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We demonstrate the advantages of using Bayesian neu-

ral networks for image analysis. The Bayesian approa
h

provides 
onsistent way to do inferen
e by 
ombining the

eviden
e from data to prior knowledge from the prob-

lem. A pra
ti
al problem with neural networks is to

sele
t the 
orre
t 
omplexity for the model, i.e., the

right number of hidden units or 
orre
t regularization

parameters. The Bayesian approa
h o�ers e�
ient tools

for avoiding over�tting even with very 
omplex models,

and fa
ilitates estimation of the 
on�den
e intervals of

the results. In this 
ontribution we review the Bayesian

methods for neural networks and present 
omparison

results from 
ase studies in pro
ess tomography and im-

age segmentation. In the �rst 
ase, neural networks were

used to solve the inverse problem in ele
tri
al impedan
e

tomography. The Bayesian networks provided 
onsis-

tently better results than other methods. In the se
ond


ase, the goal was to lo
ate trunks of trees in forest

s
enes. With Bayesian network it was possible to use

large number of potentially useful features and prior for

determining the relevan
e of the features automati
ally.

1 Introdu
tion

A universal task in many areas of image analysis is to

infer some needed pie
e of information from measure-

ments that only partly determine the information.

Profound example of su
h problems is the per
eption

of the three dimensional stru
ture of view from two di-

mensional proje
tion, i.e., image, with means like shape

from shading, bino
ular stereopsis, and per
eption of

perspe
tive. Another example is restoration of images

from blurred or noisy re
ordings. Also, 
lassi�
ation

and segmentation of image regions or obje
ts based on

a set of pre
omputed features is similar problem, as the

features are often insu�
ient for uniquely separating the


lasses.

Re
ently Bayesian approa
hes have shown 
onsider-

able potential in su
h problems. In the Bayesian ap-

proa
h prior information from the problem is 
ombined

to the eviden
e from the data, giving the posterior prob-

ability of the solutions. Predi
tions are made by inte-

grating over this posterior distribution. In 
ase of in-

su�
ient data the prior dominates the solution, and

the e�e
t of the prior diminishes with in
reased evi-

den
e from the data. In one of the pioneering works

by Geman et.al. [1℄, Bayesian approa
h was developed

for image restoration. This work also introdu
ed the

Gibbs sampling te
hnique for 
omputing posterior dis-

tributions. The advantages of Bayesian approa
hes in


omputational modeling of per
eption are dis
ussed in

[2℄.

In 
lassi�
ation and non-linear fun
tion approxima-

tion neural networks have be
ome very popular in re
ent

years. With neural networks the main di�
ulty is 
on-

trolling the 
omplexity of the model. Another problem

of standard neural network models is the la
k of tools

for analyzing the results (
on�den
e intervals, like 10 %

and 90 % quantiles, et
.).

For neural networks, Ma
Kay introdu
ed Bayesian

approa
h [3℄ based on Gaussian approximation. Re-


ently Neal introdu
ed hybrid Monte Carlo method [4℄

that fa
ilitates Bayesian learning for neural networks

with no 
ompromising approximations. The main ad-

vantages of Bayesian neural networks are:

• Automati
 
omplexity 
ontrol: Bayesian inferen
e

te
hniques allow the values of regularization 
oe�-


ients to be sele
ted using only the training data,

without the need to use separate training and vali-

dation data.

• Possibility to use prior information and hierar
hi
al

models for the hyperparameters.

• Predi
tive distributions for outputs.

In this 
ontribution we demonstrate the advantages of

Bayesian neural networks in two 
ase problems. In se
-

tion 3 we give a review of the Bayesian methods for

neural networks. In se
tion 4 we report results on using

Bayesian networks for image re
onstru
tion in ele
tri
al

impedan
e tomography. In se
tion 5 we present results


omparing Bayesian networks and other 
lassi�
ation

methods for 
lassi�
ation of obje
ts in forest s
enes.



