
always transformed into vector valued differential equations of thedidgr. In
analogous manner, Markov processes of an arbitrary order caartsdrmed into
vector valued first order Markov processes.
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Figure 2.3: (a) Convergence of the recursive linear regression meals fial value is
exactly the same as that was obtained with batch lineargsigie Note that time has been
scaled tal atk = K. (b) Convergence of the variances plotted on logarithmadescAs
can be seen, every measurement brings more informationh@ndnicertainty decreases
monotonically. The final values are the same as the variaoisesned from the batch
solution.
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Figure 2.4: Example of tracking a sine signal with linear model with drif/fhere the
parameters are allowed to vary according to Gaussian ramddknmodel.
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Figure 2.5: Example of tracking a sine signal with a locally linear stgpace model. The
result differs a bit from the random walk parameter modetaoise of slightly different
choice of process noise. It could be made equivalent if ddsir



Chapter 3

Optimal Filtering

In this chapter we first present the classical formulation of discrete-tirtimalp
filtering as recursive Bayesian inference. Then the classical Kalmanditended
Kalman filters and statistical linearization based filters are presented in tethes of
general theory. In addition to the classical algorithms the unscented Kaliean fi
general Gaussian filters, Gauss-Hermite Kalman filters, Fourier-Hermiteaka
filters, and cubature Kalman filters are also presented. Sequential imgren
sampling based particle filtering, as well as Rao-Blackwellized particle filtariag
also covered.

For more information, reader is referred to various articles and booksinited
the appropriate sections. The following books also contain useful inf@man
the subject:

e Classic books: Lee (1964); Bucy and Joseph (1968); Meditch (19&8)vin-
ski (1970); Sage and Melsa (1971); Gelb (1974); Anderson anuté{d. 979);
Maybeck (1979, 1982a).

e More recent books on linear and non-linear Kalman filtering: Bar-Shalom
et al. (2001); Grewal and Andrews (2001); Crassidis and JUnRDG4().

e Recent books with particle filters also: Ristic et al. (2004); Candy (2009);
Challa et al. (2011); Crisan and Rozovskii (2011).

3.1 Formal Filtering Equations and Exact Solutions

3.1.1 Probabilistic State Space Models

Before going into the practical non-linear filtering algorithms, in the nexices
the theory of probabilistic (Bayesian) filtering is presented. The Kalmanifigter
eqguations, which are the closed form solutions to the linear Gaussiantditione
optimal filtering problem, are also derived.
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Definition 3.1 (State space modelA discrete-time state space modaelproba-
bilistic non-linear filtering model consists of a sequence of conditionadgundity
distributions:

Xp ~ p(Xk | Xk-1)

3.1
Vi ~ (Y& | %Xk), G-

fork=1,2,..., where
e x; € R™ is thestateof the system at time stép

e yir € R™is the measurement at time step

e p(xy | x—1) is thedynamic modeWhich describes the stochastic dynamics
of the system. The dynamic model can be a probability density, a counting
measure or a combination of them depending on whether the sjate
continuous, discrete or hybrid.

e p(yx | xx) is themeasurement modelhich is the distribution of measure-
ments given the state.

The model is assumed to be Markovian, which means that it has the following
two properties:
Property 3.1 (Markov property of states)

The state§x; : £ = 0,1,2,...} form a Markov sequence (or Markov chain if
the state is discrete). This Markov property means #hatand actually the whole
future x41, Xi+2, . . ) givenxg_; is independent of anything that has happened
before the time step — 1:

P(Xk | X1:k-1, Y1:k-1) = P(Xk [ Xk—1)- (3.2)
Also the past is independent of the future given the present:
P(Xp—1 | Xer, Yior) = P(Xp—1 | X1)- (3.3)

Property 3.2 (Conditional independence of measurements)

The current measurememi. given the current statg;, is conditionally indepen-
dent of the measurement and state histories:

Py | X1k Y1k—1) = P(YE | Xk)- (3.4)

A simple example of a Markovian sequence is the Gaussian random walk.
When this is combined with noisy measurements, we obtain the following example
of a probabilistic state space model.
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Example 3.1(Gaussian random walk)A Gaussian random walk model can be

written as
Tp = Tp_1 + Wwg—1, wr—1 ~ N(O,
k k-1 k-1 k-1 (0,9) (3.5)
Yk = Tk + e, ex ~ N(0,7),
wherezxy, is the hidden state angl, is the measurement. In terms of probability
densities the model can be written as

p(xk | zr—1) = N(zk | 28-1,9)

(3.6)
p(yk | zr) = N(yk | 2k, 7)

1 < 1 ( )2>
=——exp|—=—(ypr — ,

which is a discrete-time state space model.
With the Markovian assumption and the filtering model (3.1), the joint prior

distribution of the stategx, . . ., x7), and the joint likelihood of the measurements
(yo,...,yr) are, respectively
T
p(x0, .-, xr) = p(x0) [ [ p(xk|x1-1) (3.7
. k=1
(Y1, Y7 | X0, ., X7) = HP(Yk|Xk)- (3.8)
k=1

In principle, for a giveril” we could simply compute the posterior distribution of
the states by Bayes’ rule:

p(}’l,-",YT\XO,---,XT)I?(XO,---,XT)
p(Ylw--,YT) (39)
OCP(YLW,}’T’X0,~--7XT>P(X0,---,XT)~

However, this kind of explicit usage of the full Bayes’ rule is not feasiblesal-

time applications, because the amount of computations per time step increases as
new observations arrive. Thus, this way we could only work with small siets,
because if the amount of data is unbounded (as in real time-sensoriifgatipps),

then at some point of time the computations would become intractable. To cope
with real-time data we need to have an algorithm which does constant amount of
computations per time step.

As discussed in Section 1.2.8ltering distributions prediction distributions
andsmoothing distributionsan be computed recursively such that only constant
amount of computations is done on each time step. For this reason we sltalhnot
sider the full posterior computation at all, but concentrate to the above-medtio
distributions instead. In this chapter, we mainly consider computation of the fil-
tering and prediction distributions, and algorithms for computing the smoothing
distributions will be considered in the next chapter.

p(X05‘°'7xT|yl7"'ayT):
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3.1.2 Optimal Filtering Equations

The purpose obptimal filteringis to compute thenarginal posterior distribution
of the statex;, at each time step given the history of the measurements up to the
time stepk:

p(Xk | y1:k)- (3.10)

The fundamental equations of the Bayesian filtering theory are givenebfoth
lowing theorem:

Theorem 3.1(Bayesian optimal filtering equationsJhe recursive equations for
computing thepredicted distributiorp(xy, | y1.x.—1) and thefiltering distribution
p(xx | y1.1) at the time steg: are given by the followin®ayesian filtering equa-
tions

e Initialization. The recursion starts from the prior distributigrixg).

e Prediction. The predictive distribution of the statg, on time stepk given
the dynamic model can be computed by the Chapman-Kolmogorov eguatio

P(Xk | y1:6-1) = /p(Xk\Xk—l)P(Xk:—1 | Y1k—1) dxp—1. (3.11)

e Update.Given the measuremenp}, at time step: the posterior distribution
of the statex;, can be computed by Bayes’ rule

1
P(Xk | yik) = ZP(YI« | %) P(Xk | Y1:6-1), (3.12)

where the normalization consta#y; is given as
2= [ byl x0) p y101) (3.13)

If some of the components of the state are discrete, the correspontkgeails are
replaced with summations.

Proof. The joint distribution ofx;, andx;._; giveny;.,_1 can be computed as

P(Xk, Xi—1 | Y1:e—1) = DXk | Xi—1, Y1:6—1) P(Xb—1 | Y1:5-1)

(3.14)
= p(Xp | Xp—1) P(Xk—1 | Y1:6—1),

where the disappearance of the measurement higtory is due to the Markov
property of the sequendey, k = 1,2, ...}. The marginal distribution af;, given
v1.k—1 can be obtained by integrating the distribution (3.14) axgr,, which
gives theChapman-Kolmogorov equation

Pk | Y1hor) = / %k | X61) Pt | yimot) dxpe 1. (3.15)
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nexy

previous

Figure 3.1: Visualization of the prediction step: the prediction prgptes the state
distribution of the previous measurement step through theachic model such that the
uncertainties (stochastic terms) in the dynamic model aken into account.

prior

likelihocod posterior

@) (b)

Figure 3.2: Visualization of the update step: (a) Prior distributioiin prediction and the
likelihood of measurement just before the update step. l{p)pbsterior distribution after
combining the prior and likelihood by Bayes’ rule.

If x;_1 is discrete, then the above integral is replaced with summationqver.
The distribution ofx;, giveny; andyy.;_1, thatis, giveny;., can be computed by
Bayes’ rule

1
P(Xk | Yik) = Z—kP(Yk | Xk, Yik—1) D(Xk | Y1:6—1)
(3.16)

1
= 710(}% | x1) p(Xk | Y1:6—1)
ke

where the normalization constant is given by Equation (3.13). The diasgpee
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of the measurement histony;.,._; in Equation (3.16) is due to the conditional
independence af;, of the measurement history, givesp. O

3.1.3 Kalman Filter

The Kalman filter(Kalman, 1960b) is the closed form solution to the optimal
filtering equations of the discrete-time filtering model, where the dynamic and
measurements models are linear Gaussian:

Xp = Ap_1Xp—1 +qr—1 (3.17)
i = Hg xp + rg,

wherex;, € R" is the statey; € R™ is the measurementy, 1 ~ N(0, Qx_1) is

the process noise;, ~ N(0, Ry) is the measurement noise and the prior distribu-
tion is Gaussiaxy ~ N(mg, Py). The matrixA_; is the transition matrix of the
dynamic model and,, is the measurement model matrix. In probabilistic terms
the model is

P(Xk | Xp—1) = N(xp | Ap—1 Xp—1, Qr—1)

(3.18)
p(yr | xk) = N(yr | He xx, Ri).

Algorithm 3.1 (Kalman filter) The optimal filtering equations for the linear fil-
tering model3.17)can be evaluated in closed form and the resulting distributions
are Gaussian:

p(Xk | y1:6—1) = N(x3 |m, ,P)
p(xp | y1:6) = N(xi | my, Py) (3.19)
P(Ye | y1k—1) = N(ye [ Hpmy , Sp).

The parameters of the distributions above can be computed with the following
Kalman filterpredictionandupdate steps

e The prediction stefs

m, =A; 1m;

- (3.20)
P, = A1 P AL + Q.

e The update ste

Vi =yr — Hpym,

Sy =H; P, Hi + Ry

K, =P, H S, (3.21)
my = m, + Kj vy

P, =P, - K;S;Ki.
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The initial state has a given Gaussian prior distributiggn ~ N(myg, Py), which
also defines the initial mean and covariance.

The Kalman filter equations can be derived as follows:

1. By Lemma A.1 on page 119, the joint distributionsof andx;_; given
Yik-11S

P(Xp—1, Xk | Y1:k—1) = P(Xk | Xp—1) P(Xk—1 | Y1:6—1)
= N(xp | Ag—1xp—1, Qr—1) N(Xp—1 | myp_1,Pr_1)

(o] )
X

(3.22)
where
m — ( my_1 ) P — ( Py Py %if_l > .
Ap_1my_q)’ Ay 1Pr v Ap 1 Pr 1 Ap | +Qp
(3.23)
and the marginal distribution ofy, is by Lemma A.2
Pk [ y1-1) = N(xp [ my , P, (3.24)

where

m; = A, 1my g, P, =Ap 1P A +Qey. (3.25)
2. By Lemma A.1, the joint distribution of;, andxy, is

Xk, Yk | y1k—1) = P(y | %) p(Xk | Y1:6-1)
= N(yr | Hp xz, Ri) N(x3 [m, P)

- N <|:Xk:| ‘ m”,PH> :
Yk
where

— — - g7
"_ my, P’ — P, P, Hy 3.27
" (Hkm;)’ (HkP,; H,P, H! + R, ) 20

3. By Lemma A.2 the conditional distribution &f;, is

(3.26)

P(Xk | Y Y1:k—1) = P(Xk | Y1:8)

(3.28)
— N(Xk ‘ my, Pk),
where
m;, = m;, + P; H (H, P; H + R;) '[yx — Hym; ] (3.29)
P,=P, - P, H] (H,P, Hf +R;) ' H; P, '

which can be also written in form (3.21).
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The functional form of the Kalman filter equations given here is not the posy
sible one. From a numerical stability point of view it would be better to work with
matrix square roots of covariances instead of plain covariance matricesh&ory

and details of implementation of this kind of methods is well covered, for example,
in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walkj\ssume that we are ob-
serving measuremenygs of the Gaussian random walk model given in Example 3.1

and we want to estimate the statg at each time step. The information obtained
up to time steg — 1 is summarized by the Gaussian filtering density

(k-1 Yy1k-1) = N(@p—1 | mp—1, Pr—1)- (3.30)
The Kalman filter prediction and update equations are now given as

my, = Mg—1

P =P, 1+q
R SR (3.31)
mrp =m —m .
F k P +r Yk k
P 2
Py =P — (_’f) :
Po+r
6l ° ° Measurement i
° o , °o — Signal

0 20 40 60 80 100

Figure 3.3: Simulated signal and measurements of the Kalman filteringgse (Example
3.2).
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Figure 3.4: Signal, measurements and filtering estimate of the Kalmgerifig example
(Example 3.2).

3.2 Extended and Unscented Kalman Filtering

Often the dynamic and measurement processes in practical applicationstare
linear and the Kalman filter cannot be applied as such. However, oftenlthe fi
tering distributions of this kind of processes can be approximated with @auss
distributions. In this section, four types of methods for forming the Gaussian
approximations are considered, the Taylor series based extended Kiiberan
(EKF), statistical linearization based statistically linearized filters (SLF)riEou
Hermite expansion based Fourier-Hermite Kalman filters (FHKF), and oteste
transform based unscented Kalman filters (UKF). Among these, UKF gliffem

the other filters in this section in the sense that it is not a series expansiet bas
method per se — even though it was originally justified by considering a series
expansion of the non-linear function.

3.2.1 Taylor Series Expansions

Consider the following transformation of a Gaussian random variabigo an-
other random variablg:

x ~ N(m, P)

y = g(x).
wherex € R, y € R™, andg : R" — R™ is a general non-linear function.
Formally, the probability density of the random variaglés! (see, e.g, Gelman

(3.32)

This actually only applies to invertible(-), but it can be easily generalized to the non-invertible
case.
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etal., 1995)
p(y) =13(y)| N(g" (y) |m,P), (3.33)

where|J(y)| is the determinant of the Jacobian matrix of the inverse transform
g !'(y). However, it is not generally possible to handle this distribution directly,
because it is non-Gaussian for all but lingar

A first order Taylor series based Gaussian approximation to the distribuition
y can be now formed as follows. If we lgt= m + dx, whereéx ~ N(0,P), we
can form the Taylor series expansion of the funcign as follows:

8() = g(m +6x) = g(m) + G(m) dx+ Y 20x" GLk(m) bx et (3.39)

whereGy(m) is the Jacobian matrix gf with elements

9g,(x)
[Gx(m)], ;, = =7 (3.35)
JsJ Oz .
andGﬁf,)c(m) is the Hessian matrix gf;(-) evaluated ain:
2
(i) _ 9%9i(%)
[Gxx(m)]m, = o, 0n,7| (3.36)

Also,e; = (0 --- 010 --- 0)T is a vector with 1 at positionand other elements
are zero, that is, it is the unit vector in direction of the coordinate axis
The linear approximation can be obtained by approximating the function by

the first two terms in the Taylor series:

g(x) ~ g(m) + Gx(m) ix. (3.37)
Computing the expected value with respecktgives:

E[g(x)] ~ Elg(m) + Gx(m) ox

g(m) + Gx(m) E[0x] (3.38)
= g(m).

