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Abstract

In this work, we discuss practical methods for the assessment, comparison, and
selection of complex hierarchical Bayesian models. A natural way to assess the
goodness of the model is to estimate its future predictive capability by estimating
expected utilities. Instead of just making a point estimate, it is important to obtain
the distribution of the expected utility estimate, as it describes the uncertainty in
the estimate. The distributions of the expected utility estimates can also be used to
compare models, for example, by computing the probability of one model having a
better expected utility than some other model. We propose an approach using cross-
validation predictive densities to obtain expected utility estimates and Bayesian
bootstrap to obtain samples from their distributions. We also discuss the proba-
bilistic assumptions made and properties of two practical cross-validation methods,
importance sampling and k-fold cross-validation. As illustrative examples, we use
MLP neural networks and Gaussian Processes (GP) with Markov chain Monte Carlo
sampling in one toy problem and two challenging real-world problems.
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model selection; pseudo-Bayes factor; Monte Carlo; MLP neural networks; Gaus-
sian processes

http://mitpress.mit.edu/NECO


Bayesian Model Assessment and Comparison Using Cross-Validation 2

1 Introduction

Whatever way the model building and the selection have been done, the goodness
of the final model should be assessed in order to find out whether it is useful in a
given problem. The cross-validation methods for model assessment and comparison
have been proposed by several authors: for early accounts see (Stone, 1974; Geisser,
1975) and for more recent review see (Gelfand, Dey, & Chang, 1992; Shao, 1993).
The cross-validation predictive density dates at least to (Geisser & Eddy, 1979)
and review of cross-validation and other predictive densities appears in (Gelfand &
Dey, 1994; Gelfand, 1996). Bernardo and Smith (1994, chap. 6) also discuss briefly
how cross-validation approximates the formal Bayes procedure of computing the
expected utilities.

We synthesize and extend the previous work in many ways. We give a unified
presentation from the Bayesian viewpoint emphasizing the assumptions made and
propose practical methods to obtain the distributions of the expected utility esti-
mates. We first review expected utilities (section 1.1) and cross-validation predic-
tive densities (section 1.2) and discuss assumptions made on future data distribution
(section 1.3). We discuss the properties of two practical methods, the importance
sampling leave-one-out (section 2.1) and the k-fold cross-validation (section 2.2).
We propose a quick and generic approach based on the Bayesian bootstrap for ob-
taining samples from the distributions of the expected utility estimates (section 2.3).
If there is a collection of models under consideration, the distributions of the ex-
pected utility estimates can also be used for comparison (section 2.4). We also
discuss the relation of the proposed method to prior predictive densities and Bayes
factors (section 3.1), and posterior predictive densities (section 3.2).

As the estimation of the expected utilities requires a full model fitting (or k
model fittings) for each model candidate, the approach is useful only when select-
ing between a few models. If we have many model candidates, for example if do-
ing variable selection, we can use some other methods like the variable dimension
MCMC methods (Green, 1995; Carlin & Chib, 1995; Stephens, 2000) for model se-
lection and still use the expected utilities for final model assessment. This approach
is discussed in more detail by Vehtari (2001, chap. 4).

We have tried to follow the notation of Gelman, Carlin, Stern, and Rubin (1995)
and we assume that the reader has basic knowledge of Bayesian methods (e.g., see
a short introduction in (Lampinen & Vehtari, 2001)). To illustrate the discussion we
use MLP networks and Gaussian processes (GP) with Markov chain Monte Carlo
(MCMC) in one toy problem and two real world problems (section 4).

1.1 Expected utilities

In prediction and decision problems, it is natural to assess the predictive ability
of the model by estimating the expected utilities (Good, 1952; Bernardo & Smith,
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1994). Utility measures the relative values of consequences. By using application
specific utilities, the expected benefit or cost of using the model for predictions or
decisions (e.g., by financial criteria) can be readily computed. In lack of application
specific utilities, many general discrepancy and likelihood utilities can be used.

The posterior predictive distribution of output y for the new input x (n+1) given
the training data D = {(x (i), y(i)); i = 1, 2, . . . , n} is obtained by integrating the
predictions of the model with respect to the posterior distribution of the model

p(y|x (n+1), D, M) =
∫

p(y|x (n+1), θ, D, M)p(θ |D, M)dθ, (1)

where θ denotes all the model parameters and hyperparameters of the prior struc-
tures and M is all the prior knowledge in the model specification (including all the
implicit and explicit prior specifications). If the predictions are independent of the
training data given the parameters of the model (e.g., in parametric models) then
p(y|x (n+1), θ, D, M) = p(y|x (n+1), θ, M).