2 Multi Layer Per
eptron

In this se
tion we brie�y review Multi Layer Per
eptron

(MLP) neural network. See [5℄ for thorough introdu
-

tion to MLPs. We 
on
entrate here to one hidden layer

MLP networks with hyperboli
 tangent (tanh) a
tiva-

tion fun
tion, but Bayesian methods des
ribed 
an be

used for other types of neural networks, like RBF net-

works, too. Basi
 MLP network model with k outputs

is

fk(x, w) = wk0 +
m
∑

j=1

wkj tanh

(

wj0 +
d
∑

i=1

wjixi

)

,

(1)

where x is a d-dimensional input ve
tor, w denotes

weights and indi
es i and j 
orrespond to hidden and

output units, respe
tively.

MLP is often 
onsidered as a generi
 semiparamet-

ri
 model, whi
h means that the e�e
tive number of

parameters may be less than the number of available

parameters. E�e
tive number of parameters determines

the 
omplexity of the model. For small weights the net-

work mapping is almost linear and has low e�e
tive 
om-

plexity, sin
e the 
entral region of sigmoidal a
tivation

fun
tion 
an be approximated by linear transformation.

Traditionally 
omplexity of MLP has been 
ontrolled

with early stopping or weight de
ay [5℄.

In early stopping weights are initialized to very small

values. Part of the training data is used to train the

MLP and the other part is used to monitor the vali-

dation error. Iterative optimization algorithms used for

minimizing the training error gradually take parameters

in use. Training is stopped when the validation error

begins to in
rease. Sin
e training is stopped before a

minimum of the training error, the e�e
tive number of

parameters remains less than the number of available

parameters.

Intuitively, the optimization algorithm �rst �ts the

model more to the underlying pro
ess and when the op-

timization is 
ontinued it �ts more to the noise in the

training set. With early stopping, optimization is tried

to be stopped before too mu
h �tting to the noise has

o

urred.

The basi
 early stopping is rather ine�
ient, as it is

very sensitive to the initial 
onditions of the network

and only part of the available data is used to train the

model. These limitations 
an easily be alleviated by

using a 
ommittee of early stopping networks, with dif-

ferent partitioning of the data to training and stopping

sets for ea
h network. When used with 
aution MLP

early stopping 
ommittee is good baseline method for

neural networks.

In weight de
ay penalizing term is added to the error

fun
tion. Using sum of squares of weights the weights

are en
ouraged to be small. In pra
ti
e ea
h layer in an

MLP should have di�erent regularization parameter [5℄,

giving the penalty term

α1

∑

j,i

w2
ji + α2

∑

j,k

w2
kj . (2)

Problem is how to sele
t good values for αi. Tradition-

ally this has been done with 
ross validation (CV). Sin
e

CV gives noisy estimate for error, it does not guarantee

that good values for αi 
an be found. Also it be
omes

easily 
omputationally prohibitive as 
omputational ex-

penses grow exponentially with number of parameters

to be sele
ted.

3 Bayesian Learning for MLP

Bayesian methods use probability to quantify un
er-

tainty in inferen
es and the result of Bayesian learning is

a probability distribution expressing our beliefs regard-

ing how likely the di�erent predi
tions are. Bayesian

paradigm o�ers 
onsistent way to do inferen
e using

models with even very large number of parameters. See

e.g. [6℄ for good introdu
tion to Bayesian methods.

3.1 Bayesian Learning

Consider a regression or 
lassi�
ation problem involving

the predi
tion of a noisy ve
tor y of target variables

given the value of a ve
tor x of input variables.

The pro
ess of Bayesian learning is started by de�ning

a modelM, and prior distribution p(θ) for the model pa-

rameters. Prior distribution expresses our initial beliefs

about parameter values, before any data has observed.

After observing new data D =
{(x(1), y(1)), . . . , (x(n), y(n))}, prior distribution is

updated to the posterior distribution using Bayes' rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ) , (3)

where the likelihood fun
tion L(θ|D) gives the proba-

bility of the observed data as fun
tion of the unknown

model parameters.