The covariance can then be approximated as

=E [ Gx(m) 0x) (Gx(m) 5X)T}
= Gx(m) E [6X(5x | GE(m)

= Gx(m)P G[(m).
(3.39)
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We are also often interested in the the joint covariance between the varables
andy. Approximation of the joint covariance can be achieved by considering the

augmented transformation
X
&(x) = . 3.40
g(x) <g(X)> ( )

The resulting mean and covariance are:

I 1\
g ~ 3.41
Corg1~ () P (oo 34
_( P P G (m)
" \Gx(m)P Gx(m)PGI(m))"
In the derivation of the extended Kalman filter equations, we need a slightly more
general transformation of the form
x ~ N(m, P)
q~N(0,Q) (3.42)
y =8(x) +aq,
whereq is independent ok. The joint distribution ofx andy, as defined above,
is now the same as in Equations (3.41) except that the covarf@riseadded to

the lower right block of the covariance matrix §f:-). Thus we get the following
algorithm:

Algorithm 3.2 (Linear approximation of an additive transfornijhe linear ap-
proximation based Gaussian approximation to the joint distributios aind the
transformed random variablg = g(x) + q, wherex ~ N(m,P) andq ~

N(0, Q) is given as
X m P C;
()~~(G) er 52)): 049

where
py = g(m)
S = Gx(m) P Gy (m) + Q (3.44)
C., =PGL(m),

and Gx(m) is the Jacobian matrix of with respect tax, evaluated atk = m
with elements

(Gx(m)]; ;, = ag; (JX) : (3.45)

X=m
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Furthermore, in filtering models where the process noise is not additive, we
often need to approximate transformations of the form

x ~ N(m, P)
q~N(0,Q) (3.46)
y = 8(x,q),

wherex andq are uncorrelated random variables. The mean and covariance can
now be computed by substituting the augmented vettor) to the vectorx

in Equation (3.41). The joint Jacobian matrix can then be writtelGag, =

(Gx Gq). HereGg is the Jacobian matrix of(-) with respect toq and both
Jacobian matrices are evaluatedkat= m,q = 0. The approximations to the
mean and covariance of the augmented transform as in Equation (3.4theare
given as

E[g(x,q)] = g(m
T
Covle “( Gq?m>) (@) (cum c)
T
B (G (m) P Gx<m>PG£<1:n?i(én<3<m>QG£<m>>'

(3.47)
The approximation above can be formulated as the following algorithm:

Algorithm 3.3 (Linear approximation of a non-additive transfornjhe linear
approximation based Gaussian approximation to the joint distributionard the
transformed random variablg = g(x, q) whenx ~ N(m, P) andq ~ N(0, Q)

is given as
X m P C;
()= (Ca) (e §) @40
where
py, = g(m)
St = Gx(m) P G} (m) + Gq(m) Q G{ (m) (3.49)
C.,=PGI(m),

andGx(m) is the Jacobian matrix af with respect tex, evaluated ak = m, q =
0 with elements

9g;(x,q
[Gx(m)]; ;1 = Ja(g; ) (3.50)
J x=m,q=0
andGq(m) is the corresponding Jacobian matrix with respectjto
Jg;(x,q
[Gq(m)]; ;= Ja( : ) (3.51)
4 x=m,q=0
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In quadratic approximations, in addition to the first order terms also the decon
order terms in the Taylor series expansion of the non-linear functioretamed:

Algorithm 3.4 (Quadratic approximation of an additive non-linear transforie
second order approximation is of the form

() () e 56)) 652

where the parameters are
1 i
po = g(m) + 3 Zei tr {ch,)c(m) P}

1 i i
Sg = Gx(m)P Gz(m) + 3 Z e; e;TC tr {ch,)c(m) P Gg(x)(m) P} (3.53)

Cq =P Gy (m),

and G, (m) is the Jacobian matrix3.45) and G.2.(m) is the Hessian matrix of
gi(+) evaluated aim:

GG m)| = Pgilx)

= 3.54
g’ Ox; 0wy ’ ( )

X=m

wheree; = (0 --- 010 --- 0)7 is a vector with 1 at positionand other elements
are zero, that is, it is the unit vector in direction of the coordinate axis

3.2.2 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 1970; Mayd&3Qa;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is an extenstbe &alman
filter to non-linear optimal filtering problems. If process and measuremesg$0o
can be assumed to be additive, the EKF model can be written as

xp = f(xp_1) + qr—1

(3.55)
yi = h(xg) +rg,

wherex;, € R" is the statey, € R™ is the measurementy, 1 ~ N(0, Qx_1)
is the Gaussian process noisg,~ N(0, Ry) is the Gaussian measurement noise,
f(-) is the dynamic model function arid(-) is the measurement model function.
The functionsf andh can also depend on the step numbebut for notational
convenience, this dependence has not been explicitly denoted.

The idea of the extended Kalman filter is to form Gaussian approximations

P(xXk | Y1) = N(xp | my, Py) (3.56)

to the filtering densities. In EKF this is done by utilizing linear approximations to
the non-linearities and the result is the following algorithm.
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Algorithm 3.5 (Extended Kalman filter I) The prediction and update steps of the
first order additive noise extended Kalman filter (EKF) are:

e Prediction:

m, =f(mg_
k (M) . (3.57)
P, =Fy(my_ )Py Fy (my_1) + Qp_1.

e Update:

Vi =yr — h(my)

Sk = Hy(my) Py Hy (my) + Ry

Ki =P, HL (m;)S;' (3.58)
my = m, + Kjvg

P, =P, —K;S; K} .

These filtering equations can be derived by repeating the same steps as in
the derivation of the Kalman filter in Section 3.1.3 and by applying Taylor series

approximations on the appropriate steps:

1. The joint distribution ofx; andx;_; is hon-Gaussian, but we can form a
Gaussian approximation to it by applying the approximation Algorithm 3.2

to the function
f(xp—1) + dp—1, (3.59)

which results in the Gaussian approximation

P(Xp—1,Xg, |y1:6-1) ® N ([Xi:} ’m/,P'> , (3.60)
where
’_ my_q
" <f(mk:1)>
- (3.61)
PI — Pk*l Pk’*l Fx
FxPi1 FxPr  FL+ Q)"

and the Jacobian matrR of f(x) is evaluated at = mj_;. The marginal
mean and covariance &f, are thus

m, = f(m;_
k (mie-1) . (3.62)
Pk = Fx Pk—l Fx + Qk:—l-
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2. The joint distribution ofy;, andxy, is also non-Gaussian, but we can again
approximate it by applying Algorithm 3.2 to the function

h(Xk) + rg. (363)
We get the approximation
~ Xk " oo
p(Xk Yi | Y1:6-1) & N <[ykl )m , P ) : (3.64)
where
v my s Py P, H
me= (h(mk)> Pi= (Hx P, H,P_HI+R;)’ (3.65)

and the Jacobian matrBl, of h(x) is evaluated at = m, .

3. By Lemma A.2 the conditional distribution &, is approximately

P(Xk | Y, Yik—1) = N(xp [ myg, Py), (3.66)
where
my, = my + Py Hy (Hx Py Hy +Ry) ™ [yy, — h(my)] (3.67)
P, =P, - P, Hl (Hx P, H. + R;) 'H,P;.

A more general non-additive noise EKF filtering model can be written as
xp = f(xp-1,qr-1)
vk = h(xp, 1),

whereqi—1 ~ N(0,Qx—1) andry ~ N(0,Ry) are the Gaussian process and
measurement noises, respectively. Again, the functiamih can also depend on
the step numbet.

(3.68)

Algorithm 3.6 (Extended Kalman filter Il) The prediction and update steps of the
(first order) extended Kalman filter (EKF) in the non-additive noise ease

e Prediction:
m, = f(m;_1,0)
P, = Fy(my_1) Py Fi(my_q) + Fq(my_1) Q1 F& (my,_1).
(3.69)
e Update:
vy =y — h(m,,0)
Sk = Hu(my) P H (my) + He(my) Ry Hy (my)
K, =P, H.(m;)S,' (3.70)
my = m, + Kj vy
P, =P, - K;S;Ki.
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where the matrice¥y(m), Fq(m), Hy(m), andH,(m), are the Jacobian ma-
trices off andh with respect to state and noise, with elements

8 .
Fum)],, = 2Ed) (3.71)
J x=m,q=0
a .
Pom)],, - 1) (3.72)
J x=m,q=0
Oh;
[Hy(m)]; ;, = éix r) (3.73)
J x=m,r=0
Oh;(x,
()] = ) (3.74)
x=m,r=0

These filtering equations can be derived by repeating the same steps as in th
derivation of the extended Kalman filter above, but instead of using Algor&!2,
we use Algorithm 3.3 for computing the approximations.

The advantage of EKF over other non-linear filtering methods is its relative
simplicity compared to its performance. Linearization is very common engineering
way of constructing approximations to non-linear systems and thus it is asygy e
to understand and apply. A disadvantage is that because it is basedoaihlankar
approximation, it will not work in problems with considerable non-linearitielsoA
the filtering model is restricted in the sense that only Gaussian noise peecess
allowed and thus the model cannot contain, for example, discrete valnédma
variables. The Gaussian restriction also prevents handling of hierafchadels
or other models where significantly non-Gaussian distribution models would be
needed.

The EKF also requires the measurement model and the dynamic model func-
tions to be differentiable. This as such might be a restriction, but in some case
it might also be simply impossible to compute the required Jacobian matrices,
which renders the usage of EKF impossible. And even when the Jacobiacesa
exist and could be computed, the actual computation and programming bfaaco
matrices can be quite error prone and hard to debug.

In so called second order EKF the non-linearity is approximated by retaining
the second order terms in the Taylor series expansion as in Algorithm 3.4:

Algorithm 3.7 (Extended Kalman filter IIl) The prediction and update steps of
the second order extended Kalman filter (in additive noise case) are:
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e Prediction:

rnk—fmk 1 Zeztr{ xxmk 1)Pk 1}
P, = Fx(m;_1) Py Fy(my_)

1 i p
+3 Z e; el tr {Fgo)c(mk:—l)Pk:—lF)(cx)(mk—l)sz—l}

i

(3.75)

+ Qp—1-

e Update:

S,=H ( ) P HL(
+ = Zele,tr{Hggg m; )P, H)(cx)(mk) ;Z}+Rk (3.76)

0,4’

mk)

K; =P, H (m;)S;"
m; = m,; + K v
P, =P, - K;S;K{,

where the matrice¥«(m) and Hx(m) are given by the Equation.71) and
(3.73) The matrice®{)(m) andH{.(m) are the Hessian matrices gf and ;
respectively:

i) 9 fix)

[Fxx(m)}j,j’ Oz, Oxjr| (3.77)
(i) B 82hi(x)

[Hxx(m)hjl Oz Oxy B (3.78)

The non-additive version can be derived in analogous manner, leutodits
complicated appearance, it is not presented here.

3.2.3 Statistical Linearization

In statistically linearized filter (Gelb, 1974) the first order Taylor serigg@ama-
tion used in the first order EKF is replaced by statistical linearization. Réwall
transformation problem considered in Section 3.2.1, which was stated as

x ~ N(m,P)

y = g(x).
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In statistical linearization we form a linear approximation to the transformation as
follows:
g(x) ~ b+ A dx, (3.79)

wheredéx = x — m, such that the mean squared error is minimized:
MSE(b, A) = E[(g(x) — b — Adx)T(g(x) — b — Adx)]. (3.80)
Setting derivatives with respect tband A zero gives

b = E[g(x)]

A = E[g(x)ox"|P~L. (3.81)

In this approximation to the transforg(x), b is now exactly the mean and the
approximate covariance is given as

E[(g(x) — Elg(x)]) (g(x) — Elg(x)])]
~APA"T (3.82)
= E[g(x) 0xT] P~ E[g(x) 0xT]7T.

We may now apply this approximation to the augmented fun@iot) = (x, g(x))
in Equation (3.40) of Section 3.2.1, where we get the approximation

big00)~ (i)

(3.83)
Covlgo) ~ (5 Blelx) 0"
E[g(x) 0x"] E[g(x)x"| P~ E[g(x)ox"]" )"
We now get the following algorithm corresponding to Algorithm 3.2:

Algorithm 3.8 (Statistically linearized approximation of an additive transfarm)
The statistical linearization based Gaussian approximation to the joint distributio
of x and the transformed random varialye= g(x) + q wherex ~ N(m, P) and

q ~ N(0,Q) is given as

@ ~R ((IZ) ’ (CI?)?; ‘;5)) ’ (3.84)

where
Ss = Elg(x) x| P! Elg(x) 0x"]" + Q (3.85)

The expectations are taken with respect to the distribution of
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Applying the same approximation witfx, q) in place ofx we obtain the
following mean and covariance:

Elg(x,q)] ~ (E[g(x, q)]>
( . Elg(x, q) 0x"]"
] 1

Thus we get the following algorithm for non-additive transform:

Algorithm 3.9 (Statistically linearized approximation of a non-additive transform)
The statistical linearization based Gaussian approximation to the joint distributio
of x and the transformed random variabje= g(x, q) whenx ~ N(m, P) and

q ~ N(0,Q) is given as

@ ~R ((2) | @; gﬁ:)) ’ (3.87)

(3.88)
The expectations are taken with respect to the variaklaadq.

If the functiong(x) is differentiable, it is possible to use the following well
known property of Gaussian random variables for simplifying the espras:

Elg(x) (x - m)"] = E[G«(x)] P, (3.89)

whereE][:| denotes the expected value with respectte N(m, P), andGx(x)

is the Jacobian matrix gf(x). The statistical linearization equations then reduce
to the same form as Taylor series based linearization, except that indtézal o
Jacobians we have the expected values of the Jacobians (see sxeAdgerithm

3.8 can be then written in the following form:

Algorithm 3.10 (Statistically linearized approximation of an additive transform I1)
The statistical linearization based Gaussian approximation to the joint distributio
of x and the transformed random variakye= g(x) +q wherex ~ N(m, P) and

q ~ N(0,Q), can be written as

@ ~R ((2) ’ <<133?; §§>> ’ (3.90)



50 Optimal Filtering

where

ps = Elg(x)]
Ss = E[G4(x)] P E[G4(x)]T + Q (3.91)
Cs = P E[G«(x)]T,

and G« (x) is the Jacobian matrix of. The expectations are taken with respect to
the distribution ofx.

Note that we actually only need to compute the expectdiigix)], because
if we know the function

prs(m) = Elg(x)], (3.92)
whereE[:] denotes the expected value with respedf{a | m, P), then

Ops(m)

S = B[Gx (). (3.93)

3.2.4 Statistically Linearized Filter

Statistically linearized filter (SLF) (Gelb, 1974) or quasi-linear filter (St&rigio4)

is a Gaussian approximation based filter which can be applied to the same kind of
models as EKF, that is, to models of the form (3.55) or (3.68). The filter is similar
to EKF, except that statistical linearizations in Algorithms 3.8, 3.9 and 3.10 are
used instead of the Taylor series approximations.

Algorithm 3.11 (Statistically linearized filter ) The prediction and update steps
of the additive noise statistically linearized (Kalman) filter are:

e Prediction:
m, = E[f(x;_1)]

N _ (3.94)
P, =E[f(x;_1) 0x{_ | P E[f(xk-1) 6xf_1]" + Qi1

wheredx,_1 = X;_1 — my_; and the expectations are taken with respect
to the variablex; 1 ~ N(my_1,Py_1).

e Update:

Vi = yr — E[h(xz)]
Sk = E[h(x;) 0x ] (P
K, = E[h(x;) 0xi]" S
my = m, + Kj vy

P, =P, - K;S;K{,

)" Eh(xg) 0xi]" + Ry,
o (3.95)

where the expectations are taken with respect to the varigble N(m, , P, ).
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The above filter can also be rewritten using the expectations of Jacoljians b
using the Algorithm 3.10 instead of 3.8 (see exercises).

Algorithm 3.12 (Statistically linearized filter Il) The prediction and update steps
of the non-additive statistically linearized (Kalman) filter are:

e Prediction:
m, = E[f (xx—1,dr-1)]
P, = E[f(x¢—1,q-1) x| P}, Elf(xp—1,ax-1) 0x¢_;]"
+E[f(xr-1, ar-1) ai—1] Q¢ Ly Elf (xk-1, ax-1) @f_q]”,

(3.96)
wheredx,_1 = x;_1 — my;_1 and the expectations are taken with respect
to the variablesc;_1 ~ N(my_1,Px_1) andqg_1 ~ N(0, Qx—1).

e Update:
vi = yi — E[h(xy, rg)]
Sk = Elh(xy,1x) 0x} ] (P,) ™" Eh(xg, ry) 0x/]"
+Eh(xg,rp) v ] R Elb(xp,vi) rf )"
K, = E[h(xy, 1)) 0x;]7 S, *
my = m, + Kj vy
P, =P, - K;S;Kf,

(3.97)

where the expectations are taken with respect to the variahiles N(m, , P, )
andr; ~ N(O, Rk)

Both the filters above can be derived by following the derivation of the EKF
Section 3.2.2 and by utilizing the statistical linearization approximations instead of
the linear approximations on the appropriate steps.

The advantage of SLF over EKF is that it is a more global approximation than
EKF, because the linearization is not only based on the local region ditben
mean but on a whole range of function values. The non-linearities alsotdmwe
to be differentiable nor do we need to derive their Jacobian matrices. \ridowe
the non-linearities are differentiable, then we can use the Gaussiammasagiable
property (3.89) for rewriting the equations in EKF-like form. The clear diisa-
tage of SLF over EKF is that certain expected values of the non-lineatifuns
have to be computed in closed form. Naturally, it is not possible for all funstio
Fortunately, the expected values involved are of such type that one istickéhd
many of them tabulated in older physics and control engineering boo&sdse
Gelb and Vander Velde, 1968).

The statistically linearized filter (SLF) is a special case of the Fourier-Hermite
Kalman filter (FHKF), when the first order truncation of the series is uSead-(
mavuori and Sarkka, 2012). Many of the sigma-point methods can alsudre
preted as approximations to the Fourier-Hermite Kalman filters and statistically
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linearized filters (cf. Van der Merwe and Wan, 2003; Sarkka and Hangn,
2010b; Sarmavuori and Sarkka, 2012).

3.2.5 Unscented Transform

The unscented transforrUT) (Julier and Uhimann, 1995; Julier et al., 2000) is
a relatively recent numerical method that can be also used for approxintagn
joint distribution of random variables andy defined as

x ~ N(m, P)
y = g(x).

However, the philosophy in UT differs from linearization and statistical lizea

tion in the sense that it tries to directly approximate the mean and covarianaee of th
target distribution instead of trying to approximate the non-linear functioire(Ju
and Uhlmann, 1995).

The idea of UT is to deterministically choose a fixed number of sigma-points
that capture the mean and covariance of the original distributiare@fctly. These
sigma-points are then propagated through the non-linearity and the mean-and
variance of the transformed variable are estimated from them. Note thatgtithou
the unscented transform resembles Monte Carlo estimation the approeebis a
nificantly different, because in UT the sigma points are selected deterministically
(Julier and Uhimann, 2004). The difference between linear approximatiotJ T
is illustrated in Figures 3.5, 3.6 and 3.7.

(a) Original (b) Transformed

Figure 3.5: Example of applying a non-linear transformation to a randesmiable on the
left, which results in the random variable on the right.

Theunscented transforforms the Gaussian approximatfowith the follow-
ing procedure:

2Note that this Gaussianity assumption is one interpretation, but unscentsébtra can also
be applied without the Gaussian assumption. However, because thepissumakes Bayesian
interpretation of UT much easier, we shall use it here.
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(a) Original (b) Transformed

Figure 3.6: lllustration of linearization based (EKF) approximation the transformation
in Figure 3.5. The Gaussian approximation is formed by dalting the curvature at the
mean, which results in a bad approximation further away ftbeymean. The covariance
of the true distribution is presented by the blue dotted hnel the red solid line is the
approximation.