We would like to estimate how good our model is by estimating how good pre-
dictions (i.e., the predictive distributions) the model makes for future observations
from the same process that generated the given set of training data D. The goodness
of the predictive distribution p(y|x (n+h), D, M) can be measured by comparing it
to the actual observation y(n+h) with the utility u

uh = u
(
y(n+h), x (n+h), D, M

)
. (2)

The goodness of the whole model can then be summarized by computing some
summary quantity of distribution of uh’s over all future samples (h = 1, 2, . . .), for
example, the mean

ū = Eh[uh] (3)

or an α-quantile
ūα = Qα,h[uh]. (4)

We call all such summary quantities the expected utilities of the model. Note that,
considering the expected utility just for the next sample (or single one time decision)
and taking the expectation over the distribution of x (n+1) is equivalent to taking the
expectation over all future samples.

Preferably, the utility u would be application specific, measuring the expected
benefit or cost of using the model. For simplicity, we mention here some general
utilities. Both the square error

uh = (
Ey[y|x (n+h), D, M] − y(n+h)

)2
(5)

and the absolute error

uh = abs
(
Ey[y|x (n+h), D, M] − y(n+h)

)
(6)
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measure the accuracy of the expectation of the predictive distribution, but the ab-
solute error is more easily understandable especially when summarized using α-
quantile (e.g., α = 90%) as most of the predictions will have error less than the
given value. The predictive likelihood measures how well the model models the
predictive distribution

uh = p(y(n+h)|x (n+h), D, M) (7)

and it is especially useful in model comparison (see section 2.4), and in non-predicti-
on problems, in which the goal is just to get scientific insights in modeled phenom-
ena. Maximization of the expected predictive likelihood corresponds to minimiza-
tion of information-theoretic Kullback-Leibler (KL) divergence between the model
and the unknown distribution of the data, and equivalently, it corresponds to maxi-
mization of the expected information gained (Bernardo, 1979).

An application specific utility may measure the expected benefit or cost. For
simplicity we use term utility also for costs, although better word would be risk.
Also, instead of negating cost, we represent the utilities in a form that is most ap-
pealing for the application expert. It should be obvious in each case whether a
smaller or larger value for the utility is better.

1.2 Cross-validation predictive densities

As the future observations (x (n+h), y(n+h)) are not yet available, we have to approxi-
mate the expected utilities by reusing samples we already have. We assume that the
future distribution of the data (x, y) is stationary and it can be reasonably well ap-
proximated using the (weighted) training data {(x (i), y(i)); i = 1, 2, . . . , n}. In the
case of conditionally independent observations, to simulate the fact that the future
observations are not in the training data, the i th observation (x (i), y(i)) in the train-
ing data is left out and then the predictive distribution for y(i) is computed with a
model that is fitted to all of the observations except (x (i), y(i)). By repeating this for
every point in the training data, we get a collection of leave-one-out cross-validation
(LOO-CV) predictive densities

{p(y|x (i), D(\i), M); i = 1, 2, . . . , n}, (8)

where D(\i) denotes all the elements of D except (x (i), y(i)). To get the LOO-CV-
predictive density estimated expected utilities, these predictive densities are com-
pared to the actual y(i)’s using utility u, and summarized, for example, with the
mean

ūLOO = Ei [u(y(i), x (i), D(\i), M)]. (9)

If the future distribution of x is expected to be different from the distribution of
the training data, observations could be weighted appropriately (demonstrated in
section 4.2). By appropriate modifications into the algorithm, the cross-validation
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predictive densities can also be computed for a data with finite range dependencies
(see sections 2.2 and 4.3).

The LOO-CV-predictive densities are computed by the equation (compare to
equation 1)

p(y|x (i), D(\i), M) =
∫

p(y|x (i), θ, D(\i), M)p(θ |D(\i), M)dθ. (10)

For simple models, the LOO-CV-predictive densities may be computed quickly us-
ing analytical solutions (see, e.g., Shao, 1993; Orr, 1996; Peruggia, 1997), but mod-
els that are more complex usually require a full model fitting for each of the n
predictive densities. When using the Monte Carlo methods it means that we have
to sample from p(θ |D(\i), M) for each i , and this would normally take n times
the time of sampling from the full posterior. If sampling is slow (e.g., when us-
ing MCMC methods), the importance sampling LOO-CV (IS-LOO-CV) discussed
in section 2.1 or the k-fold-CV discussed in section 2.2 can be used to reduce the
computational burden.