To predi
t the new output y(n+1)
for new input

x(n+1)
, predi
tive distribution is obtained by integrating

the predi
tions of the model with respe
t to the poste-

rior distribution of the model parameters

p(y(n+1)|D) =

∫

p(y(n+1)|x(n+1), θ)p(θ|D)dθ . (4)

This is same as taking the average predi
tion of all the

models weighted by their goodness.

Note that predi
tive distribution for y(n+1)
is impli
-

itly 
onditioned on hypotheses that hold throughout �

no probability judgments 
an be made in va
uum [6℄ �



and to be more expli
it notation as the following might

be used

p(y(n+1)|D, H) =

∫

p(y(n+1)|x(n+1), θ, H)p(θ|D, H)dθ ,

(5)

where H refers to the set of hypotheses or assumptions

used to de�ne the model.

3.2 Models

As noted above we start from de�ning a model for our

problem. Statisti
al model is de�ned with the likelihood

fun
tion, whi
h in 
ase of independent and ex
hangeable

data points is given by

L(θ|D) =

n
∏

i=1

p(y(i)|x(i), θ) , (6)

where n is the number of data points.

In the likelihood equation the term p(y(i)|x(i), θ) de-
pends on our problem. In regression problems, it is gen-

erally assumed that the distribution of target data 
an

be des
ribed by a deterministi
 fun
tion of inputs, 
or-

rupted by additive Gaussian noise of a 
onstant vari-

an
e. Probability density for a target yj is then

p(yj |x, w, σ) =
1√

2πσj

exp(−(y − fj(x, w))2/2σ2
j ) ,

(7)

where σ2
j is the noise varian
e for the target. See [4,

7℄ for input dependent noise models. For a two 
lass


lassi�
ation (logisti
 regression) model, the probability

that a binary-valued target, yj , has the value 1 is

p(yj = 1|x, w) = [1 + exp(−fj(x, w))]−1
(8)

and for many 
lass 
lassi�
ation (softmax) model, the

probability that a 
lass target, y, has value j is

p(y = j|x, w) = exp(fj(x, w))/
∑

k

exp(fk(x, w)) . (9)

In equations (7), (8) and (9) fun
tion fj(x, w) is in this

ase an MLP network. Traditionally in many methods

one of the problems has been to �nd a good topology

for the MLP. In Bayesian approa
h we 
ould use in�nite

number of hidden units [4℄. We do not need to restri
t

the size of the MLP based on the size of the training set,

but in pra
ti
e, we will have to use �nite number of hid-

den units due to 
omputational limits. MCMC methods

(se
tion 3.5) produ
e the 
orre
t answer eventually, but

it may sometimes take unreasonable amount of time[4℄.

3.3 Priors

Next, we have to de�ne the prior information about our

model parameters, before any data has been seen. Usual

prior is that the model has some unknown 
omplexity

but the model is not 
onstant or extremely �exible. To

express this prior belief we set hierar
hi
al model spe
-

i�
ation.

Parameters w de�ne the model f(x, w). As dis
ussed
in se
tion 2, 
omplexity of the MLP network 
an be


ontrolled by 
ontrolling the size of the weights w. Cor-
responding prior to weight de
ay is to use Gaussian prior

distribution for weights w given hyperparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α

m
∑

i=1

w2
i /2) . (10)

This prior states that smaller weights are more proba-

ble, but how mu
h more is determined by the value of

hyperparameter α. Sin
e we do not know the 
orre
t

value for hyperparameter α, we set a vague hyperprior

p(α) expressing our belief that 
omplexity 
ontrolled by

α is unknown but the model is not 
onstant or extremely

�exible. A 
onvenient form for this hyperprior is vague

Gamma distribution with mean µ and shape parameter

a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ) . (11)

In order to have prior for weights whi
h is invariant un-

der the linear transformations of data, separate priors

(ea
h having its own hyperparameters αi) for di�erent

weight groups in ea
h layer of a MLP are used.

