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Abstract

We demonstrate the advantages of using Bayesian neu-
ral networks for image analysis. The Bayesian approach
provides consistent way to do inference by combining the
evidence from data to prior knowledge from the prob-
lem. A practical problem with neural networks is to
select the correct complexity for the model, i.e., the
right number of hidden units or correct regularization
parameters. The Bayesian approach offers efficient tools
for avoiding overfitting even with very complex models,
and facilitates estimation of the confidence intervals of
the results. In this contribution we review the Bayesian
methods for neural networks and present comparison
results from case studies in process tomography and im-
age segmentation. In the first case, neural networks were
used to solve the inverse problem in electrical impedance
tomography. The Bayesian networks provided consis-
tently better results than other methods. In the second
case, the goal was to locate trunks of trees in forest
scenes. With Bayesian network it was possible to use
large number of potentially useful features and prior for
determining the relevance of the features automatically.

1 Introduction

A universal task in many areas of image analysis is to
infer some needed piece of information from measure-
ments that only partly determine the information.

Profound example of such problems is the perception
of the three dimensional structure of view from two di-
mensional projection, i.e., image, with means like shape
from shading, binocular stereopsis, and perception of
perspective. Another example is restoration of images
from blurred or noisy recordings. Also, classification
and segmentation of image regions or objects based on
a set, of precomputed features is similar problem, as the
features are often insufficient for uniquely separating the
classes.

Recently Bayesian approaches have shown consider-
able potential in such problems. In the Bayesian ap-
proach prior information from the problem is combined
to the evidence from the data, giving the posterior prob-

ability of the solutions. Predictions are made by inte-
grating over this posterior distribution. In case of in-
sufficient data the prior dominates the solution, and
the effect of the prior diminishes with increased evi-
dence from the data. In one of the pioneering works
by Geman et.al. [1], Bayesian approach was developed
for image restoration. This work also introduced the
Gibbs sampling technique for computing posterior dis-
tributions. The advantages of Bayesian approaches in
computational modeling of perception are discussed in
[2].

In classification and non-linear function approxima-
tion neural networks have become very popular in recent
years. With neural networks the main difficulty is con-
trolling the complexity of the model. Another problem
of standard neural network models is the lack of tools
for analyzing the results (confidence intervals, like 10 %
and 90 % quantiles, etc.).

For neural networks, MacKay introduced Bayesian
approach [3] based on Gaussian approximation. Re-
cently Neal introduced hybrid Monte Carlo method [4]
that facilitates Bayesian learning for neural networks
with no compromising approximations. The main ad-
vantages of Bayesian neural networks are:

e Automatic complexity control: Bayesian inference
techniques allow the values of regularization coeffi-
cients to be selected using only the training data,
without the need to use separate training and vali-
dation data.

e Possibility to use prior information and hierarchical
models for the hyperparameters.

e Predictive distributions for outputs.

In this contribution we demonstrate the advantages of
Bayesian neural networks in two case problems. In sec-
tion 3 we give a review of the Bayesian methods for
neural networks. In section 4 we report results on using
Bayesian networks for image reconstruction in electrical
impedance tomography. In section 5 we present results
comparing Bayesian networks and other classification
methods for classification of objects in forest scenes.



2 Multi Layer Perceptron

In this section we briefly review Multi Layer Perceptron
(MLP) neural network. See [5] for thorough introduc-
tion to MLPs. We concentrate here to one hidden layer
MLP networks with hyperbolic tangent (tanh) activa-
tion function, but Bayesian methods described can be
used for other types of neural networks, like RBF net-
works, too. Basic MLP network model with k£ outputs
is

m d
fk(x, w) = Wgo + Z Wi tanh <U}j0 + Z wjixi> R
= i=1
1)

where z is a d-dimensional input vector, w denotes
weights and indices ¢ and j correspond to hidden and
output units, respectively.