1.3 On assumptions made on future data distribution

In this section we briefly discuss assumptions made on future data distribution in
the approach described in this work and in related approaches (see, e.g., Rasmussen
et al., 1996; Neal, 1998; Dietterich, 1998; Nadeau & Bengio, 2000, and references
therein), where the goal is to compare (not assess) the performance of methods
(algorithms) instead of the single models conditioned on the given training data.

Assume that the training data D has been produced from the distribution �.
In model assessment and comparison, we condition the results on given realization
of the training data D and assume that the future data for which we want to make
predictions comes from the same distribution as the training data, that is, � (sec-
tion 1.1).

The method comparison approaches try to answer the question: “Given two
methods A and B and training data D, which method (algorithm) will produce more
accurate model when trained on new training data of the same size as D?” (Diet-
terich, 1998). In probabilistic terms, the predictive distribution of output for every
new input in the future is (compare to equation 1)

p(y|x (n+h), D∗
h, M) =

∫
p(y|x (n+h), θ, D∗

h, M)p(θ |D∗
h, M)dθ, (11)

where D∗
h is the new training data of the same size as D. Although not explicitly

stated in the question, all the approaches have assumed that D∗
h can be approximated

using the training data D, that is, D∗
h comes from the distribution �. The method

comparison approaches use various resampling, cross-validation and data splitting
methods to produce proxies for D∗

h . The reuse of training samples is more difficult
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than in the model comparison as the proxies should be as independent as possible in
order to be able to estimate well the variability due to a random choice of training
data. As the goal of the method comparison is methodological research and not
solving a real problem, it is useful to choose problems with large data sets, from
which it is possible to select several independent training and test data sets of various
sizes (Rasmussen et al., 1996; Neal, 1998). Note that after the method has been
chosen and a model has been produced for a real problem, there still is the need to
assess the performance of the model.

When solving a real problem, is there a need to retrain the model on new train-
ing data of the same size and from the same distribution as D? This kind of situation
would rarely appear in practical applications, as it would mean that for every pre-
diction we would use new training data and previously used training data would
be discarded. If the new training data comes from the same distribution as the old
training data, we could just combine the data and re-estimate the expected utili-
ties. The performance of the model with additional training data could be estimated
roughly before getting that data, but it may be difficult because of the difficulties in
estimating the shape of the learning curve.

We might want to discard the old training data, if we assume that the future
data comes from some other distribution �+ and the new training data D+ would
come from that distribution too. Uncertainty due to using new training data could
be estimated in the same way as in method comparison approaches, but in order
to estimate how well the results will hold in the new domain we should be able to
quantify the difference between the distributions � and �+. If we do not assume
anything about the distribution �+ we cannot predict the behavior of the model
in a new domain as stated by no-free-lunch theorem (Wolpert, 1996a,b). Even if
the distributions � and �+ have only few dimensions, it is very hard to quantify
differences and estimate their effect on expected utilities. If the applications are
similar (e.g., paper mill and cardboard mill), it may be possible for an expert to give
a rough estimate of the model performance in the new domain (it is probably easier
to estimate the relative performance of two models than the absolute performance
of a single model). In this case, it would be also possible to use information from
the old domain as the basis for a prior in the new domain (see, e.g, Spiegelhalter,
Myles, Jones, & Abrams, 2000, pp. 18-19 and references therein).

2 Methods

In this section, we discuss the importance sampling leave-one-out (section 2.1) and
k-fold cross-validation (section 2.2). We also propose an approach for obtaining
samples from the distributions of the expected utility estimates (section 2.3) and
discuss model comparison based on expected utilities (section 2.4).
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2.1 Importance sampling leave-one-out cross-validation

In IS-LOO-CV, instead of sampling directly from p(θ |D(\i), M), samples θ̇j from
the full posterior p(θ |D, M) are reused. Additional computation time in IS-LOO-
CV compared to sampling from the full posterior distribution is negligible. If we
want to estimate the expectation of a function h(θ) and we have samples θ̇j from
distribution g(θ), we can write the expectation as