(a) Original (b) Transformed

Figure 3.7: lllustration of unscented transform based (UKF) approxiima to the trans-
formation in Figure 3.5. The Gaussian approximation is fechiby propagating the sigma
points through the non-linearity and the mean and covaraace estimated from the
transformed sigma points. The covariance of the true distion is presented by the blue
dotted line and the red solid line is the approximation.
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1. Form a set on + 1 sigma points as follows:

X0 =m
X0 =m+vn+ X [\/ﬁ} (3.98)

2

X0 — m — VA [x/ﬂ i=1,...n,

(2

where[]; denotes théth column of the matrix, and is a scaling parameter,
which is defined in terms of algorithm parameterandx as follows:

A=a’(n+k)—n. (3.99)

The parameters andx determine the spread of the sigma points around the
mean (Wan and Van der Merwe, 2001). The matrix square root denotes a

matrix such that/P vP' = P. The sigma points are the columns of the
sigma point matrix.

2. Propagate the sigma points through the non-linear fungtion

VO =gx®), i=0,...,2n,

which results in transformed sigma poigt§).

3. Estimates of the mean and covariance of the transformed variable can be

computed from the sigma points as follows:

(3.100)

where the constant weighwi(m) andWi(C) are given as follows (Wan and
Van der Merwe, 2001):
W™ = A/(n+A)
Wéc) =A(n+N)+1-a®+p)
W™ =1/{2(n+ N}, i=1,....2n

)
W9 =1/{2(n+ N}, i=1,...,2n,

(3.101)

andg is an additional algorithm parameter that can be used for incorporating
prior information on the (non-Gaussian) distributionof\Wan and Van der
Merwe, 2001).
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If we apply the unscented transform to the augmented fungian = (x, g(x)),

we simply get the set of sigma points, where the sigma pdifitsand)*) have

been concatenated to the same vector. Thus, also forming approximation to the
joint distributionx andg(x) + q is straightforward and the result is:

Algorithm 3.13 (Unscented approximation of an additive transfariipe un-
scented transform based Gaussian approximation to the joint distribution of
and the transformed random variabje = g(x) + q wherex ~ N(m, P) and

q ~ N(0,Q) is given as

@ ~R ((:Z) | (55 ;’5)) ’ (3.102)

where the sub-matrices can be computed as follows:

1. Form the set o2n + 1 sigma points as follows:

X0 =—m
XD =m+vn+ X {\/13] (3.103)

)

X0 —m — VA [\/ﬁ] i=1,....n

7

where the parametex is defined in Equatiof3.99)
2. Propagate the sigma points through the non-linear funcgon:

YO —gx@), i=o0,..., 2n

3. The sub-matrices are then given as:

2n A

Ky = Z Wz‘(m) yo
=0
2n ' ‘

Sy =Y W VD~ ) (VO — )" +Q (3.104)
=0
2n ' ‘

Cu = 3 W (X —m) (90— puy)”,
=0

where the constant WeighWi(m) and Wi(c) were defined in the Equation
(3.101)

The unscented transform approximation to a transformation of the yoem
g(x, q) can be derived by considering the augmented random vakabléx, q)
as the random variable in the transform. The resulting algorithm is:
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Algorithm 3.14 (Unscented approximation of a non-additive transforiff)e un-
scented transform based Gaussian approximation to the joint distributian of
and the transformed random variabje = g(x,q) whenx ~ N(m,P) and

q ~ N(0,Q) is given as

G)(() (& &) e

where the sub-matrices can be computed as follows. Let the dimensionalities
andq ben andn,, respectively, and let’ = n + n,.

1. Form the sigma points for the augmented random variabie (x, q)

X0 =m
20 =+ vt ¥ (VR (3.106)
X~ VX (VP L=

1

where parametel\’ is defined as in Equatio(8.99), but withn replaced by
n’, and the augmented mean and covariance are defined by

- m ~ P O
==(5) *-( o)
2. Propagate the sigma points through the function:

PO = g(ROe Fiay =0, 2,

where X and X (94 denote the parts of the augmented sigma paint
which correspond t& andq, respectively.

3. Compute the predicted meag;, the predicted covarianc®;; and the cross-
covarianceCy:

2n’
Py = Z Wz‘(m) Yo

i=0

2n’ . o
Su = Z Wz'(c) (y(z) — ) (y(l) - NU)T
i=0

2n’
Co = Y W (X0 —m) (PO — puy))"
1=0

where the definitions of the weight™" and " are the same as in
Equation(3.101) but withn replaced byn’ and X replaced by\'.
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3.2.6 Unscented Kalman Filter (UKF)

Theunscented Kalman filtgflJKF) (Julier et al., 1995; Julier and Uhlmann, 2004;
Wan and Van der Merwe, 2001) is an optimal filtering algorithm that utilizes the
unscented transform and can be used for approximating the filtering digirib

of models having the same form as with EKF and SLF, that is, models of the form
(3.55) or (3.68). As EKF and SLF, UKF forms a Gaussian approximationeo th
filtering distribution:

p(Xk | Y15, yk) = N(xp | my, Py), (3.107)
wherem,, andP;, are the mean and covariance computed by the algorithm.

Algorithm 3.15 (unscented Kalman filter.I)n the additive form unscented Kalman
filter (UKF) algorithm, which can be applied to additive models of the f(8r&5)
the following operations are performed at each measurementistep, 2,3, . . .

1. Prediction step:

(a) Form the sigma points:

Xk((i)l =my_1,

2 = m VA [\/ﬁ} (3.108)
Y = = Vit X VP L i=1n
where the parametex is defined in Equatio3.99)
(b) Propagate the sigma points through the dynamic model:
29 =), i=o0,... 20 (3.109)

(c) Compute the predicted meam,_ and the predicted covariande, :
2n
= > W A0
i=0
2n ) )
Py =Y W& —mp) (& - mp)" + Qo
=0

where the WeightWi(m) and Wi(c) were defined in Equatio8.101)

(3.110)

2. Update step:

(a) Form the sigma points:

] (3.111)
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(b) Propagate sigma points through the measurement model:

ylgz') _ h(Xl;(i)), 1=0,...,2n. (3.112)

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and the measure-
mentCy.:

2n
= wi™ v
=0
2n ‘ '
Sk =Y W O = ) O = )" + Ry (3.113)
1=0
2n ‘ A
Ci = Z Wi(C) (Xk—(Z) . m’;) (y]gz) _ 'qu)T'
=0

(d) Compute the filter gaiiKy, the filtered state meam; and the covari-
ancePy, conditional on the measuremeyny:

Ky =C;S;*
m; = m]; + Kk [yk - H’k] (3.114)
P, =P, —K;S;K}.

The filtering equations above can be derived in analogous manner to EKF
equations, but the unscented transform based approximations argnsised of
the linear approximations.

The non-additive form of UKF (Julier and Uhlmann, 2004) can be derlyy
augmenting the process or measurement noises with the state vector andgapply
UT approximation to that. Alternatively, one can first augment the state vector
with process noise, then approximate the prediction step and after that skintlee
with measurement noise on the update step. The different algorithms arsd way
of doing this in practice are analyzed in article (Wu et al., 2005). Howéver
directly apply the non-additive UT in the Algorithm 3.14 separately to prediction
and update steps, we get the following algorithm:

Algorithm 3.16 (unscented Kalman filter ll)In the augmented form unscented
Kalman filter (UKF) algorithm, which can be applied to non-additive models of
the form(3.68) the following operations are performed at each measurement step
k=1,2,3,...

1. Prediction step:
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(a) Form the sigma points for the augmented random variéble 1, qx—1):

-)2]50_)1 = Ihkflv

X =y + Vi N [@} . (3.115)

7

Xéiﬁ”/) =mmy_1 — Vn/ + N [ Pk—1:| ,i=1,0

i

- my_ ~ P,._ 0
() ()

Heren’ = n + n,4, wheren is the dimensionality of the statg,_; and
nq 1S the dimensionality of the noisg._;. The parametel’ is defined
as in Equation(3.99) but withn replaced byn/'.

(b) Propagate the sigma points through the dynamic model:

where

A0 <A, o @19

whereX """ denotes the first components ia\” | and X"+ denotes
then, last components.

(c) Compute the predicted meam,_ and the predicted covariande, :

2n
mi = S A

;nU (3.117)
P =Y W (& —mp) (&) —mp)”

=0

where the weightH/i(m)/ and Wi(c)/ are the same as in Equati@B.101)
but withn replaced by»’ and X by \'.

2. Update step:

(a) Form the sigma points for the augmented random variékjery):

p—(0) _ ~—

X,V =m,,

2.0 = v 4V N [\/PTZ} (3.118)
R Gl T RIS NS
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Here we have defined’ = n+n,., wheren is the dimensionality of the
statex; andn, is the dimensionality of the noisg. The parameter
M\ is defined as in Equatiof8.99) but withn replaced byn”.

(b) Propagate sigma points through the measurement model:
Y —ne, O 2Oy =0, 2n", (3.119)

where X, """ denotes the first. components ¥, ) and &,
denotes the:, last components.

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and the measure-

mentCy:

2n'’ B ‘

oy = Z W/i(m) yl?)
=0
2n// " . .

k=Y W O = ) O = )" (3.120)
=0
2n//

Ce=> W (D —mp) (D — )7,
1=0

"

where the weightd?(™" and W?" are the same as in Equation
(3.101) but withn replaced byn” and A by \”.

(d) Compute the filter gailK;, and the filtered state mean;, and covari-
ancePy, conditional to the measurememnt:

Kj = C;S; !
my = m, + Ky [yr — ) (3.121)
P, =P, - K;S;K{.

The advantage of the UKF over EKF is that UKF is not based on a locaflinea
approximation, but uses a bit further points in approximating the non-line&sty
discussed in Julier and Uhlmann (2004) the unscented transform is alalpttoe
the higher order moments caused by the non-linear transform better thEaytbe
series based approximations. However, an important point to note is thagtith
the mean estimate of UT is exact for polynomials up to order 3, the covariance
computation is only exact for polynomials up to the first order (as, e.g., i.SLF
In UT, the dynamic and model functions are also not required to be formi&ly d
ferentiable nor do their Jacobian matrices need to be computed. The apvahta
UKF over SLF is that in UKF there is no need to compute any expected values in
closed form, only evaluations of the dynamic and measurement models deginee
However, the accuracy of UKF cannot be expected to be as goodtad thaF,
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because SLF uses a larger area in the approximation, whereas UKFetadissa
fixed number of points in the area. The disadvantage over EKF is that &R o
requires slightly more computational operations than EKF.

The UKF can be interpreted to belong to a wider class of filters called sigma-
point filters (Van der Merwe and Wan, 2003), which also includes othmstypf
filters such as central differences Kalman filter (CDKF), Gauss-Hernailen&n
filter (GHKF) and a few others (Ito and Xiong, 2000; Wu et al., 2006;d¢ard
et al., 2000; Arasaratnam and Haykin, 2009). The classification to Sogimh-
methods by Van der Merwe and Wan (2003) is based on interpreting the asetho
as special cases of (weighted) statistical linear regression (Lefebalg 2002).

As discussed in (Van der Merwe and Wan, 2003), statistical linearizatmaogsly
related to sigma-point approximations, because they both are related to statisti-
cal linear regression. However, it is important to note that the statisticalrlinea
regression (Lefebvre et al., 2002) which is the basis of sigma-pointefnark

(Van der Merwe and Wan, 2003) is not exactly equivalent to statisticeariire-

tion (Gelb, 1974) as sometimes is claimed. The statistical linear regressioe can b
considered as a discrete approximation to statistical linearization.

3.2.7 Fourier-Hermite Series Expansions

In this section, we show how Fourier-Hermite series can be used fondpyating
non-linear transformations of Gaussian random variables and how thisaah
can be seen as a generalization of statistical linearization. The presehitiois
based on the article by Sarmavuori and Sarkka (2012).

In Section 3.2.3 we formed the statistical linearization based approximation to
the transformation

~ N(m,P)
(3.122)
y = g(x)
by postulating the approximation
g(x) ~ b+ A dx, (3.123)

and by finding the optimal matriA and vectorb by minimizing E[||g(x) — b —
A §x|[?], wheredx = x — m. We could now attempt to generalize this such that
instead of the linear approximation, we usgtla order polynomial approximation

g(x)~b+Adx+oxI Cox+... (3.124)

By expanding the expression and setting derivatives to zero we cotddre
the optimal polynomial coefficients. This indeed is possible, but with higharor
polynomials this approach quickly becomes tedious. Fortunately, we canlfe

the approximation more conveniently in terms of Hilbert space theory by dgfinin
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an inner product for scalar functiopsand f as follows:

(f,9) —/f(X)g(X) N(x|m, P)dx (3.125)
=E[f(x

) 9(x)],

wherex ~ N(m, P). We can now form a Hilbert space of functions by defining a
norm as

llglI> = (g, 9)- (3.126)

Hilbert space theory now tells that there exists an orthogonal polynonsa ba
the corresponding Hilbert space. It turns out that these polynomied fasctions
are scaled multivariate Hermite polynomials, which we here defihe as

(x;m,P) = H, _a,)(L7" (x = m)), (3.127)

[alv"'7aP]

whereL is a matrix such thaP = L L7 and

n

Hig, .. a,)(x) = (=1)P eXP(HXH2/2)8$ exp(—||x[[?/2). (3.128)

a1 0T,
We can now expand an arbitrary vector functgfx) with (g;,¢g;) < oo into a
Fourier-Hermite series as follows:

(0@ n 1
g(x) = Z Z o E[g(x) H[a1,...,ak](x; m, P)] H[al,...,ak}(XS m, P).

k=0a1,...,a=1

(3.129)

Notice that becaus#|, ¢ (x;m,P) = 1, the zeroth order term in the series is
just the expectatiofi[g(x)]. By using the orthogonality of the basis functions we
get that the sum of expectations of outer products is

Elo(x) ol (x)] = . 3 l Elg(x) H x;m, P
[g(x)g" (x)] kzzomvgk:l 71 Ple() Hiay .y (xim, P)] (3.130)

j(x;m, P)].

----- ag

By leaving out the zeroth order term we get the following exact reptaten for
the covariance og(z):

Cov[g(x)] = Z Z % E[g(x) H, ... 0] (X; m, P)]

k=1a1,...ax=1

(3.131)
X E[gT(x) Hig, .. 0, (x5 m, P)].

Note that this definition used here as well as in Kuznetsov et al. (1966y1e8aori and Sarkka
(2012) differs from the “natural” definitiod ,,, ., )(x;m,P) = H,, . (L™'(x — m)),
with H,, o pay (X) = Hp, (1) - - - Hp, (xr), whereH,,, are the univariate Hermite polynomials,
because this way the notation remains clearer (Sarmavuori and Sa€kk3). The different defini-
tions are of course equivalent.



3.2 Extended and Unscented Kalman Filtering 63

From Hilbert space theory we know that the betst polynomial approximation to
g(x) with respect td| -||2, that is, the polynomial expansion (3.124) is given by the
orthogonal projection on the Hermite polynomials up to ogdeFhus the optimal

pth order polynomial approximation is given by truncating the series (3.129) a
orderp.