MLP is often considered as a generic semiparamet-
ric model, which means that the effective number of
parameters may be less than the number of available
parameters. Effective number of parameters determines
the complexity of the model. For small weights the net-
work mapping is almost linear and has low effective com-
plexity, since the central region of sigmoidal activation
function can be approximated by linear transformation.
Traditionally complexity of MLP has been controlled
with early stopping or weight decay [5].

In early stopping weights are initialized to very small
values. Part of the training data is used to train the
MLP and the other part is used to monitor the vali-
dation error. Iterative optimization algorithms used for
minimizing the training error gradually take parameters
in use. Training is stopped when the validation error
begins to increase. Since training is stopped before a
minimum of the training error, the effective number of
parameters remains less than the number of available
parameters.

Intuitively, the optimization algorithm first fits the
model more to the underlying process and when the op-
timization is continued it fits more to the noise in the
training set. With early stopping, optimization is tried
to be stopped before too much fitting to the noise has
occurred.

The basic early stopping is rather inefficient, as it is
very sensitive to the initial conditions of the network
and only part of the available data is used to train the
model. These limitations can easily be alleviated by
using a committee of early stopping networks, with dif-
ferent partitioning of the data to training and stopping
sets for each network. When used with caution MLP
early stopping committee is good baseline method for
neural networks.

In weight decay penalizing term is added to the error
function. Using sum of squares of weights the weights
are encouraged to be small. In practice each layer in an

MLP should have different regularization parameter [5],
giving the penalty term
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Problem is how to select good values for a;. Tradition-
ally this has been done with cross validation (CV). Since
CV gives noisy estimate for error, it does not guarantee
that good values for «; can be found. Also it becomes
easily computationally prohibitive as computational ex-
penses grow exponentially with number of parameters
to be selected.

3 Bayesian Learning for MLP

Bayesian methods use probability to quantify uncer-
tainty in inferences and the result of Bayesian learning is
a probability distribution expressing our beliefs regard-
ing how likely the different predictions are. Bayesian
paradigm offers consistent way to do inference using
models with even very large number of parameters. See
e.g. [6] for good introduction to Bayesian methods.

3.1 Bayesian Learning

Consider a regression or classification problem involving
the prediction of a noisy vector y of target variables
given the value of a vector x of input variables.

The process of Bayesian learning is started by defining
a model M, and prior distribution p(#) for the model pa-
rameters. Prior distribution expresses our initial beliefs
about parameter values, before any data has observed.

After observing new data D =
{(2M, M), ..o (2 y™)},  prior  distribution s
updated to the posterior distribution using Bayes’ rule

p(D]0)p(0)

p(0|D) = (D)

o L(6|D)p(0) , (3)

where the likelihood function L(6|D) gives the proba-
bility of the observed data as function of the unknown
model parameters.

To predict the new output y™*tY for new input
("1 predictive distribution is obtained by integrating
the predictions of the model with respect to the poste-
rior distribution of the model parameters

p(y" V(D) :/p(y("“)lx(”“),ﬂ)p(HID)dH- (4)

This is same as taking the average prediction of all the
models weighted by their goodness.

Note that predictive distribution for 31 is implic-
itly conditioned on hypotheses that hold throughout —
no probability judgments can be made in vacuum [6] —



and to be more explicit notation as the following might
be used

p(y(”+1)|D,H) _ /p(y(n+1)|x(n+1)79,H)p(9|D,H)d9 ,
(5)

where H refers to the set of hypotheses or assumptions
used to define the model.

3.2 Models

As noted above we start from defining a model for our
problem. Statistical model is defined with the likelihood
function, which in case of independent and exchangeable
data points is given by

n

L@ID) = [ [ p(y© |27, 6), (6)

i=1

where n is the number of data points.