E(h(θ)) =
∫

h(θ) f (θ)dθ =
∫

h(θ) f (θ)

g(θ)
g(θ)dθ, (12)

and approximate it with the Monte Carlo method

E(h(θ)) ≈
∑L

l=1 h(θ̇j )w(θ̇j )∑L
l=1 w(θ̇j )

, (13)

where the factors w(θ̇j ) = f (θ̇j )/g(θ̇j ) are called importance ratios or importance
weights. See (Geweke, 1989) for the conditions of the convergence of the impor-
tance sampling estimates. The quality of the importance sampling estimates de-
pends heavily on the variability of the importance sampling weights, which depends
on how similar f (θ) and g(θ) are.

A new idea in (Gelfand et al., 1992; Gelfand, 1996) was to use full posterior
as the importance sampling density for the leave-one-out posterior densities. By
drawing samples {ÿj ; j = 1, . . . , m} from p(y|x (i), D(\i), M), we can calculate the
Monte Carlo approximation of the expectation

Ey[g(y)|x (i), D(\i), M] ≈ 1

m

m∑
j=1

g(ÿj ). (14)

If θ̈i j is a sample from p(θ |D(\i), M) and we draw ÿj from p(y|x (i), θ̈i j , M), then ÿj

is a sample from p(y|x (i), D(\i), M). If θ̇j is a sample from p(θ |D, M) then samples
θ̈i j can be obtained by resampling θ̇j using importance resampling with weights

w
(i)
j = p(θ̇j |D(\i), M)

p(θ̇j |D, M)
∝ 1

p(y(i)|x (i), θ̇j , D(\i), M)
. (15)

The reliability of the importance sampling can be estimated by examining the
expected variability of the importance weights. For simple models this may be
computed analytically (see, e.g., Peruggia, 1997), but if analytical solutions are in-
applicable, we have to estimate this from the weights obtained. It is customary to
examine the distribution of weights with various plots (see, e.g, Newton & Raftery,
1994; Gelman et al., 1995, chap. 10; Peruggia, 1997). We prefer plotting the cu-
mulative normalized weights (see examples in section 4.1). As we get n such plots
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for IS-LOO-CV, it would be useful to be able to summarize the quality of impor-
tance sampling for each i with just one value. For this, we use a heuristic measure
of effective sample sizes based on an approximation of the variance of importance
weights computed as

m(i)
eff = 1/

m∑
j=1

(w
(i)
j )2, (16)

where w
(i)
j are normalized weights (Kong, Liu, & Wong, 1994; Liu, 2001, chap.

2.5.3). We propose to examine the distribution of the effective sample sizes by
checking the minimum and some quantiles and by plotting m(i)

eff in increasing or-
der (see examples in section 4). Note that a small variance estimate of the ob-
tained sample weights does not guarantee that importance sampling is giving the
correct answer. On the other hand, the same problem applies to any variance or con-
vergence diagnostics method based on finite samples of any indirect Monte Carlo
method (see, e.g., Neal, 1993; Robert & Casella, 1999).

Even in simple models like the Bayesian linear model, leaving one very influen-
tial data point out may change the posterior so much that the variance of the weights
is very large or infinite (Peruggia, 1997). Moreover, even if leave-one-out posteri-
ors are similar to the full posterior, importance sampling in high dimensions suffers
from large variation in importance weights (see, e.g., MacKay, 1998). Flexible
nonlinear models like MLP have usually a high number of parameters and a large
number of degrees of freedom (all data points may be influential). We demonstrate
in section 4.1 a simple case where IS-LOO-CV works well for flexible nonlinear
models and in section 4.2 a case, which is more difficult and where IS-LOO-CV
fails. In section 4.3 we illustrate that the importance sampling does not work if data
have such dependencies that several samples have to be left out at a time.

In some cases the use of importance link functions (ILF) (MacEachern & Pe-
ruggia, 2000) might improve the importance weights substantially. The idea is to
use transformations that bring the importance sampling distribution closer to the
desired distribution. See (MacEachern & Peruggia, 2000) for an example of com-
puting case-deleted posteriors for Bayesian linear model. For complex models, it
may be difficult to find good transformations, but the approach seems to be quite
promising. If n is moderate, it might also be viable to use adaptive importance
sampling methods (see, e.g., Zhang, 1996) for each i .