We could now consider computing the coefficients of the series with some
numerical method and then pick the zeroth order term for the mean and compute
an approximation to the covariance by the truncated series above. Hopwese
does not make much sense, because with the same numerical method we could
equivalently directly compute the covariance as well. Fortunately, the Feurie
Hermite series coefficients can be computed in an alternative way bedatise o
following result (Sarmavuori and Sarkka, 2012):

E[g(x) H[al,..‘,ak} (X? m7 P)} = Z E |:al'b al‘b :| H me QAm,
b1,...,bp=1 1 k4 m=1
(3.132)

which is a generalization of the derivative version of the statistical lind#siza
discussed in Section 3.2.3. Thus we can express the Fourier-Hermite asrie
follows:

k

[oe) n 1
- Z Z o B |: :| m7am ,ak](x; m’P)v
k=0ai,....,a= lk a:vb 8xbk m=1
b1, ,br=1

(3.133)

and the covariance as:
’gx) 1T
C _— P .
OV[ kzlal Za: 1k' |:a.7}b 8xbk:| m=1 S
br bl (3.134)

y E[ dg(x) ]T

O0xg, -+ - O0xgq,

It turns out that we do not even need to compute the expectations of theties,
because they can be evaluated as follows (Sarmavuori and Sarkiy; 20

e Assume that we can compute the following expectation in closed form:

g(m,P) = E[g(x)] = /g(x) N(x|m,P)dx, (3.135)
for an arbitrarym andP.

e Then we have

E[ og(x) }_ 9"g(m, P)

3.136
Oxyp,,...,0xp, omy, - - - Omy, ( )



64 Optimal Filtering

In forming the approximation to the joint mean and covariance of the augmented
functiong(x) = (x,g(x)) we also need the following term, which can also be
computed using the above result:

E[(x — m) (g(x) — B[g(x)))7] = P E[Gx(x)]" =P GT, (3.137)
whereéij— = 0g;/0m;. We get the following algorithm:

Algorithm 3.17 (Fourier-Hermite series approximation of an additive transform)
The Fourier-Hermite series based Gaussian approximation to the jointtaliston
of x and the transformed random varialye= g(x) + q wherex ~ N(m, P) and

q ~ N(0,Q) is given as

G)((n) (e §)) oo

IJ‘F = g(mv P)
r=Q+Y " (m,P) P, " (m,P)"

]

where

GPGT
A(Q 5(2) T
" ijuv
1 s P
+ ? Z gz(u;;(m7 P) F)ij Puv qu [gj(v)q(m, P)]T
" ijuvpg
+ ...
Cr=P GT,

and we have defined

g(m,P) = /g(x) N(x|m,P)dx

B (P = e,
and the matrixG is defined as
Gy = 3" (m, P));. (3.141)

The mean and cross-covariance in the above approximation are alwaots e
(assuming that we can compute them exactly) and when the series is truncated
at orderp, the covariance is accurate for polynomials up to ongerThe first
order approximation is equivalent to the statistically linearized approximatios. T
approximation to the non-additive transform can be obtained analogously.
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3.2.8 Fourier-Hermite Kalman Filter

In this section we present the Fourier-Hermite Kalman filter (FHKF, Sarmiavuo
and Sarkka, 2012), which is based on the Fourier-Hermite series®gpan the
previous section and is a generalization of the statistically linearized filter. To
implement the algorithm, we need closed form expressions or good apptmisa

to the following expressions with arbitrary andP:

f(m,P) = /f(x) N(x|m,P)dx

A 3.142
f‘(k) (m, P) = akf(m,P) ( )
b17"'7bk ’ - 6mb1 PR 8mbk ’
as well as to the following expressions:
h(m,P) = /h(x) N(x | m,P)dx
(3.143)

o d"h(m, P)
) (mp)= ML)
b1,..-,bk( P) omy, - - - Omy,

The filter is the following:

Algorithm 3.18 (Fourier-Hermite Kalman filter) The prediction and update steps
of the additive noise Fourier-Hermite Kalman filter (FHKF) are:

e Prediction:

m, = f(my_1,Py_y)
P, = Qut + Y £ (myy, Pry) [Pecaliy (£ (my_y, Py
ij
1 . .
+ 57 2B (i1, Prct) [Py [Pt (£ (mir, Pr )]

1JUv

1 a3
+3 Z fi(u;(mkfla Py—1) [Pr—1lij [Pe—1luv [Pr-1]pg
ijuvpq

(3.144)
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e Update:

vk:yk—fl(m;,Pk)
szh (my, P) [P ][h(l)(mk’PI;)]T

+ 5 Z b (my, Py) [Py )i (P [0 (my )T

ijuv

| Z hzup mk’ )[PI;]ZJ{PI;]UU[PIJ]PQ
ijuvpq (3145)

% [0S (my, Py)|T

K, =P, H'S,!
mg = m, + K vi
P, =P, - K;S;K{,

where the matrid is defined as

1)

= [ﬁﬁ (m,, P (3.146)

3.3 Gaussian Filtering

Quite soon after the unscented Kalman filter (UKF) was published, Ito armgXio
(2000) pointed out that UKF can be considered as a special case a#llsd
Gaussian filters, where the non-linear filtering problem is solved using<sau
assumed density approximations. The generalized framework also etladles
usage of various powerful Gaussian quadrature and cubatureatitegmethods
(Wu et al., 2006; Arasaratnam and Haykin, 2009). The series expabased
filters presented in the previous sections can also be seen as approxinatioa
general Gaussian filter. In this section we present the Gaussian filtesimgwork
and show how the Gauss-Hermite Kalman filter (GHKF) and the cubature Kalman
filter (CKF) can be derived as its approximations. We also show how UlKfbea
seen as a generalization of CKF.

3.3.1 Gaussian Moment Matching

One way to unify various Gaussian approximation based approachesiiskalth
of them as approximations to Gaussian integrals of the form:

/g(x) N(x|m,P) dx.
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If we can compute these, a straight-forward way to form the Gaussianxapm-
tion for (x, y) is to simply match the moments of the distributions, which gives the
following algorithm:

Algorithm 3.19 (Gaussian moment matching of an additive transforirfje mo-

ment matching based Gaussian approximation to the joint distributiereoid the
transformed random variablg = g(x)-+q wherex ~ N(m, P) andq ~ N(0, Q)

is given as
G)-~((n) (e s) e

s = / g(x) N(x |m, P) dx

Su = [ (860~ uap) (09 — )" Nx|m.P)dx +Q  (3.148)

where

Car = [ 6= m) (g0 — )" N(x| m, P) e

It is now easy to check by substituting the approximaiggs) = g(m) +
Gx(m) (x —m) to the above expression that in the linear case the integrals indeed
reduce to the linear approximations in the Algorithm 3.2. And the same applies
to statistical linearization. However, many other approximations can also lve inte
preted as such approximations as is discussed in the next section.

The non-additive version of the transform is the following:

Algorithm 3.20 (Gaussian moment matching of a non-additive transforie

moment matching based Gaussian approximation to the joint distributiraati
the transformed random variable = g(x,q) wherex ~ N(m,P) andq ~

N(0, Q) is given as
<§> ~ R ((:\14) ’ (CI;C[ gﬁ)) ) (3.149)

where

My = /g(x, q) N(x|m,P) N(q|0,Q)dxdq
Sy = / (8(,) — ) (8, @) — )" N(x|m, P) N(q|0,Q) dxdq

Cir = / (x — m) (g(x, ) — pa)” N(x|m, P) N(q| 0, Q) dx dq.
(3.150)
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3.3.2 Gaussian Filter

If we replace the linear approximations in EKF with the moment matching approx-
imations in the previous section, we get the followiBgussian assumed density
filter (ADF) which is also calledaussian filte{Maybeck, 1982a; Ito and Xiong,
2000; Wu et al., 2006):

Algorithm 3.21 (Gaussian filter 1) The prediction and update steps of the additive
noise Gaussian (Kalman) filter are:

e Prediction:
m, = /f(xk_1) N(xp—1|my_1,Pp_1) dxp_1

Py = /(f(xk—l) —my) (f(x)_1) — m;)7" (3.151)

X N(xp—1 |mp_1,Pr_1) dxp_1 + Qp_1.

e Update:
= [ i) Nexi |y P
St = [ (h(x0) = ) (h(x0) = )" N [y, P e+ Ry

Cr= [ o~ m) (ho) — )" NG [ Py s
K; = CyS; !
m;, =m, + K (yr — pp)
P, =P, - K;S;Kf.
(3.152)

The advantage of the moment matching formulation is that it enables usage of
many well known numerical integration methods such as Gauss-Hermiteaguadr
tures, cubature rules and central difference based methods (Itoiand,>2000;

Wu et al., 2006; Ngrgaard et al., 2000; Arasaratnam and Haykin,)200Be
unscented transformation can also be interpreted as an approximation e¢o thes
integrals (Wu et al., 2006).

One interesting way to approximate the integrals is to use the Bayes-Hermite
quadrature (O’'Hagan, 1991), which is based of fitting a Gaussiaregsaegres-
sion model to the non-linear functions on finite set of training points. Thisoagb
is used in the Gaussian process filter of Deisenroth et al. (2009). loipaksible
to approximate the integrals by Monte Carlo integration, which is the approach
used in Monte Carlo Kalman Filter (MCKF). That idea can also be extended to
non-Gaussian measurement models (Kotecha and Djuric, 2003).

The Gaussian filter can be extended to non-additive noise models as follows
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Algorithm 3.22 (Gaussian filter 1I) The prediction and update steps of the non-
additive noise Gaussian (Kalman) filter are:

e Prediction:
m, = /f(xklanl)
X N(xp—1 [ mp 1, Pr—1) N(@r-1]0, Qp—1) dxg—1 dag—1
P, = /(f(xk—1,%—1) —my ) (F(x—1, ak-1) — m’;)T

X N(xp—1 |mg_1,Pr_1) N(qr—1]0,Qx—1) dx;—1 dgs_.

(3.153)
e Update:
M = /h(Xk,I‘k)
x N(xp |my , P7) N(ry |0, Ry) dx dry,
1 = [ (i) = ) () — )"
x N(x | m, PI;) N(r |0, Rg) dxy dry
(3.154)

Cr = /(Xk —m") (h(xp, i) — py)"
X N(xz |m, ,P, ) N(rz |0, Ry) dx; dry,
K = C;S;*
my, = m, + Ky (yr — )
P, =P, —K;S; K}.

3.3.3 Gauss-Hermite Integration

In the Gaussian filter (and later in smoother) we are interested in approximating
Gaussian integrals of the form

/g(x) N(x|m,P)dx
1 1

= W /g(x) exp (—2()( —m) P! (x— m)) dx,
(3.155)

whereg(x) is an arbitrary function. In this section, we shall derive a Gauss-
Hermite based numerical cubatfir@gorithm for computing such integrals. The

“As one-dimensional integrals ageiadratures multidimensional integrals have been tradition-
ally calledcubatures
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algorithm is based on direct generalization of the one-dimensional Garssite
rule into multiple dimensions by taking Cartesian product of one-dimensioadlqu
ratures. The disadvantage of the method is that the required numberdteva
points is exponential with respect to the number of dimensions.

In its basic form, one-dimensional Gauss-Hermite quadrature integrafers re
to the special case of Gaussian quadratures with unit Gaussian wengiiofu
w(z) = N(x]0,1), that is, to approximations of the form

— 00

/Oo g(x) N(z[0,1)dz =~ Y Wg(a), (3.156)

whereWw (@ i = 1,... p are the weights and(® are the evaluation points or
abscissas — also sometimes called sigma points. Note that the quadrature is often
defined for the weight functioexp(—z?), but here we shall use the “probabilists’
definition” above. The two versions of the quadrature are related by ssoalag

of variables.

Obviously, there is an infinite number of possible ways to select the weigthts an
evaluation points. In Gauss-Hermite integration, as in all Gaussian quearatu
the weights and sigma points are chosen such that with polynomial integrand the
approximation becomes exact. It turns out that the polynomial order wigngiv
number of points is maximized is we choose the sigma points to be roots of Hermite
polynomials. When usingth order Hermite polynomial,(x), the rule will be
exact for polynomials up to ord@p — 1. The required weights can be computed
in closed form (see below).

The Hermite polynomial of ordes is defined as (these are so called “proba-
bilists’ Hermite polynomials™):

P
Hy(x) = (—1)P exp(x?/2) %exp(—xz/m. (3.157)
The first few Hermite polynomials are:
Ho(z) =1
Hi(x)==x
Hy(z) =2 -1 (3.158)

H3(z) = 2° — 32
Hy(z) = 2* — 622 + 3,
and further polynomials can be found from the recursion
Hyi1(x) =2 Hp(z) — pHp—1(x). (3.159)

Using the same weights and sigma points, integrals over non-unit Gaussigsve
functionsN(x | m, P) can be evaluated using a simple change of integration vari-
able:

/ " g(@) N(z | m, P)dz = / T g(PY2¢ £ m) N(E0,1)de (3.160)

—00 — 00
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The Gauss-Hermite integration can be written as the following algorithm:
Algorithm 3.23 (Gauss-Hermite quadratureJhe pth order Gauss-Hermite ap-
proximation to the 1-dimensional integral

/OO g(z) N(z|m, P)dx (3.161)

—0o0
can be computed as follows:

1. Compute the unit sigma points as the rote,: = 1,...,p of Hermite
polynomial H,(x). Note that we do not need to form the polynomial and
them compute its roots, but instead it is numerically more stable to compute
the roots as eigenvalues of a suitable tridiagonal matrix (Golub and Welsch,
1969).

2. Compute the weights as

. !
wi — P (3.162)
3. Approximate the integral as

o) p
/ g(x) N(z|m, P)dz =~ Y WWg(PV2 ¢ 4 m). (3.163)

- i=1

By generalizing the change of variables idea, we can form approximatons

multidimensional integrals of the form (3.155). First Bt= P VP, where
VP is the Cholesky factor of the covariance maffor some other similar square
root of the covariance matrix. If we define new integration variaflbg

x=m+VPE, (3.164)

we get

/g(x) N(x |m, P) dx = /g(m +VPE) NE|O,T) e, (3.165)

The integration over the multidimensional unit Gaussian can be written as an it-
erated integral over one-dimensional Gaussian distributions, and &#uh ane-
dimensional integrals can be approximated with Gauss-Hermite quadrature:

/g(mwﬁs) N(€]0,T) dg

://g(m—l—\/ﬁf) N(£1]0,1)dé; x -+ x N(£,]0,1) dé&,,

seensln

(3.166)
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The weightsiV (i) k= 1, .. .,n are simply the corresponding one-dimensional
Gauss-Hermite weights argd*») is an-dimensional vector with one-dimens-
ional unit sigma point(+) at elementt. The algorithm can be now written as
follows:

Algorithm 3.24 (Gauss-Hermite cubatureThepth order Gauss-Hermite approx-
imation to the multidimensional integral

[ 860 NG| m. P) dx (3.167)

can be computed as follows:

1. Compute the one-dimensional weight$?,i = 1,...,p and unit sigma
points¢(® as in the one-dimensional Gauss-Hermite quadrature Algorithm
3.23.

2. Form multidimensional weights as the products of one-dimensionahtseig

W in) — pin) o oy 7 Gin)
ol . (3.168)

— X o0 X

P [Hp—1 (§0)]? P [Hp—1 (§6))]>

where each, takes valuesg, . .., p.

3. Form multidimensional unit sigma points as Cartesian product of the one
dimensional unit sigma points:

f(il)
£(in)

4. Approximate the integral as

[ 800 Nex|m Py dx 37 Wt glan VP,

(3.170)

wherey/P is a matrix square root defined B = VP VP .

The pth order multidimensional Gauss-Hermite integration is exact for mono-
mials of the formz® z% ... 2% and their arbitrary linear combinations, where
each of the orderd; < 2p — 1. The number of sigma points required for
dimensional integral withpth order rule isp™, which quickly becomes unfeasible
when the number of dimensions grows.
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3.3.4 Gauss-Hermite Kalman Filter (GHKF)

The additive form multidimensional Gauss-Hermite cubature based filterean b
derived by replacing the Gaussian integrals in the Gaussian filter AlgoritAfn 3
with the Gauss-Hermite approximations in Algorithm 3.24:

Algorithm 3.25 (Gauss-Hermite Kalman filter)rhe additive form Gauss-Hermite
Kalman filter (GHKF) algorithm is the following:

1. Prediction step:

(a) Form the sigma points as:

X]gl_liﬂn) =my_1++/Pr_1 f(il""’i") yeeoyln=1,...,p,
(3.1712)

where the unit sigma poing™ =) were defined in Equatiof8.169)

(b) Propagate the sigma points through the dynamic model:
i) — gty g =1, p (B.172)

(c) Compute the predicted meam,_ and the predicted covariande, :

m; = Z W(il,“.,in)i‘éh,...,in)

i1,..., in
P]; — Z W(il,...,in) (‘XAkgllvvln) o m];) (Xk(‘llzﬂn) o m]:)T + Qk—17
$1 eyl

(3.173)

where the weights/’ (i1-in) were defined in Equatiof8.168)

2. Update step:

(a) Form the sigma points:

XU = g [Py gl iyeeyin=1,...,p,
(3.174)

where the unit sigma poings?*») were defined in Equatiof8.169)

(b) Propagate sigma points through the measurement model:

Plin) — g teiny gy i =1, p. (3.175)
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(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and the measure-
mentCy:

(3.176)

where the weightgl’ (1) were defined in Equatio(8.168)

(d) Compute the filter gailK;,, the filtered state meam; and the covari-
anceP,, conditional on the measuremeyy:

Kj = C;S; !
my, = m, + Ky [yr — p) (3.177)
P, =P, - K;S;K{.

The non-additive version can be obtained by applying the Gauss-Henmaidteay
ture to the non-additive Gaussian filter Algorithm 3.22 in a similar manner. How-
ever, due to the rapid growth of computational requirements in state dimension
the augmented form is computationally quite heavy, because it requirellyoug
doubling of the dimensionality of the integration variable.

3.3.5 Spherical Cubature Integration

In this section we shall derive the third order spherical cubature ruteghavas
popularized by Arasaratnam and Haykin (2009). However, insteadiofy the
derivation of Arasaratnam and Haykin (2009), we shall use theat@ivpresented

by Wu et al. (2006), due to its simplicity. Although the derivation that we prese
here is far simpler than the alternative, it is completely equivalent. Furthermor
the derivation presented here can be more easily extended to more condplicate
spherical cubatures.

Recall from Section 3.3.3 that expectation of a non-linear function over an
arbitrary Gaussian distributidN(x | m, P) can always be transformed into expec-
tation over unit Gaussian distributiof(¢ | 0, I). Thus, we can start by considering
the multidimensional unit Gaussian integral

/ g(€) N(£]0,T) d¢. (3.178)

We now wish to form &n-point approximation of the form

/ 8(6) N(E[0.1)de ~ 'Y gleu?), (3.179)
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where the points1”) belong to the symmetric sét] with generator(1,0, ... ,0)
(see, e.g., Wu et al., 2006; Arasaratham and Haykin, 2009):

1\ /0 ~1 0
o] [1 0 -1

=4 |of, {of,...lof,[o],.. (3.180)
0o/ \o 0 0

andWV is a weight and is a parameter yet to be determined.

Because the point set is symmetric, the rule is exact for all monomials of the
form 29 29> ... x4 if at least one of the exponents is odd. Thus we can
construct a rule which is exact up to third degree by determining the deetfic
W andc such that it is exact for selectiops(§) = 1 andg; (&) = @2. Because the

true values of the integrals are

/N(£|0,I)d£:1

(3.181)
/ﬁN@QD%ZL
we get the equations
WY 1=W2n=1
(?) (3.182)
I/I/Z[cujZ PP=wac =1,
which have the solutions
1
W= —
2n (3.183)
c=+/n.

That is, we get the following simple rule, which is exact for monomials up to third
degree:

[e© Nelo.nag~ 5> g, (3189

We can now easily extend the method to arbitrary mean and covariance gyhssin
change of variables in Equations (3.164) and (3.165) and the resultfilthveing
algorithm:

Algorithm 3.26 (Spherical cubature integrationhe 3rd order spherical cubature
approximation to the multidimensional integral

/g(x) N(x|m,P)dx (3.185)

can be computed as follows:
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1. Compute the unit sigma points as

(i) _ Vne; , 1=1,...,n
£ {—\/ﬁein , i=n+1,...,2n, (3.186)

wheree; denotes a unit vector to the direction of coordinate axis

2. Approximate the integral as
1 2n
P)dx ~ — Pe® 3.187
[ 860 Nex|m P)ax= 53 sm o+ VPEO), @8

wherey/P is a matrix square root defined B = VP VP .