In the likelihood equation the term p(y®|2z(, ) de-
pends on our problem. In regression problems, it is gen-
erally assumed that the distribution of target data can
be described by a deterministic function of inputs, cor-
rupted by additive Gaussian noise of a constant vari-
ance. Probability density for a target y; is then

exp(—(y — fj(z,w))?/207) |
(7)

0j

1
p(yj|wiva) = \/ﬂ

where 0% is the noise variance for the target. See [4,
7] for input dependent noise models. For a two class
classification (logistic regression) model, the probability

that a binary-valued target, y;, has the value 1 is

ply; = 1o, w) = [1+exp(=fi(z,w)] ™" (8)

and for many class classification (softmax) model, the
probability that a class target, y, has value j is

ply = jle,w) = exp(fi(z,w))/ Y exp(fu(z,w)) . (9)

k

In equations (7), (8) and (9) function f;(x,w) is in this
case an MLP network. Traditionally in many methods
one of the problems has been to find a good topology
for the MLP. In Bayesian approach we could use infinite
number of hidden units [4]. We do not need to restrict
the size of the MLP based on the size of the training set,
but in practice, we will have to use finite number of hid-
den units due to computational limits. MCMC methods
(section 3.5) produce the correct answer eventually, but
it may sometimes take unreasonable amount of time[4].

3.3 Priors

Next, we have to define the prior information about our
model parameters, before any data has been seen. Usual
prior is that the model has some unknown complexity
but the model is not constant or extremely flexible. To
express this prior belief we set hierarchical model spec-
ification.

Parameters w define the model f(z,w). As discussed
in section 2, complexity of the MLP network can be
controlled by controlling the size of the weights w. Cor-
responding prior to weight decay is to use Gaussian prior
distribution for weights w given hyperparameter «

p(wla) = (2m) 20" 2 exp(~a Y u?/2). (10)
=1

This prior states that smaller weights are more proba-
ble, but how much more is determined by the value of
hyperparameter «. Since we do not know the correct
value for hyperparameter o, we set a vague hyperprior
p(a) expressing our belief that complexity controlled by
« is unknown but the model is not constant or extremely
flexible. A convenient form for this hyperprior is vague
Gamma distribution with mean p and shape parameter
a

p(a) ~ Gamma(y, a) o< a®? Lexp(—aa/2u) .  (11)
In order to have prior for weights which is invariant un-
der the linear transformations of data, separate priors
(each having its own hyperparameters «;) for different
weight groups in each layer of a MLP are used.

In MLP networks, the weights from less important
inputs are typically smaller than weights from more im-
portant inputs®. Prior belief that some inputs are likely
to be more relevant than others can be implemented by
using different priors for weight groups from each in-
put, and hierarchical hyperpriors for these priors. The
posteriors for hyperparameters should then adjust ac-
cording to relevance of the inputs. This prior is called
Automatic Relevance Determination (ARD) [8, 4].

For regression models we need prior for ¢ in equa-
tion (7), which is conveniently specified in terms of cor-
responding precision, 7 = o ~2. As for «, our prior infor-
mation is usually quite vague, stating that o is not zero
or extremely large. This prior can be expressed with
vague Gamma-distribution with mean p and shape pa-
rameter a

p(7) ~ Gamma(p, a) o« 72 L exp(—7a/2u) . (12)

INote that in the non-linear network the effect of an input may
be small even if the weights from it are large and vice verse, but
in general the size of the weights roughly reflects the relevance of
the input.



3.4 Prediction

After defining the model and prior information, we com-
bine the evidence from the data to get the posterior dis-
tribution for the parameters

p(w, o, 7|D) x L(w, o, 7| D)p(w, o, 7) . (13)

Predictive distribution for new data is then obtained
by integrating over this posterior distribution

p(y(”+1)|x("+1), D) =

/p(y(”+1)|x("+1),w, a, 7)p(w, o, 7| D) dwar  (14)

We can also evaluate expectations of various functions
with respect to the posterior distribution for parame-
ters. For example in regression we may evaluate the
expectation for a component of y(™+1)

yA,(C"H) = /fk(x(”+1),w)p(w,a,T|D) dwart , (15)

which corresponds to the best guess with squared error
loss.