Importance-sampling might be improved by using model-specific importance
link functions (MacEachern & Peruggia, 2000) or computationally more intensive
adaptive importance sampling methods (see, e.g., Zhang, 1996). If there is reason
to suspect the reliability of the importance sampling, we suggest using predictive
densities from the k-fold-CV, discussed in section 2.2.
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2.2 k-fold cross-validation

In k-fold-CV, instead of sampling from n leave-one-out distributions p(θ |D(\i), M),
we sample only from k (e.g., k = 10) k-fold-CV distributions p(θ |D(\s(i)), M) and
then the k-fold-CV predictive densities are computed by the equation (compare to
Equations 1 and 10)

p(y|x (i), D(\s(i)), M) =
∫

p(y|x (i), θ, D(\s(i)), M)p(θ |D(\s(i)), M)dθ, (17)

where s(i) is a set of data points as follows: the data is divided into k groups so that
their sizes are as nearly equal as possible and s(i) is the set of data points in group
where the i th data point belongs. So approximately n/k data points are left out at a
time and thus, if k � n, computational savings are considerable.

Since the k-fold-CV predictive densities are based on smaller training data sets
than the full data set, the expected utility estimate

ūCV = Ei [u(y(i), x (i), D(\s(i)), M)] (18)

is biased. This bias has been usually ignored, maybe because k-fold-CV has been
used mostly in model (method) comparison, where biases effectively cancel out
if the models (methods) being compared have similar steepness of the learning
curves. However, in the case of different steepness of the learning curves and in
the model assessment, this bias should not be ignored. To get more accurate results,
the bias corrected expected utility estimate ūCCV can be computed by using a less
well-known first order bias correction (Burman, 1989)

ūtr = Ei [u(y(i), x (i), D, M)] (19)

ūcvtr = Ej

[
Ei [u(y(i), x (i), D(\sj ), M)]] ; j = 1, . . . , k (20)

ūCCV = ūCV + ūtr − ūcvtr, (21)

where ūtr is the expected utility evaluated with the training data given the training
data, that is, the training error or the expected utility computed with the posterior
predictive densities (see section 3.2), and ūcvtr is the average of the expected utilities
evaluated with the training data given the k-fold-CV training sets. The correction
term can be computed by using samples from the full posterior and the k-fold-CV
posteriors and no additional sampling is required.

Although the bias can be corrected when k gets smaller, the disadvantage of
small k is the increased variance of the expected utility estimate. The variance in-
creases with smaller k for the following reasons: the k-fold-CV training data sets are
worse proxies for the full training data, there are more ways to divide the training
data randomly, but it is divided in just one way, and the variance of the bias correc-
tion increases. Values of k between 8 and 16 seem to have good balance between
the increased accuracy and increased computational load. In LOO-CV (k = n) the
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bias is usually negligible, unless n is very small. See discussion in the next section
and some related discussion in (Burman, 1989).

We demonstrate in section 4.1 a simple case where the IS-LOO-CV and (bias
corrected) k-fold-CV give equally good results and in section 4.2 a case, which
is more difficult where the k-fold-CV works well and the IS-LOO-CV fails. In
section 4.3, we demonstrate a case where k-fold-CV works but IS-LOO-CV fails,
since group dependencies in data require leaving groups of data out at a time.

For the time series with unknown finite range dependencies, the k-fold-CV can
be combined with the h-block-CV proposed by Burman, Chow, and Nolan (1994).
Instead of just leaving the i th point out, additionally a block of h cases from either
side of the i th point is removed from the training data for the i th point. The value
of h depends on the dependence structure, and it could be estimated for example
from autocorrelations. The approach could also be applied in other models with
finite range dependencies (e.g., some spatial models), by removing a block of h
cases from around the i th point. When more than one data point are left out at a
time, importance sampling probably does not work, and either full h-block-CV or
k-fold-h-block-CV should be used.

2.3 Distribution of the expected utility estimate

To assess the reliability of the expected utility estimate, we estimate its distribution.
Let us first ignore the variability due to Monte Carlo integration, and consider the
variability due to approximation of the future data distribution with a finite number
of training data points. We are trying to estimate the expected utilities given the
training data D, but the cross-validation predictive densities p(y|x (i), D(\sj ), M)

are based on training data sets D(\sj ), which are each slightly different. This makes
the ui ’s slightly dependent in a way that will increase the estimate of the variability
of the ū. In the case of LOO-CV, this increase is negligible (unless n is very small)
and in the case of k-fold-CV it is practically negligible with reasonable values of k
(illustrated in section 4.1). If in doubt, this increase could be estimated as mentioned
in section 4.1. See also comments in the next section.