In MLP networks, the weights from less important

inputs are typi
ally smaller than weights from more im-

portant inputs

1

. Prior belief that some inputs are likely

to be more relevant than others 
an be implemented by

using di�erent priors for weight groups from ea
h in-

put, and hierar
hi
al hyperpriors for these priors. The

posteriors for hyperparameters should then adjust a
-


ording to relevan
e of the inputs. This prior is 
alled

Automati
 Relevan
e Determination (ARD) [8, 4℄.

For regression models we need prior for σ in equa-

tion (7), whi
h is 
onveniently spe
i�ed in terms of 
or-

responding pre
ision, τ = σ−2
. As for α, our prior infor-

mation is usually quite vague, stating that σ is not zero

or extremely large. This prior 
an be expressed with

vague Gamma-distribution with mean µ and shape pa-

rameter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ) . (12)

1

Note that in the non-linear network the e�e
t of an input may

be small even if the weights from it are large and vi
e verse, but

in general the size of the weights roughly re�e
ts the relevan
e of

the input.



3.4 Predi
tion

After de�ning the model and prior information, we 
om-

bine the eviden
e from the data to get the posterior dis-

tribution for the parameters

p(w, α, τ |D) ∝ L(w, α, τ |D)p(w, α, τ) . (13)

Predi
tive distribution for new data is then obtained

by integrating over this posterior distribution

p(y(n+1)|x(n+1), D) =
∫

p(y(n+1)|x(n+1), w, α, τ)p(w, α, τ |D) dwατ (14)

We 
an also evaluate expe
tations of various fun
tions

with respe
t to the posterior distribution for parame-

ters. For example in regression we may evaluate the

expe
tation for a 
omponent of y(n+1)

ŷ
(n+1)
k =

∫

fk(x(n+1), w)p(w, α, τ |D) dwατ , (15)

whi
h 
orresponds to the best guess with squared error

loss.

The posterior distribution for the parameters

p(w, α, τ |D) is typi
ally very 
omplex, with many

modes. Evaluating the integral of equation (15) is there-

fore a di�
ult task.

The integral 
an be approximated with Gaussian ap-

proximations to modes. Then predi
tive distribution

is approximated by the 
orresponding integral with re-

spe
t to the Gaussian [3, 9℄. Or we 
an use Monte

Carlo methods, des
ribed next, to numeri
ally approxi-

mate the integral.

3.5 Markov Chain Monte Carlo method

Re
ently, Neal has introdu
ed implementation of

Bayesian learning for neural networks in whi
h the

di�
ult integration of equation (15) is performed us-

ing Markov Chain Monte Carlo (MCMC) methods [4℄.

In [10℄ there is a good introdu
tion to basi
 MCMC

methods and many appli
ations in statisti
al data anal-

ysis.

MCMCmethods make no assumptions about the form

of the posterior distribution. They may in some 
ir-


umstan
es require a very long time to 
onverge to the

desired distribution.

The integral of equation (15) is the expe
tation of

fun
tion fk(x(n+1), w) with respe
t to the posterior dis-

tribution of the parameters. This and other expe
ta-

tions 
an be approximated by Monte Carlo method, us-

ing a sample of values w(t)
drawn from the posterior

distribution of parameters

ŷ
(n+1)
k ≈ 1

N

N
∑

t=1

fk(x(n+1), w(t)) . (16)

Note that samples from the posterior distribution are

drawn during the learning phase and predi
tions for new

data 
an be 
al
ulated qui
kly using the same samples

and equation (16).

In the MCMC, samples are generated using a Markov


hain that has the desired posterior distribution as

its stationary distribution. Di�
ult part is to 
reate

Markov 
hain whi
h 
onverges rapidly and in whi
h

states visited after 
onvergen
e are not highly depen-

dent.