The posterior distribution for the parameters
p(w,a,7|D) is typically very complex, with many
modes. Evaluating the integral of equation (15) is there-
fore a difficult task.

The integral can be approximated with Gaussian ap-
proximations to modes. Then predictive distribution
is approximated by the corresponding integral with re-
spect to the Gaussian [3, 9]. Or we can use Monte
Carlo methods, described next, to numerically approxi-
mate the integral.

3.5 Markov Chain Monte Carlo method

Recently, Neal has introduced implementation of
Bayesian learning for neural networks in which the
difficult integration of equation (15) is performed us-
ing Markov Chain Monte Carlo (MCMC) methods [4].
In [10] there is a good introduction to basic MCMC
methods and many applications in statistical data anal-
ysis.

MCMC methods make no assumptions about the form
of the posterior distribution. They may in some cir-
cumstances require a very long time to converge to the
desired distribution.

The integral of equation (15) is the expectation of
function f (™Y, w) with respect to the posterior dis-
tribution of the parameters. This and other expecta-
tions can be approximated by Monte Carlo method, us-
ing a sample of values w® drawn from the posterior
distribution of parameters

N

-(n 1 n

B R 5 2wy (1)
t=1

Note that samples from the posterior distribution are
drawn during the learning phase and predictions for new
data can be calculated quickly using the same samples
and equation (16).

In the MCMC, samples are generated using a Markov
chain that has the desired posterior distribution as
its stationary distribution. Difficult part is to create
Markov chain which converges rapidly and in which
states visited after convergence are not highly depen-
dent.

Neal has used the hybrid Monte Carlo (HMC) algo-
rithm [11] for parameters and Gibbs sampling for hyper-
parameters. HMC is an elaborate Monte Carlo method
which makes efficient use of gradient information to re-
duce random walk behavior. The gradient indicates in
which direction one should go to find states with high
probability. Use of Gibbs sampling for hyperparameters
helps to minimize the amount of tuning that is needed
to obtain good performance in HMC.

When the amount of data increases, the evidence from
data causes the probability mass to concentrate to the
smaller area and we need less samples from the posterior
distribution. Also less samples are needed to evaluate
the mean of the predictive distribution than the tail-
quantiles like, 10% and 90% quantiles. So depending on
the problem 10-20 samples may be enough (given that
samples are not too highly dependent).

In our examples (sections 4, 5) of Bayesian learning
for neural networks with MCMC we have used Flexi-
ble Bayesian Modeling (FBM) software?. The methods
implemented in software are described in [4].

4 Case I: Inverse Problem in Elec-
trical Impedance Tomography

In this section we report results on using Bayesian neu-
ral networks for solving the ill-posed inverse problem in
electrical impedance tomography, EIT. The full report
of the proposed approach is presented in [12]. Here we
review the approach shortly and report comparison re-
sults that show that the Bayesian neural networks per-
form consistently better than other types of networks.

The aim in EIT is to recover the internal structure of
an object from surface measurements. Number of elec-
trodes are attached to the surface of the object and cur-
rent patterns are injected from through the electrodes
and the resulting potentials are measured. The inverse
problem in EIT, estimating the conductivity distribu-
tion from the surface potentials, is known to be severely
ill-posed, thus some regularization methods must be
used to obtain feasible results [13].

2<URL:http://www.cs.toronto.edu/ radford/fbm.software.
html>



Figure 1 shows a simulated example of the EIT prob-
lem. The volume bounded by the circles in the image
represent gas bubble floating in liquid. The conductance
of the gas is much lower than that of the liquid, produc-
ing the equipotential curves shown in the figure. The
simulation was computed with FEM (Finite Element
Method) using Matlab PDE-toolbox. Figure 2 shows

Figure 1: Example of the EIT measurement. The sim-
ulated bubble formation is bounded by the circles. The
current is injected from the electrode with the lightest
color and the opposite electrode is grounded. The gray
level and the contour curves show the resulting potential
field.

the resulting potential signals, from which the image is
to be recovered.
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Figure 2: Relative changes in potentials compared to
homogenous background. The eight curves correspond
to injections from eight different electrodes.