If utilities ui are summarized with the mean

ū = Ei [ui ], (22)

a simple approximation would be to assume ui ’s to have an approximately Gaussian
distribution (described by the mean and the variance) and to compute the variance
of the expected utility estimate as (see, e.g., Breiman, Friedman, Olshen, & Stone,
1984, chap. 11)

Var[ū] = Vari [ui ]/n. (23)

Of course, the distribution of ui ’s is not necessarily Gaussian, but still this (or more
robust variance estimate based on quantiles) is an adequate approximation in many
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cases. A variation of this, applicable in the k-fold-CV case, is that first the mean
expected utility ū j for each of the k folds is computed and then the variance of the
expected utility estimate is computed as (see, e.g., Dietterich, 1998)

Var[ū] ≈ Varj [ū j ]/k. (24)

Here the distribution of ū j ’s tends to be closer to Gaussian (due to central limit the-
orem), but a drawback is that this estimator has a larger variance than the estimator
of equation 23.

If the summary quantity is some other than mean (e.g., α-quantile) or the distri-
bution of ui ’s is far from Gaussian, above approximations may fail. In addition, the
above approximation ignores the uncertainty in the estimates of ui ’s due to Monte
Carlo error. We propose a quick and generic approach based on the Bayesian boot-
strap (BB) (Rubin, 1981), which can handle variability due to Monte Carlo integra-
tion, bias correction estimation, and the approximation of the future data distribu-
tion, as well as arbitrary summary quantities and gives good approximation also in
the case of non-Gaussian distributions.

The BB makes a simple non-parametric approximation to the distribution of
random variable. Having samples of z1, . . . , zn of a random variable Z , it is as-
sumed that posterior probabilities for the zi have Dirichlet distribution Di(1,. . . ,1)
(see, e.g., Gelman, Carlin, Stern, & Rubin, 1995, Appendix A) and values of Z that
are not observed have zero posterior probability. Sampling from the Dirichlet dis-
tribution gives BB samples from the distribution of the distribution of Z and thus
samples of any parameter of this distribution can be obtained. For example, with
φ = E[Z ], for each BB sample b we calculate the mean of Z as if gi,b were the
probability that Z = zi ; that is, we calculate φ̇b = ∑n

i=1 gi,bzi . The distribution of
the values of φ̇b; b = 1, . . . , B is the BB distribution of the mean E[Z ]. See (Lo,
1987; Weng, 1989; Mason & Newton, 1992) for some important properties of the
BB.

The assumption that all possible distinct values of Z have been observed is usu-
ally wrong, but with moderate n and not very thick tailed distributions, inferences
should not be very sensitive to this unless extreme tail areas are examined. If in
doubt, we could use a more complex model (e.g., mixture model) that would smooth
the probabilities (discarding also the assumption about a priori independent prob-
abilities). Of course, fitting parameters of the more complex model would require
extra work and it still may be hard to model the tail of the distribution well.

To get samples from the distribution of the expected utility estimate ū, we first
sample from the distributions of each ui (variability due to Monte Carlo integration)
and then from the distribution of the ū (variability due to the approximation of the
future data distribution). From obtained samples, it is easy to compute for example
credible intervals (CI), highest probability density intervals (HDPI, see Chen, Shao,
& Ibrahim, 2000, chap. 7), histograms, and kernel density estimates. Note that
the variability due to Monte Carlo integration can be reduced by sampling more
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Monte Carlo samples, but this can be sometimes computationally too expensive.
If the variability due to Monte Carlo integration is negligible, samples from the
distributions of each ui could be replaced by the expectations of ui .

To simplify computations (and save storage space), we have used thinning to
get near independent MCMC samples (estimated by autocorrelations (Neal, 1993,
chap. 6; Chen et al., 2000, chap. 3)). However, if MCMC samples were highly
dependent, we could use dependent weights in BB (Künsch, 1989, 1994).