Neal has used the hybrid Monte Carlo (HMC) algo-

rithm [11℄ for parameters and Gibbs sampling for hyper-

parameters. HMC is an elaborate Monte Carlo method

whi
h makes e�
ient use of gradient information to re-

du
e random walk behavior. The gradient indi
ates in

whi
h dire
tion one should go to �nd states with high

probability. Use of Gibbs sampling for hyperparameters

helps to minimize the amount of tuning that is needed

to obtain good performan
e in HMC.

When the amount of data in
reases, the eviden
e from

data 
auses the probability mass to 
on
entrate to the

smaller area and we need less samples from the posterior

distribution. Also less samples are needed to evaluate

the mean of the predi
tive distribution than the tail-

quantiles like, 10% and 90% quantiles. So depending on

the problem 10�20 samples may be enough (given that

samples are not too highly dependent).

In our examples (se
tions 4, 5) of Bayesian learning

for neural networks with MCMC we have used Flexi-

ble Bayesian Modeling (FBM) software

2

. The methods

implemented in software are des
ribed in [4℄.

4 Case I: Inverse Problem in Ele
-

tri
al Impedan
e Tomography

In this se
tion we report results on using Bayesian neu-

ral networks for solving the ill-posed inverse problem in

ele
tri
al impedan
e tomography, EIT. The full report

of the proposed approa
h is presented in [12℄. Here we

review the approa
h shortly and report 
omparison re-

sults that show that the Bayesian neural networks per-

form 
onsistently better than other types of networks.

The aim in EIT is to re
over the internal stru
ture of

an obje
t from surfa
e measurements. Number of ele
-

trodes are atta
hed to the surfa
e of the obje
t and 
ur-

rent patterns are inje
ted from through the ele
trodes

and the resulting potentials are measured. The inverse

problem in EIT, estimating the 
ondu
tivity distribu-

tion from the surfa
e potentials, is known to be severely

ill-posed, thus some regularization methods must be

used to obtain feasible results [13℄.

2

<URL:http://www.
s.toronto.edu/~radford/fbm.software.

html>



Figure 1 shows a simulated example of the EIT prob-

lem. The volume bounded by the 
ir
les in the image

represent gas bubble �oating in liquid. The 
ondu
tan
e

of the gas is mu
h lower than that of the liquid, produ
-

ing the equipotential 
urves shown in the �gure. The

simulation was 
omputed with FEM (Finite Element

Method) using Matlab PDE-toolbox. Figure 2 shows

Figure 1: Example of the EIT measurement. The sim-

ulated bubble formation is bounded by the 
ir
les. The


urrent is inje
ted from the ele
trode with the lightest


olor and the opposite ele
trode is grounded. The gray

level and the 
ontour 
urves show the resulting potential

�eld.

the resulting potential signals, from whi
h the image is

to be re
overed.
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Figure 2: Relative 
hanges in potentials 
ompared to

homogenous ba
kground. The eight 
urves 
orrespond

to inje
tions from eight di�erent ele
trodes.

In [12℄ we proposed a novel feedforward solution for

the re
onstru
tion problem. The approa
h is based on


omputing the prin
ipal 
omponent de
omposition for

the potential signals and the eigenimages of the bubble

distribution from the auto
orrelation model of the bub-

bles. The input to the neural network is the proje
tion

of the potential signals to the �rst prin
ipal 
omponents,

and the network gives the 
oe�
ients for re
onstru
ting

the image as weighted sum of the eigenimages.

The proje
tion of the potentials and the images to

the eigenspa
e redu
es 
orrelations from the input and

the output data of the network and deta
hes the a
tual

inverse problem from the representation of the poten-

tial signals and image data. For example, the resolution

of the re
onstru
ted images 
an be 
hanged afterwards,

independently of the inverse 
omputation, by re
omput-

ing the eigenimages from the auto
orrelation model with

desired a

ura
y.

The re
onstru
tion was based on 20 prin
ipal 
om-

ponents of the 128 dimensional potential signal and 30

eigenimages with resolution 41×41 pixels. The training
data 
onsisted of 500 simulated bubble formations with

one to ten overlapping 
ir
ular bubbles in ea
h image.