In [12] we proposed a novel feedforward solution for
the reconstruction problem. The approach is based on
computing the principal component decomposition for
the potential signals and the eigenimages of the bubble
distribution from the autocorrelation model of the bub-
bles. The input to the neural network is the projection
of the potential signals to the first principal components,

and the network gives the coefficients for reconstructing
the image as weighted sum of the eigenimages.

The projection of the potentials and the images to
the eigenspace reduces correlations from the input and
the output data of the network and detaches the actual
inverse problem from the representation of the poten-
tial signals and image data. For example, the resolution
of the reconstructed images can be changed afterwards,
independently of the inverse computation, by recomput-
ing the eigenimages from the autocorrelation model with
desired accuracy.

The reconstruction was based on 20 principal com-
ponents of the 128 dimensional potential signal and 30
eigenimages with resolution 41 x 41 pixels. The training
data consisted of 500 simulated bubble formations with
one to ten overlapping circular bubbles in each image.
To compute the reconstructions MLP networks contain-
ing 30 hidden units (20-30-30 network) with total of
about 1500 parameters were used. MLP models tested
were

MLP-ESC (NNTBS3 defaults) : Early stopping
committee of 20 MLP networks, with different divi-
sion of data to training and stopping sets for each
member. The networks were initialized with the
Matlab Neural Network Toolbox 3.0 default proce-
dure (Nguyen-Widrow algorithm).

MLP-ESC (decent defaults) : Similar committee
to the previous, but the networks were initialized
to near zero weights to guarantee that the mapping
is smooth in the beginning.

MLP-ESC (mlp-bgd-1) : Early stopping committee
used in [14] for benchmarks.

Bayesian MLP : Bayesian neural network with FBM-
software, using vague priors and MCMC-run spec-
ifications similar as used in [14]. 20 networks from
the posterior distribution of network parameters
were used.

Figure 3 shows examples of the bubble images re-
constructed with Bayesian MLP. The average number
of pixels that were erroneously classified to bubble or
background was 3.96 % in the test set of 500 bubble
formations. Figure 4 shows the goodness of the image
reconstructions with different network models for one
example image.

Table 1 shows the quality of the image reconstructions
with different network models, measured by error in the
void fraction and percentage of erroneous pixels in the
segmentation.

An important goal in the studied process tomography
application was to estimate the void fraction, which is
the proportion of gas and liquid in the image. With
the proposed approach such goal variables can be es-
timated directly without explicit reconstruction of the
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Figure 3: Examples of bubble formations reconstructed with Bayesian MLP. The white blobs show the actual
simulated bubbles and the black lines show the contours of the reconstructed bubbles.
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Figure 4: Example of the image reconstruction with
Bayesian MLP and early stopping committees. See text
for explanation of the models.

image. Table 2 shows the relative absolute errors in es-
timating the void fraction directly from the projections
of the potential signals.

Figure 5 shows the scatter plot of the void fraction
versus the estimate by the Bayesian neural network.
The 10% and 90% quantiles are computed directly from
the posterior distribution of the model output.

See [12] for results for effect of additive Gaussian noise
to the performance of the method.

Table 1: Errors in reconstructing the bubble shape and
estimating the void fraction from the reconstructed im-
ages. See text for explanation of the different models.

Method Classifica- Relative
tion errors error in
% void
fraction %
MLP ESC (NNTB3 def) 4.7 16.2
MLP ESC (decent def) 4.5 15.7
Bayesian MLP 3.8 6.0

5 Case II: Forest Scene Analysis

In this section we report results of using Bayesian neural
networks for classification of forest scenes, to accurately
recognize and locate the trees from any background. Po-
tential applications include forest inventory (estimation
of the volume and growth rate of the trees) and au-
tonomous forest harvester (navigation and tree manip-
ulation tasks).