It is easy to see that the approximation above is a special case of thetausce
transform (see Section 3.2.5) with parameters- 1, 5 = 0, andx = 0. With
this parameter selection the mean weight is zero and the unscented traisform
effectively a2n-point approximation as well.

The derivation presented by Arasaratnam and Haykin (2009) is a bi mor
complicated than the derivation of Wu et al. (2006) presented aboveisdsaised
on converting the Gaussian integral into spherical coordinates anddhsiuering
the even order monomials. However, Wu et al. (2006) actually did noepteise
most useful special case given in the Algorithm 3.26, but instead, mrzs¢he
method for more general generatdu$. The method in the above Algorithm 3.26
has the useful property that its weights are always positive, which ianatys
true for more general methods (Wu et al., 2006).

We can generalize the above approach by ugimg- 1 point approximation,
where the origin is also included:

/ 5(6) N(€10,T)d¢ = Wy g(0) + W'Y glcul”). (3.188)

We can now solve the parameté#$), W andc such that we get the exact result
with selectiongy;(§) = 1 andg;(§) = 532.. The solution can be written in form

K
Wo = n+kK
1
- (3.189)
W 2(n + k)
c=+n++k,

wherek is a free parameter. This gives an integration rule that can be written as

K

/g(x) N(x|m,P)dx%n+H

1 2n A
m)+ —— m @)
g( )+2(n+ﬂ);g( +VPgY),
(3.190)
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where
5(1)_ VN + Ke; , 1=1,...,n
| —vVn+re, , i=n+1,...,2n.

The rule can be seen to coincide with the original UT (Julier and Uhlmann,)1995
which corresponds to the unscented transform presented in Sectiomw82b=

1, # = 0 and wherex is left as a free parameter. With the selectios 3 — n, we

can also match the fourth order moments of the distribution (Julier and Uhlmann,
1995), but with the price that when the dimensionality> 3, we get negative
weights and approximation rules that can sometimes be unstable. But nothing
prevents us from using other values for the parameter.

Note that “third order” here means a different thing than in the Gauseitter
Kalman filter — apth order Gauss-Hermite filter is exact for monomials up to order
2p — 1, which means that 3rd order GHKF is exact for monomials up to fifth order.
The 3rd order spherical cubature rule is exact only for monomials up thdhiter.

Itis also possible to derive symmetric rules that are exact for higher tivdrotider.
However, this is no longer possible with a number of sigma points, which is linear
O(n) in state dimension (Wu et al., 2006; Arasaratnam and Haykin, 2009). For
example, for fifth order rule, the required number of sigma points is ptopet

to n?, the state dimension squared.

(3.191)

3.3.6 Cubature Kalman Filter (CKF)

When we apply the 3rd spherical cubature integration rule in Algorithm 3.26 to
the Gaussian filter equations in Algorithm 3.21, we get the cubature Kalman filter
(CKF) of Arasaratnam and Haykin (2009):

Algorithm 3.27 (Cubature Kalman filter 1) The additive form cubature Kalman
filter (CKF) algorithm is the following:

1. Prediction step:
(&) Form the sigma points as:
X0 —my + /P €9 i=1,...2n,  (3.192)

where the unit sigma points are defined as

@ _ | Vne . i=1,...,n
¢ {—\/’ﬁez’—n , t=n—+1,...,2n. (3.193)

(b) Propagate the sigma points through the dynamic model:

20 =gy, i=1.. .20 (3.194)
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(c) Compute the predicted meam_ and the predicted covariande, :
(3.195)

2. Update step:
(a) Form the sigma points:
X D =mp +/Po gD, i=1,... 2n, (3.196)

where the unit sigma points are defined as in Equaf®t93)
(b) Propagate sigma points through the measurement model:

Y —nh "), i=1...2n (3.197)

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;,, and the cross-covariance of the state and the measure-

mentCy.:

1 2n L

e =5 Zy,ff)

i=1

Lo 500 () T

Sk—%;(yk _/J’k)(yk _.U’k) +Rk (3198)
1 2n L .

Ci= 5 > (4 —mp) 7 — )"

i=1

(d) Compute the filter gailK; and the filtered state mean; and covari-
anceP,, conditional on the measuremeyy:

Kj = C;S; !
my, = my + Ky [yr — py (3.199)
P, =P, - K;S;K}.

By applying the cubature rule to the non-additive Gaussian filter in Algorithm
3.22 we get the following augmented form cubature Kalman filter (CKF):

Algorithm 3.28 (Cubature Kalman filter 1) The augmented non-additive form
cubature Kalman filter (CKF) algorithm is the following:
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1. Prediction step:

(a) Form the matrix of sigma points for the augmented random variable
(Xk—1,dr-1):

X9 vy P gD =1, 2 (3.200)

- _(my_y = _(Pr—1 O
o () (L)
Heren' = n + ny, wheren is the dimensionality of the statg,_; and
nq is the dimensionality of the noigg,_;. The unit sigma points are

where

defined as
(i)’: Wei y izl,...,n/
¢ { —Vn'e_, , i=n'+1,...,20. (3.201)
(b) Propagate the sigma points through the dynamic model:
e — e 20y =1 o, (3.202)

whereX”:" denotes the first components ik’ | and.X”¢ denotes
then, last components.

(c) Compute the predicted meam,_ and the predicted covariande, :

2n’
_ 1 5(i)
m, = %;Xk
2n’
_ 1 i T _
Pr = o> () —mp) (& —mp)".
i=1

(3.203)

2. Update step:

(@) Letn” = n + n,., wheren is the dimensionality of the state angl is
the dimensionality of the measurement noise. Form the sigma points
for the augmented vectgky, ry.) as follows:

X0 = /P i=1,. 2, (3.204)

where

- (m, - (P, O

w= () m- (T w)
The unit sigma point§™” are defined as in Equatiof8.201) but with
n’ replaced byn”.
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(b) Propagate sigma points through the measurement model:
Y =, O O =1, (3.205)

where X' denotes the first. components i, ) and X, "
denotes the:, last components.

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and the measure-
mentCy.:

2n//
L 0!

Ky = o ; yk
an’’ » ‘
SO = ) D) — )" (3.206)
1=1
1 an’’ ‘ .
Cy S O =) (O - )T

Y
i=1

Sk

= 2n//

(d) Compute the filter gailKy, the filtered state meam; and the covari-
ancePy, conditional on the measuremeyy:

K = C;S;*
mpg = m]; + Kk [yk — pl,k] (3207)
P, =P, —K;S;K}.

Note that although in cubature Kalman filter (CKF) literature the “third order”
characteristic of the cubature integration rule is often emphasized (cEaratmam
and Haykin, 2009), it is important to remember that in the covariance computatio
the rule is only exact for first order polynomials. Thus in that sense ClaHirst
order method.

3.4 Particle Filtering

Although in many filtering problems Gaussian approximations work well, some-
times the filtering distributions can be, for example, multi-modal or some of the
state components might be discrete, in which cases Gaussian approximations a
not appropriate. In such cases sequential importance resampling fradsiete
filters can be a better alternative. This section is concerned with particles filter
which are methods for forming Monte Carlo approximations to the solutions of the
Bayesian optimal filtering equations.
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3.4.1 Monte Carlo Approximations in Bayesian Inference

In Bayesian inference, including Bayesian optimal filtering, the main iné&ren
problem can often be reduced into computation of arbitrary expectatiamrstho
posterior distributiofx

Blg(x) [ y11] = [ 800 plx|y1r) dx (3.208)
whereg : R™ — R™ in an arbitrary function ang(x|y1.7) is the posterior
probability density ofk given the measuremenys, ..., yr. Now the problem is

that such an integral can be evaluated in closed form only in a few spacab
and generally, numerical methods have to be used.

Monte Carlomethods provide a numerical method for calculating integrals of
the form (3.208). Monte Carlo refers to a general class of methodsevdhesed
form computation of statistical quantities is replaced by drawing samples frem th
distribution and estimating the quantities by sample averages.

In (perfect) Monte Carlo approximation, we draWwindependent random sam-
ples fromx() ~ p(x|y1.7) and estimate the expectation as

N
Blg(o) lyir] = 1 > () (3.209)
=1

Thus Monte Carlo methods approximate the target density by a set of samples
that are distributed according to the target density. Figure 3.8 represdms
dimensional Gaussian distribution and its Monte Carlo representation.

Figure 3.8: (a) Two dimensional Gaussian density. (b) Monte Carlo regmtation of the
same Gaussian density.

The convergence of Monte Carlo approximation is guaranteed by theaCentr
Limit Theorem (CLT) (see, e.g., Liu, 2001) and the error terr{sV—1/2), re-
gardless of dimensionality of. This invariance with respect to dimensionality is

®In this section we formally treat as a continuous random variable with a density, but the
analogous results apply to discrete random variables.
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unique to Monte Carlo methods and makes them superior to practically all other
numerical methods when the dimensionalitka$ considerable. At leastin theory,
not necessarily in practice.

3.4.2 Importance Sampling

Often in practical Bayesian models, it is not possible to obtain samples directly
fromp(x | y1.7) due to its complicated formal appearanceiniportance sampling

(IS) (see, e.g., Liu, 2001) we use an approximate distribution called the tamoer
distributionz (x | y1.7), from which we can easily draw samples. Importance sam-
pling is based on the following decomposition of the expectation over the frster
probability densityp(x | y1.7):

[ stosixiviriax= [ a0 BV nix vy ix, (@210
m(x|y11)

where the importance density(x |y1.7) is required to be non-zero whenever

p(x|y1.7) is non-zero, that is, theupportof 7 (x| y1.7) needs to be greater or

equal to the support of(x | y1.7). As the above expression is just the expectation

of the term in the brackets over the distributiotx | y;.7), we can form Monte

Carlo approximation to it by drawingy samples from the importance density:

x® ~ 7(x | y1.1), i=1,...,N, (3.211)

and by forming the approximation as

' N i—1 m(x® | y17
(3.212)
N
— Z ™ g(x™)
i=1
where the weights have been defined as
: @ | y,.
a0 — L P yir) (3.213)

N a(x® | yr)

Figure 3.9 illustrates the idea of importance sampling. We sample from the impor-
tance distribution, which is an approximation to the target distribution. Because
the distribution of samples is not exact, we need to correct the approximation b
associating a weight to each of the samples.

The disadvantage of this direct importance sampling is that we should be able
to evaluatep(x() | y1.7) in order to use it directly. Recall that by Bayes’ rule the
posterior probability density can be written as

x () _ plyrr | x() p(xD)
p( | yl:T) fp(YI:T ‘ X) p(X) dx’ (3214)
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@ (b)

Figure 3.9: (a) Importance distribution approximates the target ilistion (b) Weights
are associated to each of the samples to correct the ap@eim

The likelihoodp(y.7 | x¥) and prior termg(x(?)) are usually easy to evaluate
but often the integral in the denominator — the normalization constant — cannot
be computed. To overcome this problem, we can form importance sampling base
approximation to the expectation integral by approximating also the normalization
constant by importance sampling. For this purpose we can decomposete ex
tation integral and form the approximation as follows:

Elg(x) |yrr] = /g(X)p(X |y17) dx

_ Jg(x)p(yrr|x) p(x) dx
[ p(y17|x) p(x) dx

N [Pzl o(x)] (x| yr) dx

‘yI:T

I {p(yw | x) p(x)

Tyin) } m(x[yur)dx

) p(x® . (3.215)
1 ZN p(y1: 7;(|<1>‘y)1 ;) )g(x( ))
N x(]) x(J)
NZ pleX‘(J”)zli) :
plyrr | xD) p(x()
m(x() |y1.7)

N
_ (i)
_Z Y pyrr | x9)) p(x)) g(x").
=1 | 2551 G Ty

%

w®
Thus we get the following algorithm:

Algorithm 3.29 (Importance sampling)Given a measurement modely ;.7 | x)
and a prior p(x) we can form an importance sampling approximation to the pos-
terior as follows:
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1. Draw N samples from the importance distribution:

x? ~r(x|yLr), i=1,...,N. (3.216)

2. Compute the unnormalized weights by

. , (1) (1)
w0 — POLr [ X)) p(xY) (3.217)
(x| y1r)
and the normalized weights by
w*(®

Z;'Vzl w*(]) ’

3. The approximation to the posterior expectatiog(f) is then given as

W) —

(3.218)

x) | y1:7] Zw (3.219)

The approximation to the posterior probability density formed by the above
algorithm can then be formally written as

p(x|y1r) &~ Zw x(), (3.220)

whered(-) is the Dirac delta function.

3.4.3 Sequential Importance Sampling

Sequential importance sampli(gIS) (see, e.g., Doucet et al., 2001) is a sequential
version of importance sampling. The SIS algorithm can be used for dgemgera
importance sampling approximations to filtering distributions of generic state spac
models of the form

Xpp ~ p(Xp | Xp—1)

(3.221)
Yi ~ (Y | Xi),

wherex;, € R™ is the state at time stepandy;, € R™ is the measurement. The

state and measurements may contain both discrete and continuous components.
The SIS algorithm uses a weighted sepafticles{(w,(j), xg)) ci=1,...,N},

that is, samples from an importance distribution and their weights, for remieg

the filtering distributionp(xy, | y1.x) such that at every time stépthe approxi-

mation to the expectation of an arbitrary functigfx) can be calculated as the

weighted sample average

Elg(xs) | y1.4] Zwkg . (3.222)
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Equivalently, SIS can be interpreted as forming an approximation to the fgterin
distribution as

N
p(Xk | y1:k) = Z’w;(f)fS(Xk —x\™, (3.223)
=1

whered(-) is the Dirac delta function.

To derive the algorithm, we consider the full posterior distribution of states
X0, given the measuremenys... By using the Markov properties of the model,
we get the following recursion for the posterior distribution:

P(Xo:k | Y1:k) < (Y | X0:ks Y1:k—1) P(X0:k | Y1:k—1)
= p(yk | %K) P(Xk | X0:k—1, Y1:6—1) P(X0:k—1 | Y1:6—1)  (3.224)
= p(yk | Xk) P(Xk | Xk—1) D(X0:k—1 | Y1:5—1)-

Using a similar rationale as in the previous section, we can now construct &impo
tance sampling method, which draws samples from a given importance distnibutio

x& ~ m(xo.1 | y1.£) @nd computes the importance weights by

o P el [x2 ) pxgy |yii)

W(X(();L | yl:k)

If we form the importance distribution for the statesrecursively as follows:

(3.225)

(X0 | Y1k) = T(Xk | Xok—1, k) T(X0:k—1 | Y1:0-1), (3.226)
then the expression for the weights can be written as
w® (Y \x](;))p(xl(;) ’X1(21) P(X[()Z;L_l | Y1:k-1)

W(X;(;) |X(()Z;L,1,Y1:k) W(X(()Z;Lfl | Yik—1)

(3.227)

Let's now assume that we have already drawn the sanméj%gl from the impor-
tance distributionr(x¢.x—1 | ¥1.x—1) and computed the corresponding importance
weightSwl(fll. We can now draw sampleq(ﬁ€ from the importance distribu-
tion m(xo.x | y1.x) by drawing the new state samples for the steps x,(j) ~
(x| Xéﬁ%il,yhk). The importance weights from the previous step are propor-
tional to the last term in Equation (3.227):

(i p(xéz;chl | yik—1)

bl X : , (3.228)
W(X((]:ic—l | YI:k—l)
and thus the weights satisfy the recursion
, (4) (1) | (9 ,
w? p(yr %) p(x; | %;.21) w}(ﬁl' (3.229)

W(XS) ‘ X(()Z;L_ly Y1:k)

The generic sequential importance sampling algorithm can now be desasbed
follows:
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Algorithm 3.30 (Sequential importance samplingjteps of SIS are the following:
e Draw N samples< ) from the prior
x) ~p(xo), i=1,...,N, (3.230)
and setw =1/N,foralli=1,...,N.
e Foreachk =1,...,T do the following:

1. Draw samples:,(j) from the importance distributions

xy) o XGhopyi), i=1o N (3.281)

2. Calculate new weights according to

p(xk |Xk 1)

©

@ @) plyi %)
X()%{; 19 YI:k:)

Wy X W~y ” (i)‘

(3.232)

and normalize them to sum to unity.

Note that it is convenient to select the importance distribution to be Markovian
in the sense that:

T(Xk | Xo:k—1, Y1:6) = T(Xk | Xp—1, Y1:1)- (3.233)

With this form of importance distribution we do not need to store the whole his-

tories xéL in the SIS algorithm, only the current stateg) This form is also

convenient in SIR, because we do not need to worry about the statedsstaring

the resampling step as in the SIR particle smoother (see Section 4.5.1). Thus in
the following section we assume that the importance distribution has indeed been
selected to have the above Markovian form.

3.4.4 Sequential Importance Resampling

One problem in the SIS algorithm described in the previous section is that we
easily encounter the situation that almost all the particles have zero or neesly
weights. This is called thdegeneracyroblem in particle filtering literature and it
prevented practical applications of particle filters for many years.