To 
ompute the re
onstru
tions MLP networks 
ontain-

ing 30 hidden units (20-30-30 network) with total of

about 1500 parameters were used. MLP models tested

were

MLP-ESC (NNTB3 defaults) : Early stopping


ommittee of 20 MLP networks, with di�erent divi-

sion of data to training and stopping sets for ea
h

member. The networks were initialized with the

Matlab Neural Network Toolbox 3.0 default pro
e-

dure (Nguyen-Widrow algorithm).

MLP-ESC (de
ent defaults) : Similar 
ommittee

to the previous, but the networks were initialized

to near zero weights to guarantee that the mapping

is smooth in the beginning.

MLP-ESC (mlp-bgd-1) : Early stopping 
ommittee

used in [14℄ for ben
hmarks.

Bayesian MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spe
-

i�
ations similar as used in [14℄. 20 networks from

the posterior distribution of network parameters

were used.

Figure 3 shows examples of the bubble images re-


onstru
ted with Bayesian MLP. The average number

of pixels that were erroneously 
lassi�ed to bubble or

ba
kground was 3.96 % in the test set of 500 bubble

formations. Figure 4 shows the goodness of the image

re
onstru
tions with di�erent network models for one

example image.

Table 1 shows the quality of the image re
onstru
tions

with di�erent network models, measured by error in the

void fra
tion and per
entage of erroneous pixels in the

segmentation.

An important goal in the studied pro
ess tomography

appli
ation was to estimate the void fra
tion, whi
h is

the proportion of gas and liquid in the image. With

the proposed approa
h su
h goal variables 
an be es-

timated dire
tly without expli
it re
onstru
tion of the



Figure 3: Examples of bubble formations re
onstru
ted with Bayesian MLP. The white blobs show the a
tual

simulated bubbles and the bla
k lines show the 
ontours of the re
onstru
ted bubbles.

   MLP ESC      
(NNTB3 defaults)

   MLP ESC       
(decent defaults) Bayesian MLP

Figure 4: Example of the image re
onstru
tion with

Bayesian MLP and early stopping 
ommittees. See text

for explanation of the models.

image. Table 2 shows the relative absolute errors in es-

timating the void fra
tion dire
tly from the proje
tions

of the potential signals.

Figure 5 shows the s
atter plot of the void fra
tion

versus the estimate by the Bayesian neural network.

The 10% and 90% quantiles are 
omputed dire
tly from

the posterior distribution of the model output.

See [12℄ for results for e�e
t of additive Gaussian noise

to the performan
e of the method.

Table 1: Errors in re
onstru
ting the bubble shape and

estimating the void fra
tion from the re
onstru
ted im-

ages. See text for explanation of the di�erent models.

Method Classi�
a-

tion errors

%

Relative

error in

void

fra
tion %

MLP ESC (NNTB3 def) 4.7 16.2

MLP ESC (de
ent def) 4.5 15.7

Bayesian MLP 3.8 6.0

5 Case II: Forest S
ene Analysis

In this se
tion we report results of using Bayesian neural

networks for 
lassi�
ation of forest s
enes, to a

urately

re
ognize and lo
ate the trees from any ba
kground. Po-

tential appli
ations in
lude forest inventory (estimation

of the volume and growth rate of the trees) and au-

tonomous forest harvester (navigation and tree manip-

ulation tasks).

Forest s
ene 
lassi�
ation task is demanding due to



Table 2: Relative errors in estimating the void fra
tion

dire
tly. See text for explanation of the di�erent models.

Error mean and 90% interval estimated from 4 runs with

di�erent random seeds.