Forest scene classification task is demanding due to



Table 2: Relative errors in estimating the void fraction
directly. See text for explanation of the different models.
Error mean and 90% interval estimated from 4 runs with
different random seeds.

Method Relative test error, %
MLP-ESC (NNTB3 defaults) 86+1.2
MLP-ESC (mlp-bgd-1) 6.42 + 0.04
MLP-ESC (decent defaults) 4.10 £0.03
Bayesian MLP 3.16 +0.02
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Figure 5: Scatterplot of the void fraction estimate with
10% and 90% quantiles.

the texture richness of the trees, occlusions of the forest
scene objects and diverse lighting conditions under op-
eration. This makes it difficult to determine which are
optimal image features for the classification. A natu-
ral way to proceed is to extract many different types of
potentially suitable features.

In [15] we extracted total of 84 statistical and Gabor
features over different sized windows at each spectral
channel. Due to great number of features used, many
classifier methods would suffer from the curse of dimen-
sionality, but Bayesian neural networks manage well in
high dimensional problems.

The image data for teaching and testing of the classi-
fiers was collected by using an ordinary digital camera
in varying weather conditions. Ideal weather conditions
were not searched, as the aim was to test the viability
and the robustness of the methods. Total of 48 images
were taken.

Based on the above image data a suitable dataset was
prepared for the classification study. The labeling of the
image data was done by hand via identifying many types
of tree and background image blocks with different tex-

tures and lighting conditions. In this study only pines
were considered.

To estimate classification errors of different methods
we used eight folded cross-validation (CV) error esti-
mate, i.e., 42 of 48 pictures were used for training and
the six left out for error evaluation, and this scheme was
repeated eight times. The models tested were

KNN LOOCYV : K-nearest-neighbor, where K is cho-
sen by leave-one-out cross-validation on the train-
ing set.

CART : Classification And Regression Tree [16].

MLP ESC : MLP early stopping committee with dif-
ferent division of data to training and stopping sets
for each member of committee.

Bayesian MLP : Bayesian neural network with FBM-
software, using vague priors and MCMC-run spec-
ifications similar as used in [14].

Bayesian MLP +ARD : Bayesian neural network
with FBM-software, using vague priors, Automatic
Relevance Determination prior and MCMC-run
specifications similar as used in [14].

MLP models contained 20 hidden units (84-20-1 net-
work) with total of about 1700 parameters and e.g.
Bayesian MLP with ARD had in addition total of 88
hyperparameters.

We also tested Principal Component Analysis (PCA)
for dimension reduction. With PCA we selected first
components describing 99% of variance in training data,
which were first 16 to 20 principal components depend-
ing on training set. With PCA feature MLP models had
total of about 400 parameters.

CV error estimates are collected in table 3. Figure 6
shows example image classified with different methods.

Table 3: CV error estimates for forest scene classifica-
tion. See text for explanation of the different models.

Error %, all Error %,
84 features 16-20 pca
features

KNN LOOCV 20 24
CART 30 30
MLP ESC 13 19
Bayesian MLP 12 19
Bayesian MLP +ARD 11 19

6 Summary discussion

Above case problems in image analysis illustrate the ad-
vantages of using Bayesian neural networks. The ap-
proach contains automatic complexity control as the
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Figure 6: Examples of classified forest scene. See text for explanation of the different models.

Bayesian inference techniques allow the values of regu-
larization coefficients to be selected using only the train-
ing data, without the need to use separate training and
validation data. As we don’t need to fear overfitting,
we can use large number of inputs and there is no need
to search for minimal set of sufficient inputs. It is pos-
sible to use prior information, like ARD. The Bayesian
approach gives the predictive distributions for outputs,
which can be used to estimate reliability of the predic-
tions.
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