The degeneracy problem can be solved by usimgsamplingprocedure. It
refers to a procedure where we draivnew samples from the discrete distribution
defined by the weights and replace the old se¥afamples with this new set. This
procedure can be be written as the following algorithm:

Algorithm 3.31 (Resampling) Resampling procedure can be described as fol-
lows:



3.4 Patrticle Filtering 87

1. Interpret each weight;,(j) as the probability of obtaining the sample index
inthe set{(x\" |i =1,...,N}.

2. Draw N samples from that discrete distribution and replace the old sample
set with this new one.

3. Set all weights to the constant vahwéi) =1/N.

The idea of the resampling procedure is to remove particles with very small
weights and duplicate particles with large weights. Although the theoretical dis-
tribution represented by the weighted set of samples does not chasgepeng
introduces additional variance to estimates. This variance introduced lBstdr@-
pling procedure can be reduced by proper choice of the resampling dnetfhe
stratified resamplinglgorithm (Kitagawa, 1996) is optimal in terms of variance.

Sequential importance resampling (SIRpordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001; Ristic et al., 2004), is a generalization op#récle filtering
framework, in which the resampling step is included as part of the sequiential
portance sampling algorithm.

Usually the resampling is not performed at every time step, but only when it
is actually needed. One way of implementing this is to do resampling on every
nth step, where: is some predefined constant. This method has the advantage that
it is unbiased. Another way, which is used hereadaptive resamplingIn this
method, the “effective” number of particles, which is estimated from the nvegia
of the particle weights (Liu and Chen, 1995), is used for monitoring the fared
resampling. The estimate for the effective number of particles can be codrgmite

1
Ei\il (wlsri)) N
(@)

wherew, ” is the normalized weight of particleat the time steg (Liu and Chen,
1995). Resampling is performed when the effective number of particlégrisis
cantly less than the total number of particles, for examplg,< N/10, whereN

is the total number of particles.

Neff ~ (3.234)

Algorithm 3.32 (Sequential importance resampling)he sequential importance
resampling (SIR) algorithm, which is also called the patrticle filter (PF) is the
following:

e Draw N sample.':x((f) from the prior
x((f) ~ p(x0), 1=1,...,N, (3.235)

and setw((f) =1/N,foralli=1,...,N.

5Sequential importance resampling (SIRplso often referred to aampling importance resam-
pling (SIR) orsequential importance sampling resampling (SISR).
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e Foreachk =1,...,T do the following:
1. Draw samples:,(f) from the importance distributions
xg) ~ 7(xg |X](21, Vik)s i=1,...,N. (3.236)

2. Calculate new weights according to

(D) (D)) (1)
i o Plyrlx”) p(x;” | x5.7)
w o w? I e (3.237)
ﬂ(xk ‘ Xk_lv YI:k)

and normalize them to sum to unity.

3. If the effective number of particl¢3.234)is too low, perform resam-
pling.

The performance of the SIR algorithm depends on the quality of the impertanc
distribution (-), which is an approximation to the posterior distribution of states
given the values at the previous step. The importance distribution shoiridbeh
functional form that we can easily draw samples from it and that it is plestib
evaluate the probability densities of the sample poifitee optimal importance
distributionin terms of variance (see, e.g., Doucet et al., 2001; Ristic et al., 2004)
is

m(Xp | Xok—1,Y1:6) = P(Xk | Xp—1, Yk)- (3.238)

If the optimal importance distribution cannot be directly used, good importance
distributions can be obtained ligcal linearizationwhere a mixture of extended
Kalman filters (EKF), unscented Kalman filters (UKF) or other types of lmogear
Kalman filters are used for forming the importance distribution (Doucet et al.,
2000; Van der Merwe et al., 2001). Van der Merwe et al. (2001) alggest a
Metropolis-Hastings step after (or in place of) the resampling step to smooth the
resulting distribution, but from their results, it seems that this extra computation
step has no significant performance effect. A particle filter with UKF impagan
distribution is also referred to amscented particle filte(UPF). Similarly, we
could call a particle filter with Gauss-Hermite Kalman filter importance distribu-
tion Gauss-Hermite particle filte(GHPF) and one with cubature Kalman filter
importance distributiocubature particle filte(CPF).

By tuning the resampling algorithm to specific estimation problems and pos-
sibly changing the order of weight computation and sampling, accuracgane
putational efficiency of the algorithm can be improved (Fearnhead antbi@lif
2003). An important issue is that sampling is more efficient without replacemen
such that duplicate samples are not stored. There is also evidence tloatén s
situations it is more efficient to use a simple deterministic algorithm for preserving
the N most likely particles. In the article (Punskaya et al., 2002) it is shown that
in digital demodulation, where the sampled space is discrete and the optimization
criterion is the minimum error, the deterministic algorithm performs better.
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The bootstrap filte(Gordon et al., 1993) is a variation of SIR where the dy-
namic modelp(x | xx—1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due to the inefficiency of the
importance distribution it may require a very large number of Monte Carlo sample
for accurate estimation results. In the bootstrap filter the resampling is normally
done at each time step.

Algorithm 3.33 (Bootstrap filter) The bootstrap filter algorithm is as follows:

1. Draw new pointx,(f) for each point in the sample s{ak,(le,i =1,...,N}
from the dynamic model:
(i)

X, ~ p(xy | Xl(21)v i=1,...,N. (3.239)

2. Calculate the weights

w,(f) o p(ys | Xl(j))v i=1,...,N, (3.240)

and normalize them to sum to unity.
3. Do resampling.

Another variation of sequential importance resampling is the auxiliary SIR
(ASIR) filter (Pitt and Shephard, 1999). The idea of the ASIR is to mimic the
availability of the optimal importance distribution by performing the resampling at
stepk — 1 using the available measurement at tikne

One problem encountered in particle filtering, even when using a resampling
procedure, is callesample impoverishme(gee, e.g., Ristic et al., 2004). It refers
to the effect that when the noise in the dynamic model is very small, many of the
particles in the particle set will turn out to have exactly the same value. That is,
the resampling step simply multiplies a few (or one) particles and thus we end up
having a set of identical copies of certain high weighted particles. Thidgmrocan
be diminished by using, for example, the resample-move algorithm, regulanizatio
or MCMC steps (Ristic et al., 2004).

Because low noise in the dynamic model causes sample impoverishment, it
also implies that pure recursive estimation with particle filters is challenging. This
is because in pure recursive estimation the process noise is formallyrzktiows a
basic SIR based patrticle filter is likely to perform very badly. Howevere pecur-
sive estimation, such as recursive estimation of static parameters can sontetimes
done by applying a Rao-Blackwellized particle filter instead of a basic Sific|ea
filter.

3.4.5 Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blackwellizatione Th
idea of theRao-Blackwellized particle filtg§RBPF) (Akashi and Kumamoto, 1977;
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Doucet et al., 2001; Ristic et al., 2004), which is also cattéxture Kalman filter
(MKF) (Chen and Liu, 2000) is that sometimes it is possible to evaluate some of th
filtering equations analytically and the others with Monte Carlo sampling instead
of computing everything with pure sampling. According to fRao-Blackwell
theorem(see, e.g., Berger, 1985; Casella and Robert, 1996) this leads to essimator
with less variance than could be obtained with pure Monte Carlo sampling. An
intuitive way of understanding this is that the marginalization replaces the finite
Monte Carlo particle set representation with an infinite closed form partitje se
which is always more accurate than any finite set.

Most commonly Rao-Blackwellized patrticle filtering refers to marginalized
filtering of conditionally Gaussian Markov models of the form

P(Xp | Xp—1,O0p—1) = N(xi | Ap—1(Ok—1) Xp—1, Qr—1(0x—1))
P(Yk | Xk, 0r) = N(yr | Hi(0r) xi, Ri(61)) (3.241)
p(0r | Ox_1) = (any given form)

wherex;, is the stateyy, is the measurement, afig is an arbitrary latent variable.
If also the prior ofxy, is Gaussian, then due to the conditionally Gaussian structure
of the model the state variables can be integrated out analytically and only the
latent variable®;, need to be sampled. The Rao-Blackwellized particle filter uses
SIR for the latent variables and computes the conditionally Gaussian péwsetdc
form.

To derive the filtering algorithm, first note that the full posterior distributibn a
stepk can be factored as

P00k X0:k | Y1:1) = P(X0:ke | Q0 Y1:6) P(O0:k | Y1:8) (3.242)

where the first term is Gaussian and computable with Kalman filter and RTS smooth
er. For the second term we get the following recursion analogously tat©egqu
(3.224):

P00k | y1:k) X P(YE |00k, Yik—1) P(O0:k | Y1:k—1)
=p(¥k |00k Y1:-1) P(Ok | O0:k—1, Y 1:6—1) P(O0:k—1 | Y1:6—1)

=Yk | 00> Y1:k—1) P(Ok | Or—1) P(O0:k—1 | Y1:k—1),
(3.243)

where we have used the Markovianity®f. Now the measurements are not condi-
tionally independent give@,. and thus the first term differs from the corresponding
term in Equation (3.224). The first term can be computed by running Kalman
filter with fixed 8., over the measurement sequence. The second term is just the
dynamic model and the third term is the posterior from the previous step.

If we form the importance distribution recursively as follows:

(00 | Y1:1) = (0% | O0:k—1, Y1:5) T(O0:k—1 | Y1:6—1)5 (3.244)
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then by following the same derivation as in Section 3.4.3, we get the following
recursion for the weights

| 01 y1n-1)p(0)) 161))
NG O(p(}’k| 0:k—1> YLk 1) P8, 18;-1) w® (3.245)
k @) | o) et

7r(0k | 00:k—1’ Y1:k)

which corresponds to Equation (3.229). Thus via the above recursiocawe
form an importance sampling based approximation to the marginal distribution
p(0o.1 | y1.1). But because givefl.i, the distributionp(xg.x | 0ok, y1.1) IS Gaus-
sian, we can form the full posterior distribution by using Equation (3.2&®m-
puting the distribution jointly for the full history., would require running both

the Kalman filter and the RTS smoother over the sequefi¢gandy ., but if we

are only interested in the posterior of the last time sigpwve only need to run the
Kalman filter. The resulting algorithm is the following:

Algorithm 3.34 (Conditionally Gaussian Rao-BIackweIIized particle filteBiven
a sequence of importance distribution&dy, | 0&_1, y1:x) and a set of weighted
samples{w,gizl,algill,mgfll,P,(Ql : ¢ = 1,...,N}, the Rao-Blackwellized
particle filter (RBPF) processes the measuremgptas follows (Doucet et al.,
2001):

1. Perform Kalman filter predictions for each of the Kalman filter means and
covariances in the particles = 1,..., N conditional on the previously

drawn latent variable valuee,(fz1

= Ay 6,

P = a0 )P AL O ) - Qo).
2. Draw new latent variablee,(f) for each particle iri = 1,..., N from the
corresponding importance distributions
0, ~ (01 | 03}y yiu). (3.247)
3. Calculate new weights as follows:
w0 w}sﬁlp(w 1650, yie—1) p(6) 161 ) | (3.248)

(0 105) 1 y1x)
where the likelihood term is the marginal measurement likelihood of the
Kalman filter
p(yk | 9(()%36, Yik-1)
=N (ye | B0 m O Hy(0)) PO HT(6))) + Re(6])).
(3.249)
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such that the model parameters in the Kalman filter are conditioned on the
drawn latent variable valué,i’). Then normalize the weights to sum to unity.

4. Perform Kalman filter updates for each of the particles conditional on the
drawn latent variable®!”

v,E;) =yi — Hk(H( )) m,
s\ =Hk<0§;>>P VL (6)) + Ru(6])

K](:) _ (l) HT(9§C )) S, 1 (3.250)
mg) _ mk( i) + Kg) Vl(cl)

P =, I

5. If the effective number of particl€3.234)is too low, perfornresampling

The Rao-Blackwellized particle filter produces for each time détepset of
weighted samplei@w,(j), 0,(5), m,(j), P,(;) : i=1,..., N} such that expectation of
a functiong(-) can be approximated as

Elg(xk, 0r) | y1:6] = Zwk/ g(xx, 0 ;(:)) N(xk\m,?),P;(f))dx/f. (3.251)

Equivalently, RBPF can be interpreted to form an approximation to the filtering
distribution as

N
p(xi, Ok [yia) = Y wy 6(6), — 6") N(x;, | my”, P{"). (3.252)
i=1

The optimal importance distribution, that is, the importance distribution that mini-
mizes the variance of the importance weights in the RBPF case is

POk | Y14, 050) < plyi | 01, 05)_ ) p(01 | 65 | yin_1).  (3.253)

In general, normalizing this distribution or drawing samples from this distribution
directly is not possible. But, if the latent variabisare discrete, we can normalize
this distribution and use this optimal importance distribution directly.

The class models, where Rao-Blackwellization of some linear state compo-
nents can be carried out, can be extended beyond the conditionallyi&aomsxi-
els presented here. We can, for example, include additional latent-eadiejpen-
dent non-linear terms into the dynamic and measurement models (Schon et al.,
2005). In some cases, when the filtering model is not strictly Gaussian due to
slight non-linearities in either dynamic or measurement models, it is possible to
replace the exact Kalman filter update and prediction steps in RBPF with extend
Kalman filter (EKF) or unscented Kalman filter (UKF) prediction and updatesste
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or with any other Gaussian approximation based filters. This approximate Rao
Blackwellization approach has been used, for example, by Sarkk&2oarb).

Another general class of models where Rao-Blackwellization can oftap-be
plied are state space models with unknown static parameters. These modéls are o
the form (Storvik, 2002)

Xp ~ p(Xp | Xp—1,0)
Vi ~ p(Yk | Xk, 0) (3.254)
6 ~ p(0),

where vectof contains the unknown static parameters. If the posterior distribution
of parameter® depends only on some sufficient statistics

Ty = Ti(X1:6, Yi:k), (3.255)

and if the sufficient statistics are easy to update recursively, then sangdling
the state and parameters can be efficiently performed by recursivelyutiogp
the sufficient statistics conditionally on the sampled states and the measurements
(Storvik, 2002). This idea can be extended to time-varying case if thentgna
model has such a form which keeps the predicted distribution within the same
class of distributions.

A particularly useful special case is obtained when the dynamic model is in-
dependent of the parametds In this case, if conditionally to the statg. the
prior p(@) belongs to the conjugate family of the likelihoptly . | x1, €), the static
parameter® can be marginalized out and only the states need to be sampled.
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Chapter 4

Optimal Smoothing

In this chapter we shall first present the Bayesian theory of smoothiren T
we shall present the classical Rauch-Tung-Striebel smoother and asitiatgon
based non-linear extensions. We shall also cover unscented transEauss-
Hermite, and cubature based non-linear RTS smoothers as well as sdioke par
smoothers.

In addition to the various articles cited in the text, the following books contain
useful information on non-linear smoothing:

e Linear smoothing can be found in classic books: Meditch (1969); Aoders
and Moore (1979); Maybeck (1982a); Lewis (1986).

e Linear and non-linear case is treated, for example in the following classic
books: Lee (1964); Sage and Melsa (1971); Gelb (1974) as well tein
more recent book of Crassidis and Junkins (2004).

4.1 Formal Equations and Exact Solutions

4.1.1 Optimal Smoothing Equations

The purpose obptimal smoothingjis to compute the marginal posterior distribu-
tion of the statex;, at the time stej after receiving the measurements up to a time
stepT’, whereT' > k:

P(Xk | y1.7)- 4.1)

The difference between filters and smoothers is thatoptimal filtercomputes

its estimates using only the measurements obtained before and on the time step
k, butthe optimal smootheuses also the future measurements for computing its
estimates. After obtaining the filtering posterior state distributions, the following
theorem gives the equations for computing the marginal posterior distribuftion

each time step conditionally on all the measurements up to the timé&step

This definition actually applies to fixed-interval type of smoothing.
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Theorem 4.1 (Bayesian optimal smoothing equation3he backward recursive
equations for computing themoothed distributions(xy, | y1.7) for anyk < T are
given by the followinddayesian (fixed interval) smoothing equations

P(Xpt1 | Y1) = /p(Xk+1 | xk) p(xXp | y1:) dXp

P\Xk+1 | Xk ) P\XE+1 Y1:T)
P(Xk|Y1;T):p(Xk|Y1:k)/{ (k1 | Xk) P | dxg41,
p(Xk,-+1 \ Y1:k)

(4.2)

wherep(xy | y1.x) is the filtering distribution of the time stdp Note that the term
p(xXk+1 | y1:1) is simply the predicted distribution of time step- 1. The integra-
tions are replaced by summations if some of the state components ateliscr

Proof. Due to the Markov properties the statg is independent of 1.7 given
Xj41, Which givesp(xy | Xp41, Y1.1) = p(Xk | Xk41,Y1:1)- By usingBayes’ rule
the distribution ofx;, givenxy, 1 andy;.r can be expressed as

P(Xk | Xk+1, Y1.1) = P(Xk [ Xk41, Y1:1)
Pk, Xkq1 | Y1k)
B p(xk+1 ’}’1:k)
_ PRkt | Xk Y1) P(Xk [ Y1:k) (4.3)
N p(karl ‘ yl:k)
_ p(Xpgr | Xk) p(X | Y1:8)
B p(xk+1 | Y1:k)

The joint distribution ofx;, andxy; giveny;.r can be now computed as

P(Xks Xkt 1 | y1.7) = P(Xk | Xy 1, Y1.7) P(Xkt1 | y1:7)
= (X | Xpt1, Y1:k) P(Xbg1 | Y1:7) (4.4)
~ p(Xpr | k) p(Xk | Y1) P(X1 [Y1:7)
B P(Xk41 | y1k)

I

wherep(xi+1 | y1.7) is the smoothed distribution of the time stépt+ 1. The
marginal distribution ok; giveny;.r is given by integration (or summation) over
xk+1 in Equation (4.4), which gives the desired result. O

4.1.2 Rauch-Tung-Striebel Smoother

The Rauch-Tung-Striebel (RTS) smooth¢see, e.g., Rauch et al., 1965; Gelb,
1974; Bar-Shalom et al., 2001) can be used for computing the closedsfopoth-
ing solution

p<xk ’y1:T) = N(Xk | mz: Pi)? (45)

2Also sometimes called Kalman smoother.
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to the linear filtering model (3.17). The difference to the solution computedéy th
Kalman filteris that the smoothed solution is conditional on the whole measure-
ment datay;.7-, while the filtering solution is conditional only on the measurements
obtained before and on the time steghat is, on the measurementsy.