Method Relative test error, %

MLP-ESC (NNTB3 defaults) 8.6 ± 1.2
MLP-ESC (mlp-bgd-1) 6.42 ± 0.04
MLP-ESC (de
ent defaults) 4.10 ± 0.03
Bayesian MLP 3.16 ± 0.02
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Figure 5: S
atterplot of the void fra
tion estimate with

10% and 90% quantiles.

the texture ri
hness of the trees, o

lusions of the forest

s
ene obje
ts and diverse lighting 
onditions under op-

eration. This makes it di�
ult to determine whi
h are

optimal image features for the 
lassi�
ation. A natu-

ral way to pro
eed is to extra
t many di�erent types of

potentially suitable features.

In [15℄ we extra
ted total of 84 statisti
al and Gabor

features over di�erent sized windows at ea
h spe
tral


hannel. Due to great number of features used, many


lassi�er methods would su�er from the 
urse of dimen-

sionality, but Bayesian neural networks manage well in

high dimensional problems.

The image data for tea
hing and testing of the 
lassi-

�ers was 
olle
ted by using an ordinary digital 
amera

in varying weather 
onditions. Ideal weather 
onditions

were not sear
hed, as the aim was to test the viability

and the robustness of the methods. Total of 48 images

were taken.

Based on the above image data a suitable dataset was

prepared for the 
lassi�
ation study. The labeling of the

image data was done by hand via identifying many types

of tree and ba
kground image blo
ks with di�erent tex-

tures and lighting 
onditions. In this study only pines

were 
onsidered.

To estimate 
lassi�
ation errors of di�erent methods

we used eight folded 
ross-validation (CV) error esti-

mate, i.e., 42 of 48 pi
tures were used for training and

the six left out for error evaluation, and this s
heme was

repeated eight times. The models tested were

KNN LOOCV : K-nearest-neighbor, where K is 
ho-

sen by leave-one-out 
ross-validation on the train-

ing set.

CART : Classi�
ation And Regression Tree [16℄.

MLP ESC : MLP early stopping 
ommittee with dif-

ferent division of data to training and stopping sets

for ea
h member of 
ommittee.

Bayesian MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spe
-

i�
ations similar as used in [14℄.

Bayesian MLP +ARD : Bayesian neural network

with FBM-software, using vague priors, Automati


Relevan
e Determination prior and MCMC-run

spe
i�
ations similar as used in [14℄.

MLP models 
ontained 20 hidden units (84-20-1 net-

work) with total of about 1700 parameters and e.g.

Bayesian MLP with ARD had in addition total of 88

hyperparameters.

We also tested Prin
ipal Component Analysis (PCA)

for dimension redu
tion. With PCA we sele
ted �rst


omponents des
ribing 99% of varian
e in training data,

whi
h were �rst 16 to 20 prin
ipal 
omponents depend-

ing on training set. With PCA feature MLP models had

total of about 400 parameters.

CV error estimates are 
olle
ted in table 3. Figure 6

shows example image 
lassi�ed with di�erent methods.

Table 3: CV error estimates for forest s
ene 
lassi�
a-

tion. See text for explanation of the di�erent models.

Error %, all

84 features

Error %,

16�20 p
a

features

KNN LOOCV 20 24
CART 30 30
MLP ESC 13 19
Bayesian MLP 12 19
Bayesian MLP +ARD 11 19

6 Summary dis
ussion

Above 
ase problems in image analysis illustrate the ad-

vantages of using Bayesian neural networks. The ap-

proa
h 
ontains automati
 
omplexity 
ontrol as the



Forest scene KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARD

Figure 6: Examples of 
lassi�ed forest s
ene. See text for explanation of the di�erent models.

Bayesian inferen
e te
hniques allow the values of regu-

larization 
oe�
ients to be sele
ted using only the train-

ing data, without the need to use separate training and

validation data. As we don't need to fear over�tting,

we 
an use large number of inputs and there is no need

to sear
h for minimal set of su�
ient inputs. It is pos-

sible to use prior information, like ARD. The Bayesian

approa
h gives the predi
tive distributions for outputs,

whi
h 
an be used to estimate reliability of the predi
-

tions.
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