Theorem 4.2(RTS smoother) The backward recursion equations for the discrete-
time fixed interval Rauch-Tung-Striebel smoother (Kalman smoothegigen as
m;. = Apmy
P, =AP Al +Q
G =Py Ay [P, (4.6)
mj, = my, + Gy [mj, | — mm
r=Pr+ Ggp[Pi — P ] G,
wherem,;, andP}, are the mean and covariance computed by the Kalman filter. The

recursion is started from the last time st€pwithm?, = m7 andP7, = P7. Note
that the first two of the equations are simply the Kalman filter prediction equstio

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joint distribution of
xj andxy1 givenyy.x is

P(Xps Xpg1 | Y1:k) = P(Xpt1 [ Xp) P(Xk | Y1:2)
= N(xp41 | Ak xp, Qr) N(xp | my, Py)

:N([ i ] \ml,m),
Xk+1

my P, P, A{
- P, = T . 4.8
i (Ak Hlk) ' ! (Ak P, A P A; +Q (4.8)

Due to the Markov property of the states we have

(4.7)

where

P(Xk | X1, Y1.1) = (X | Xt 1, Y1:1), (4.9

and thus by Lemma A.2 we get the conditional distribution

P(Xk | X1, Y1.1) = P(Xk | Xpg 1, Y1:1)

(4.10)
= N(Xk ‘ mso, PQ),

where

Gy =P, AT (A, P AT + Q)
my = my, + Gy (X1 — Ap my) (4.11)
Py, =P, — G, (A, PLAT + Q) GE.
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The joint distribution ofx;, andxy; given all the data is

P(Xkt1, Xk | Y1.17) = D(Xk | Xpot 1, Y1.7) P(Xpt1 | Y1:7)
= N(x; | m2, Pa) N(xp41 | mz+1v Piﬂ)

(4.12)
=N <|:Xk+1:| ‘ ms, P3>
X
where
_ mj
meaeq =
3 <mk + Gy, (szrl — Ay mk)> (4.13)
Py < Py P;,, Gf > |
GyPj,, GiPi, G[ +P;
Thus by Lemma A.2, the marginal distributionxf is given as
p(Xk |YI:T) = N(Xk | mzv PZ)? (4-14)
where
m; =my +Gir(m;_. ., — A,m
. kb ( R ’“)T . (4.15)
O

Example 4.1(RTS smoother for Gaussian random walkhe RTS smoother for
the random walk model given in Example 3.1 is given by the equations

My = My

P =Pi+q
s _ Pe (s -

my, = my, + o= (Mg = my,) (4.16)

fet1

p\?

e _
PEZPk+ <P> [Plj—i-lipk.l,_l]’
k+1

wherem,;, and P, are the updated mean and covariance from the Kalman filter in
Example 3.2.

4.2 Extended and Unscented Smoothing

4.2.1 Extended Rauch-Tung-Striebel Smoother

The first order (i.e., linearized) extended Rauch-Tung-Striebel sreo@ERTSS)
(Cox, 1964; Sage and Melsa, 1971) can be obtained from the basisiRd&her
equations by replacing the prediction equations with first order approxinsatio
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Figure 4.1: Filter and smoother variances in the Kalman smoothing elarftpxample
4.1).
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Figure 4.2: Filter and smoother estimates in the Kalman smoothing elaififxample
4.1).

Higher order extended Kalman smoothers are also possible (see, e.q.196dx
Sage and Melsa, 1971), but only the first order version is preseated h

For the additive model Equation (3.55) the extended Rauch-Tung-Stsimoether
algorithm is the following:

Algorithm 4.1 (Extended RTS smoother)rhe equations for the extended RTS
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smoother are

m, = f(my)

P, ., = Fx(m;) P F(my) + Qk
Gy =P Fy(my) [Py, ]! (4.17)
my, = my, + Gg [mj —m;_ ]
Pi =Pi+ Gy [Pry — P ] Gf,

where the matri¥'x(my,) is the Jacobian matrix df(x) evaluated aimy.

The above procedure is a recursion which can be used for computing the
smoothing distribution of stefpfrom the smoothing distribution of time step- 1.
Because the smoothing distribution and filtering distribution of the last timeZstep
are the same, we hawa’, = mr, Pj, = Pr, and thus the recursion can be used
for computing the smoothing distributions of all time steps by starting from the last
stepk = T and proceeding backwards to the initial step= 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions

p(xk | Y1) = N(xp | my, Pg),

for the model (3.55) have been computed by the extended Kalman filter or arsimila
method. Further assume that the smoothing distribution of timetstepis known
and approximately Gaussian

P(Xp1 | y17) = N(Xppr | mi, 1, Pr ).

As in the derivation of the prediction step of EKF in Section 3.2.2, the apprd&ima
joint distribution ofx; andxy. 1 giveny . is

P(Xp, Xpt1 | Y1) = N <[ Xk ] ‘m17P1> , (4.18)

where

e (f(rfnnkk)>

P, P, Fl
Pi={pp ¥, p F’ '
x Lk x Lk x+Qk

(4.19)

where the Jacobian matrl, of f(x) is evaluated ak = my. By conditioning on
Xj11 a@s in RTS derivation in Section 4.1.2 we get

p(Xk | Xk+1, Y1:T) = p(Xk ‘ Xk+15 Y1:k;)

(4.20)
= N(Xk | mo, PQ),
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where
Gy =Py F] (F, Py F] + Q)"
my = my, + Gy (X1 — f(my)) (4.21)
Py =P, — G (F. P,FL + Q) GT.

The joint distribution ofx;, andx;.; given all the data is now

P(Xkt1, Xk | Y1) = P(Xk | Xpot 1, Y1.1) P(Xpot1 | Y1:7)

()

Xk

where

_ mj
e (mk + Gy (mjy — f(mk))>

. . T (4.23)
P; — < P Pii GTk ) '
GePy GiPp Gy + P
The marginal distribution ok, is then
p(xk | y1.7) = N(x¢ [ mj, P}), (4.24)
where
m; =my; + Gy, (m;_ , — f(m
;; k k ( 8k+1 ( k:))T . (4.25)
L :Pk+Gk( k1 —F, P, F, _Qk)Gk
Ol

The generalization to non-additive model (3.68) is analogous to the filtering
case.

4.2.2 Statistically Linearized RTS Smoother

The statistically linearized Rauch-Tung-Striebel smoother for the additidemo
(3.55) is the following:

Algorithm 4.2 (Statistically linearized RTS smoothefjhe equations for the sta-
tistically linearized RTS smoother are

my = Elf (x)]
P, ., = E[f(x) oxi ] Pt B[f(xp) 6x1 )" + Qp
Gy, = B[f (xx) 0x;] [Py, (4.26)
mj, = my + Gg [my; —m;_ ]
P, =P, + G [P}, — P ]G,
where the expectations are taken with respect to the filtering distributjorR-
N(myg, Pg).
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Proof. Analogous to the ERTS case. O]

The generalization to the non-additive case is also straight-forward.

4.2.3 Unscented Rauch-Tung-Striebel (URTS) Smoother

Theunscented Rauch-Tung-Striebel (URTS) smodtérkka, 2008) is a Gaussian
approximation based smoother where the non-linearity is approximated using th
unscented transform. The smoother equations for the additive mode) (868
given as follows:

Algorithm 4.3 (Unscented Rauch-Tung-Striebel smootherThe additive form
unscented RTS smoother algoritlgrthe following:

1. Form the sigma points:
X,EO) = my,
2 = my + v+ A [\/Iﬂ (4.27)
Xéi+n) =my; —Vn+\ [\/PikL, 1=1,....n
where the parametex was defined in Equatio¢8.99)
2. Propagate the sigma points through the dynamic model:
=fx"), i=0,...,2n

e

3. Compute the predicted meam,_ ,, the predicted covariancP,_ ; and the
cross-covarianc®y ;1

my ., = Z W Xk(;L
Pia= Z W ng+)1 m; ) (?C’;ﬁl - m];rl)T +Qx (4.28)

Dyt = Z W () —my) (B, —mp )T

where the weights were defined in Equat{@rl01)

4. Compute the smoother gdik,, the smoothed mean; and the covariance
P; as follows:

Gy =Dy [Py,
mj, = my, + Gg (mj —m_ ) (4.29)
PZ:Pk—I-Gk( Z-i—l k+1)GT
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The above computations are started from the filtering result of the last tirpe ste
m7. = mr, P7 = P and the recursion runs backwards for=T -1, ... 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions are available:

p(xk | Y1) = N(xp | my, Pg),

and the smoothing distribution of time stép+ 1 is known and approximately
Gaussian

P(Xpr1 | yir) = N(Xpq1 [ mi, 1, Pi ).

An unscented transform based approximation to the optimal smoothing solution
can be derived as follows:

1. Generate unscented transform based Gaussian approximation to the join
distribution ofx;, andxy1:

Xp, my, P, Dy
o (P2 2 s
(Xk+1> v mg . D;{H Py

This can be done by using the additive form of the unscented transformatio
in Algorithm 3.13 for the nonlinearitk, 1 = f(xx) + qx. This is done in
Equations (4.28).

2. Because the distribution (4.30) is Gaussian, by the computation rules of
Gaussian distributions the conditional distributiornxgfis given as

Xk | Xk+1, Y117 ~ N(mg, P3),
where

Gy =Dy [P}
my = my + Gy (X1 —my )

P, =P, - G,P,_,, G}.

3. Therest of the derivation is completely analogous to the derivation DSER
in Section 4.2.1.

O]

The corresponding augmented version of the smoother is almost the same,
except that the augmented UT in Algorithm 3.14 is used instead of the additive
UT in Algorithm 3.13. The smoother can be formulated as follows:

Algorithm 4.4 (Unscented Rauch-Tung-Striebel smoother M)single step of the
augmented form unscented RTS smooikers follows:
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1. Form the sigma points for th€ = n + n, -dimensional augmented random
variable (x! ql )T

L (4.31)

where
we(3) ne( )
2. Propagate the sigma points through the dynamic model:
20 = f(& 2N, =0, 20,

where;\?,f)’“ and X,(:)’q denote the parts of the augmented sigma paint
which correspond te; andqy, respectively.

3. Compute the predicted meam,_ ,, the predicted covariancP,_ , and the
cross-covarianc®y ;1

2n’

Pr= Z W (R = my ) (R - my, )T (4.32)
Dy = Z wle ()E(i)vx — my) ()((Z) - )7
kt+1 i k my) (X, —m; )",

where the definitions of the parametgrand the weightsi/Vi(m)/ and Wi(c)/
are the same as in Section 3.2.5.

4. Compute the smoother gdik,, the smoothed mean;, and the covariance
P
Gy =Dpy1 [Py, ]!

mj, = my + Gy, [mj,; —m, ] (4.33)
P; =P, +Gy [P}, —P..,] G
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4.3 General Gaussian Smoothing

4.3.1 General Gaussian Rauch-Tung-Striebel Smoother

The Gaussian moment matching described in Section 3.3.1 can be used in $g100the
in analogous manner as in Gaussian assumed density filters in Section 3a&2. If
follow the extended RTS smoother derivation in Section 4.2.1, we get the foflow
algorithm (Séarkka and Hartikainen, 2010a):

Algorithm 4.5 (Gaussian RTS smoother. IThe equations of the additive form
Gaussian RTS smoothare the following:

m;, = /f(xk>N(Xk|mkaPk)ka

Pl:—s-l = /[f(xk) - m,;_l] [f(xx) — mi:+1]TN(Xk | my,, Py) dxi, + Qi

mﬂz/m—thwﬂqﬂmkumfw&k (4.34)
Gi = Dgy1 [Pl;rl]_l
my, = my, + Gg (mj; —m_ )
P} =Py + Gy (P, —PkH)GT

The integrals above can be approximated using analogous numericahintegr
tion or analytical approximation schemes as in the filtering case, that is, with
Gauss-Hermite quadratures or central differences (Ito and Xioraf); 20argaard
et al., 2000; Wu et al., 2006), cubature rules (Arasaratnam and Ha3®09),
Monte Carlo (Kotecha and Djuric, 2003), Gaussian process / Bagesité based
integration (O’Hagan, 1991; Deisenroth et al., 2009), or with many otineienical
integration schemes.

Algorithm 4.6 (Gaussian RTS smoother IlJThe equations of the non-additive
form Gaussian RTS smoothare the following:

my = /f(Xk:an)N(ch|mkz>Pk:)N(Qk:’07Qk)ka day

Py = [0 ) — mp ) [0 ) - mp )7
N(qx |0, Qx) dx. dqy,

Di = [ b~ ] [Exi, ) — ) (4.35)
N(

qi |0, Q) dxj, dqy

x N(x, | my, Py)

x N(x | mg, Pg)
Gy =Dy [Py}
mj, = my, + Gg (mj —m_ )
P; =P, + Gy (P}, - P, ) G{.
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4.3.2 Gauss-Hermite Rauch-Tung-Striebel (GHRTS) Smoother

By using the Gauss-Hermite approximation to the additive form Gaussian RTS
smoother, we get the following algorithm:

Algorithm 4.7 (Gauss-Hermite Rauch-Tung-Striebel smooth€headditive form
Gauss-Hermite RTS smoother algoritisthe following:

1. Form the sigma points as:

ngzh 7Z") mk+ \/ 5“7 o i17--'7in:17"'7p7 (436)
where the unit sigma poing“») were defined in Equatiof8.169)

2. Propagate the sigma points through the dynamic model:

) — gl i =1, ,p, (437)

3. Compute the predicted meam,_ , the predicted covariancP,_ , and the
cross-covarianc®y ;1

- o D] 5eeesl Zh -t )
my., = E: Wi k+1

Ulsensin

- J— geeesl ( seeesyl ) - A(‘ 7"'7.77‘) - T
P = Z Wi Xkﬁl —my ) (G —my )+ Qy

Ulyensin

D1 = Z Wit X(l)*mk)(xlgl my )"
U1 5eenin

(4.38)

where the weightgl (1) were defined in Equatio(8.168)

4. Compute the gaifx;, meanmj and covarianceP; as follows:

Gj =Dyy1 [Py, ]!
m;, = my + Gy (mZH — ml;rl) (4.39)
P; =P, + Gy (P}, — k+1) GT

4.3.3 Cubature Rauch-Tung-Striebel (CRTS) Smoother

By using the 3rd order spherical cubature approximation to the additire@aus-
sian RTS smoother, we get the following algorithm:

Algorithm 4.8 (Cubature Rauch-Tung-Striebel smootherTheadditive form cu-
bature RTS smoother algorithimthe following:
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1. Form the sigma points:

KD s PLED, i1 (440

where the unit sigma points are defined as

(i) _ \/ﬁei > izl,...,n
£ {—\/ﬁei_n , t=n+1,...,2n. (4.41)

2. Propagate the sigma points through the dynamic model:

20 =), i=1...2n

3. Compute the predicted meam_ ,, the predicted covariancP,_ , and the
cross-covarianc®y, 1

1 2n ()

_ < (i

M1 =5, Z X
i1

12n

_ 5(3) NG _
k17 o5 Z(XIE—H —mp ) (B —mp )"+ Qy (4.42)
=1

2n
1

Dy = o Z(le;i) — my) (9\?/521 - ml;rl)T'
i=1

4. Compute the gaix;, meanm; and covarianceP; as follows:
G, =Dy [PEH]_l

mz =my + Gy (miﬂ — ml;—i-l) (443)
P, =P, + Gy (P}, —Pp.y) GI.

By using the 3rd order spherical cubature approximation to the non-zlditi
form Gaussian RTS smoother, we get the following algorithm:

Algorithm 4.9 (Cubature Rauch-Tung-Striebel smoother W) single step of the
augmented form cubature RTS smootiseas follows:

1. Form the sigma points for th€ = n + n, -dimensional augmented random
variable (x! qf)7

B0 e+ [Pg® i1 (4.44)

wn() ne(i 8)

where
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. Propagate the sigma points through the dynamic model:

20 = (& 2N =1, 2
Wherei,y)’x and X,(f)7q denote the parts of the augmented sigma paint
which correspond te; andqg, respectively.

. Compute the predicted meam, , ,, the predicted covariancB,_, ; and the
cross-covarianc®y; 1:

1 2n/ 0
my ., = ) Z X1
i=1
1 & o6 (i)
_ 5 (i _ 5 (i _ T
P, = o/ Z(Xk-i-l —my ) (X, —my ) (4.45)
i=1
1 2n’ . .
Duos = o SN ) (5, T
i=1

4. Compute the gaifix;,, meanm; and covarianceP;:

Gr = Dpy1 [PEH]_I
m; = my + Gy, [m‘fCJrl — ml;_l} (4.46)
p=Pr+ Gy [PZH - P/Z+1] GZ.

4.4 Fixed-Point and Fixed-Lag Gaussian Smoothing

The smoother algorithms that we have considered this far have all fbexh
interval smoothing algorithms, which can be used for computing estimates of a
fixed time interval of states given the measurements on the same interval. étpwev
there exists a couple of other types of smoothing problems as well:

e Fixed-point smoothingefers to a methodology which can be used for ef-

ficiently computing the optimal estimate of tir@tial state or some other
fixed-time state of a state space model, given an increasing number of mea-
surements after it. This kind of estimation problem arises, for example,
in estimation of the state of a spacecraft at a given point of time in the
past (Meditch, 1969) or in alignment and calibration of inertial navigation
systems (Grewal et al., 1988).

Fixed-lag smoothings a methodology for computing delayed estimates of
state space models given measurements up to the current time and a constant
horizon in the future. Fixed-lag smoothing can be considered as optimal
filtering, where a constant delay is tolerated in the estimates. Potential ap-
plications of fixed-lag smoothing are all the problems where optimal filters



4.4 Fixed-Point and Fixed-Lag Gaussian Smoothing 109

are typically applied, and where the small delay is tolerated. An example of
such application is digital demodulation (Tam et al., 1973).

The presentation here is based on the results presented in (Sarkkarikdikien,
2010a), except that the derivations are presented in a bit more detiinttiae
original reference.

4.4.1 General Fixed-Point Smoother Equations

The general fixed-interval RTS smoothers described in this documeettha
property that given the gain sequence, we only need linear operatbonsei-
forming the smoothing, and in this sense, the smoothing is a compléatelr
operation The only non-linear operations in the smoother are in the approxima-
tions of the Gaussian integrals. However, these operations are pedfdontiee
filtering results and thus we can compute the smoothing gain seq@ndem
the filtering results in a causal manner. Because of these properties weaomway
derive a fixed-point smoother using similar methods as have been usistifong
the linear fixed-point smoother from the linear Rauch-Tung-Striebel #modn
(Meditch, 1969).

We shall now denote the smoothing means and covariances using notation of
typemy,,, andPy,,, which refer to the mean and covariance of the statevhich
is conditioned to measuremeyt, . .., y,. With this notation, the filter estimates
aremy,;,, Py, and the RTS smoother estimates, which are conditionddrtea-
surements have the formmy -, Py 7. The RTS smoothers have the following
common recursion equations:

G = Diya [PI;+1]_1
my 7 = my + Gy [mk+1|T — l’l’ll;+1] (4.47)
Pyr =Py + Gy [Prpyr — Py G

which are indeed linear recursion equations for the smoother mean aaribrme.
Note that the gain& . only depend on the filtering results, not on the smoother
mean and covariance. Because the gdihsare independent of’, from the
equations (4.47) we get for= j, ..., k the identity:

my), — my); = Gi[my g, — my g (4.48)
Similarly, fori = j,..., k — 1 we have
my 1 — my; = Gymy g — myg ). (4.49)

Subtracting these equations gives the identity

my), — My = Gilmy g — my ). (4.50)
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By varyingi from j to £ — 1 we get the identities

myg — Myjp_1 = Gj [mj+1|k - mj-i—l\k—l]
mj g — Mjqq)p—1 = Gj+1[mj+2|k - mj+2\k—1]
(4.51)

my,_ ), — My g1 = Gro1[my, — mypp_].

If we sequentially substitute the above equations to each other starting feom th
last and proceeding to the first, we get the equation

my, = myjp_1 + By [my, — myp_1], (4.52)
where
Bj\k = Gj X X Gk—lo (4.53)

Analogously for the covariance we get
P =Pt + B[Py — Pk|k_1]B;fF‘k. (4.54)

The general fixed-point smoothelgorithm for smoothing the time point can
now be implemented by performing the following operations at each time step
k=1,2,3,....

1. Gain computation:Compute the predicted meany,;,_;, predicted covari-
ancePy;,_, and cross-covariancB,, from the filtering results using one
of equations in the smoother algorithms. Then compute the gain from the
equation
Gi_1 =D, [P, h (4.55)

2. Fixed-point smoothing:

(a) If k < 7, just store the filtering result.

(b) If k = j, setB;; = I. The fixed-point smoothed mean and covariance
on stepj are equal to the filtered mean and covariancg; andP ;.

(c) If & > 7, compute the smoothing gain and the fixed-point smoother
mean and covariance:
Bk = Bjjr-1Gr-1
my, = my)p_q + Bjjp[my, — my,_] (4.56)
P = Pjjp—1 + B[Py — Pk|k—1]BJT|k-

Because only a constant number of computations is needed on each tintaestep,
algorithm can be easily implemented in real time.
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4.4.2 General Fixed-Lag Smoother Equations

It is also possible to derive a general fixed-lag smoother by using a simieep
dure as in the previous section. However, this approach will lead to a mather
unstable algorithm as will be seen shortly. kebe the number of lags. From the
fixed-point smoother we get

myg p1jk = Mg_p_1k-1

(4.57)
+ Bip— 1k Mg — myp_q].
From the fixed-interval smoother we get
myg_pn-1jk = Mi—pn-1jk—n—1 (4 58)

+ Gr1-n My — My p—p—1]-

Equating the right hand sides, and solving fay,_,,; while remembering the
identity By, = G,;lnlek_n_Hk results in the smoothing equation

Mg _pjkp = Mp_plk—n—1
—1
+ Gy My 11 — My 1] (4.59)

+ Bk [myp — myp_1].
Similarly, for covariance we get

Pr_nk = Pr_njk—n-1
+ G];_ln_l[Pk—n—l\k—l - Pk—n—1|k—n—l}G];Tn—1 (460)
+ Br—n k[P — Pk|k—1]B£_n\k'

The equations (4.59) and (4.60) can be principle, used for recursively com-
puting the fixed-lag smoothing solution. The number of computations does not
depend on the lag length. This solution can be seen to be of the same foren as th
fixed-lag smoother given in (Rauch, 1963; Meditch, 1969; Crassidislankins,
2004). Unfortunately, it has been shown (Kelly and Anderson, 18t this form

of smoother isnumerically unstableand thus not usable in practice. However,
sometimes the equations do indeed work and can be used if the user is willing to
take the risk of potential instability.

In (Moore, 1973; Moore and Tam, 1973) stable algorithms for optimal fiagd
smoothing are derived by augmenting théagged states to a Kalman filter. This
approach ensures the stability of the algorithm. Using certain simplifications it is
possible to reduce the computations, and this is also possible when certaiotype
extended Kalman filters are used (Moore, 1973; Moore and Tam, 19n8rtu-
nately, such simplifications cannot be done in more general case aredafople,
when the unscented transformation (Julier et al., 1995, 2000) or aajueairule
(Ito and Xiong, 2000) is used, the required amount of computations becloigie
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because the Cholesky factorization of the whole joint covariance af thgged
states would be needed in the computations. Another possibility, which is em-
ployed here, is to take advantage of the fact that Rauch-Tung-Stsetmther
equations are numerically stable and can be used for fixed-lag smoothivey. T
fixed-lag smoothing can be efficiently implemented by taking into account that the
gain sequence needs to be evaluated only once, and the same gainsusaa be
in different smoothers operating on different intervals. Thusgeeeral fixed-

lag smootheican be implemented by performing the following on each time step
k=1,2,3,...

1. Gain computation:During the Gaussian filter prediction step compute and
store the predicted meam,,;,_;, predicted covarianc®,;,_; and cross-
covarianceDy, using one of equations in the smoother algorithms. Also
compute and store the smoothing gain

Gy_1 =D, [P, " (4.61)

2. Fixed-lag smoothingUsing the stored gain sequence, compute the smooth-
ing solutions for stepg = k& — n,...,k using the following backward
recursion, starting from the filtering solution on sieg- k:

myyj, = myj; + Gy [my e —my )] (4.62)
P =Pjj; + Gj [Py — Py G-

The required number of computations per time step grows linearly with the length

of lag. Thus the computational requirements are comparable to algorithms pre-

sented in (Moore, 1973; Moore and Tam, 1973). The algorithm definedua-

tions (4.59) and (4.60) would be computationally more efficient, but as airead

stated, it would be numerically unstable.

4.5 Monte Carlo Based Smoothers

451 SIR Particle Smoother

The SIR particle smootheof Kitagawa (1996) is based on direct usage of SIR
for smoothing. Recall that in Section 3.4.3 we derived the sequential imgertan
sampling (SIS) method to approximate the full posterior distribution, not just the
filtering distributions. We then discarded the sample hlstotl(ﬁs and only kept

the current statex,g), because we were interested in the filtering distributions.
But we can get an approximation to the smoothing distribution by keeping the full
histories. To get the smoothing solution from sequential importance resampling
(SIR) we also need to resample the state histories, not only the curreist state
prevent the resampling from breaking the state histories. The resultingtiahgo

is the following:
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Algorithm 4.10 (SIR particle smoother)The direct sequential importance resam-
pling (SIR) based smoother algorithm is the following:

e Draw N sampIeSX((f) from the prior

x{) ~p(xg),  i=1,...,N, (4.63)
and setw(()i) = 1/N, foralli = 1,..., N. Initialize the state histories to

contain the prior samplexg).

e Foreachk =1,...,T do the following:
1. Draw N new samplex,(f) from the importance distributions

X](j) ~ 7(xg |Xl(21’ Vik)s i=1,...,N, (4.64)
wherex,(ﬁ,il1 is thek — 1th (last) element in the sample historﬂ_l.

2. Calculate the new weights according to

(1) (1) | (D)
i oy Pyk %) p(xp” [ %;7,)
w,g) o w,gll (ik) o) k 1Tho1 (4.65)
W(Xk ’ XEZ1> yl:k’)
and normalize them to sum to unity.

3. Append the samples to the state histories:
X = (e x): (4.66)

4. If the effective number of particl€3.234)is too low, perform resam-
pling to the state histories.

The approximation to the full posterior (smoothed) distribution is (Kitagawa,
1996; Doucet et al., 2000):

p(xir | yiT) & ZwT X1T—X§)T) (4.67)

The approximation to the smoothed posterior distribution at time/stgven the
measurements up to the time stEp> k is

p(Xk | y1.7) Z Wy, )(5 -)) (4.68)

Wherex,(f) is the kth component meZ)T However, ifT" >> k the direct SIR
smoother algorithm is known to produce very degenerate approximatiotes (K

gawa, 1996; Doucet et al., 2000).



114 Optimal Smoothing

4.5.2 Backward-Simulation Particle Smoother

A less degenerate particle smoother than the SIR particle smoother can bedbtain
by reusing the filtering results instead of simply storing the full particle histaries
SIR. Thebackward-simulation particle smoothef Godsill et al. (2004) is based
on simulation of individual trajectories backwards, starting from the lagpt atel
proceeding to the first.

Assume that we have already simulated a trajeck@ry.7 from the smoothing
distribution. By using the Equation (4.3) we get:

P(Xpg1 | Xp) p(X | y1:8)
P(Xes1]y1:k) (4.69)
= Zp(Xpq1 | Xp) p(Xp | Y1:),

P(Xk | X1, Y1.7) =

whereZ is a normalization constant. By substituting the SIR filter approximation
we get
(i))‘

p(Xp | Xpt1, y1.1) = Z Zw;(:)p(ikﬂ %) 31, — x| (4.70)

We can now draw a sample from this distribution by sampﬂﬁbwith probability
x w](;)p(f(k;+1 |x,(j)). The resulting algorithm is the following:

Algorithm 4.11 (Baqkward-simulation particle smootheipiven the weighted set
of particles{w,(j),x,(j) i = 1,...,N, k = 1,...,T} representing the filtering
distributions:

e Choosex; = x! with probabilityw!”.

e Fork=T-1,...,0:
1. Compute new weights by

(2)

()
Wi|k+1

x wki P(Xg+1 |x,(:)). (4.71)

2. Choosex;, = x| with probability ;) , ,.
Given S iterations of the above procedure resulting in sample trajectﬁﬁ%s
forj =1,...,5 the smoothing distribution can now be approximated as

1 (i
plxur | yur) = ¢ ) d(xur — Xiy). (4.72)
J

The marginal distribution samples for a stegan be obtained by extracting the
kth components from the above trajectories. The computational complexity of the
method isO(ST N). However, the result is much less degenerate than of the
particle smoother of Kitagawa (1996).
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4.5.3 Reweighting Particle Smoother

The reweighting particle smoother of Hirzeler and Kunsch (1998) and&et al.
(2000) is based on computing new weights for the SIR filtering particlesthath

we get an approximation to the smoothing distribution. Assume that have already
computed the weights for the following approximation, where the part@%

are from the SIR filter:

Pkt [yrr) & D wil gy xeen —x,). (4.73)

7

The integral in the second of Equations (4.2) can be now approximated as:

/P(Xk+1 | %) p(Xk11|y1:7) d
Xk+1
P(Xkt1 | Y1:k)

o [ POk [x5) (i) )
- /P(Xk+1 | y1:k) zz: {wkﬂw OXk41 =Xy | dXep (4.74)

_ () p(X;(:ll | Xk)
= Zwk+1|T
i p( k+1 | Yi: k)

By using SIR filter approximation we get the following approximation for the
predicted distribution in the denominator:

P(Xkt1 | Y1ik) Zwk (ki %), (4.75)

which gives

(4)
P(Xpt1 | Y1.17) P(Xkt1 | Xk) (X34 [ %K)
/ (X1 ] y1:8) i 1”Zwk+llT BHINOINONE
P(Xk+1 | Y1k [Z] p(x [ x¢ )]

(4.76)

By substituting the SIR filter approximation and the approximation above to the
Bayesian optimal smoothing equation we get:

X X X .
p(Xk | yrr) = p(Xk | YI:k:)/ [p( kit | X0) Pt ’yl'T)] dxj 41
P(Xkt1 | yir)

l z ; p( X}, 1‘Xk)
sz,i)Mxk—X;))Zwl(cll\T [ (4) y
!

i > Wi Pyl | Xl(cj))}
4.77)

where we can identify the weights as

! i !
w]E? )P(X;J)A | x| ))

2 wl(cj)p( Xkt1 |X )}

(4.78)

k|T x § :wk+1|T [

Thus we get the following algorithm:
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Algorithm 4.12 (Reweighting particle smoother{siven the weighted set of parti-
cles{wk ,xk) |+ =1,..., N} representing the filtering distribution, we can form
approximations to the marginal smoothing distributions as follows:

e Start by settlngu,fmT = w(T) fori=1,...,N.

e Foreachk =T —1,...,0 do the following:
— Compute new importance weights by

wl(c )p(XkJrl | Xk )

k|T x Zwk+1|T [Z (1) ( (l)> : (4-79)
| w k+1 X
e At each stefk the marginal smoothing distribution can be approximated as
p(xk [ y11) Z w,(€|)T O(xp, — x,(f)). (4.80)

The computational complexity of the methodd$7" N?), that is, the same as
of the backward-simulation smoother with= N simulated trajectories.

45.4 Rao-Blackwellized Particle Smoothers

Rao-Blackwellized particle smoothgRFPS) can be used for computing approx-
imate smoothing solutions to conditionally Gaussian models defined in Equation
(38.241). A simple way to implement a RBPS is to store the histories instead of the
single states in RBPF, as in the case of SIR particle smoother (Algorithm 4.10).
The corresponding histories of the means and the covariances aretitioanal

on thelatent variable historie®,.7-. However, the means and covariances at time
stepk are only conditional on theneasurement historiag to &, not on the later
measurements. In order to correct this, RTS smoothers have to be appmi@chto
history of the means and the covariances:

Algorithm 4.13 (Rao-Blackwellized SIR particle smoother) set of weighted
samples{w;”, 50 m®W) P30 i — 1 . N} representing the smoothed
distribution can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized state histories

(00w PO =1 Ny @y

by storing histories in the Rao-Blackwellized particle filter analogously to
the SIR particle smoother in Algorithm 4.10.

2. Set

(4.82)
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3. Apply the RTS smoother to each of the mean and covariance hls’mﬁz@ngl)T

fori = 1,..., N to produce the smoothed mean and covariance histories
msv(i) Psv(z)
T 1T

The Rao-Blackwellized particle smoother in this simple form also has the same
disadvantage as the SIR particle smoother, that is, the smoothed estiréiateaof
be quite degenerate T >> k. Fortunately, the smoothed estimates of the actual
statesx;, can still be relatively good, because their degeneracy is avoided by Rao
Blackwellization.

To avoid the degeneracy in estimate®gfit is possible to use better sampling
procedures for generating samples from the smoothing distributions analgdgo
the plain particle smoothing. The backward-simulation has indeed beeragener
ized to Rao-Blackwellized case, but the implementation of the Rao-Blackwellized
reweighting smoother seems to be quite problematic.

The Rao-Blackwellized backward-simulation smoother proposed by &arkk
et al. (2012a) can be used for drawing backward trajectories fronmtrginal
posterior of the latent variable®, and posterior of the conditionally Gaussian
part is obtained via Kalman filtering and RTS smoothing. The methods of Fong
et al. (2002) and Lindsten and Schon (2011) are based on simulatikg/drakc
trajectories from the joint distributiofxy, 6 ). However, these smoothers are not
really Rao-Blackwellized backward-simulation smoothers, because tlgeyree
sampling of the linear part of the state as well. It is also possible to construct
approximate (Kim’s approximation based) backward-simulation smoothers-by r
placing transition density(x1 | xx) in the Algorithm 4.11 withp(0y.1 | 81) (see
Sarkka et al., 2012a). Given a trajectory of the non-Gaussian varihleldinear
Gaussian part may be recovered with Kalman filter and RTS smoother.
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Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution)Random variablex € R™ has Gaussian
distribution with meamm € R™ and covariancd® € R"*" its probability density
has the form

e (g - m P eom)) . )

where|P| is the determinant of matrile.

N(x |m,P) =

Lemma A.1 (Joint density of Gaussian variablegj random variablesx € R"
andy € R™ have the Gaussian probability densities

x ~ N(x|m,P)
y|x~N(y Hx+u,R),
then the joint density of, y and the marginal distribution of are given as

m ~N ( {H r;n + u] ’ [HPP H PPHIZI“Z R] > (A.3)

y ~N(Hm+u, HPH! + R).

Lemma A.2 (Conditional density of Gaussian variable#)the random variables
x andy have the joint Gaussian probability density

Y|

then the marginal and conditional densitiessoéndy are given as follows:
x ~ N(a, A)

(b,B)

x|y ~N(a+CB~ (y—b),A—CB_ICT)

y|x~Nb+CTA ' (x—-a),B-CTA!C).

(A.2)

yoR (A.5)
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