2.4 Model comparison with expected utilities

The distributions of the expected utility estimates can be used for comparing dif-
ferent models. Difference of the expected utilities of two models M1 and M2 is

ūM1−M2 = Ei [uM1,i − uM2,i ]. (25)

If the variability due to Monte Carlo integration is assumed negligible and a Gaus-
sian approximation is used for the distributions of the expected utility estimates
(equation 23 or equation 24), the probability p(ūM1−M2 > 0) can be computed ana-
lytically.

With the Bayesian bootstrap, we can sample directly from the distribution of the
differences, or if the same random number generator seed has been used for both
models when sampling over i (variabilities due to Monte Carlo integrations are in-
dependent but variabilities due to the approximations of the future data distribution
are dependent through i), we can get samples from the distribution of the difference
of the expected utility estimates as

˙̄u(M1−M2),b = ˙̄uM1,b − ˙̄uM2,b. (26)

Then we can, for example, plot the distribution of ūM1−M2 or compute the proba-
bility p(ūM1−M2 > 0). Following simplicity postulate (parsimony principle), it is
useful to start from simpler models and then test if more complex model would give
significantly better predictions. See discussion of simplicity postulate in (Jeffreys,
1961). Although possible overestimation of the variability due to training sets being
slightly different (see the previous section) makes these comparisons slightly con-
servative, the error is small and in model choice, it is better to be conservative than
too optimistic.

An extra advantage of comparing the expected utilities is that even if there is
high probability that one model is better, it might be found out that the difference
between the expected utilities still is practically negligible. For example, it is pos-
sible that using statistically better model would save only a negligible amount of
money.

The expected predictive densities have an important relation to Bayes factors,
which are commonly used in Bayesian model comparison. If utility u is the pre-



Bayesian Model Assessment and Comparison Using Cross-Validation 13

dictive log-likelihood and (mean) expected utilities are computed by using cross-
validation predictive densities then

PsBF(M1, M2) ≡
n∏

i=1

p(y(i)|x (i), D(\i), M1)

p(y(i)|x (i), D(\i), M2)
= exp(nūM1−M2), (27)

where PsBF stands for pseudo-Bayes factor (Geisser & Eddy, 1979; Gelfand, 1996).
As we are interested in the performance of predictions for an unknown number of
future samples, we like to report scaled PsBF by taking nth root to get a ratio of
“mean” predictive likelihoods (see examples in section 4). Note that previously
only point estimates for PsBF have been used, but with the proposed approach, it is
possible to compute also the distribution of the PsBF estimate.

As the method we have proposed is based on numerous approximations and
assumptions, the results in model comparison should be applied with care when
making decisions. It should also be remembered that: “Selecting a single model is
always complex procedure involving background knowledge and other factors as the
robustness of inferences to alternative models with similar support” (Spiegelhalter,
Best, & Carlin, 1998, p. 3).

3 Relations to other predictive approaches

In this section, we discuss the relations of the cross-validation predictive densities
to prior predictive densities and Bayes factors (section 3.1), and posterior predictive
densities (section 3.2). See (Vehtari, 2001, chap. 3.3) for discussion of relations
to other predictive densities, information criteria and the estimation of the effective
number of parameters.

3.1 Prior predictive densities and Bayes factors

The marginal prior predictive densities (compare to equation 1)

p(y|x (i), M) =
∫

p(y|x (i), θ, M)p(θ |M)dθ (28)

are conditioned only on the prior, not on the data. The expected utilities computed
with the marginal prior predictive densities would measure the goodness of the pre-
dictions without training samples used and could be used as an estimate of the lower
(or upper, if a smaller value is better) limit for the expected utility.

The joint prior predictive densities
∫

p(D|θ, M)p(θ |M)dθ = p(D|M) are used
to compute the Bayes factors (BF) BF(M1, M2) = p(D|M1)/p(D|M2) which are
commonly used in Bayesian model comparison (Jeffreys, 1961; Kass & Raftery,
1995). Even if the posterior would not be sensitive to changes in the prior, when
using BF in model comparison the parameters for the priors have to be chosen with
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great care. The prior sensitivity of the Bayes factor has been long known (Jeffreys,
1961) and is sometimes called “Lindley’s Paradox” or “Bartlett’s paradox” (see a
nice review and historical comments in (Hill, 1982)).

If prior and likelihood are very different, normalized prior predictive densities
may be very difficult to compute (Kass & Raftery, 1995). However, it may be
possible to estimate unnormalized prior predictive likelihoods for large number of
models relatively fast (see, e.g., Ntzoufras, 1999; Han & Carlin, 2001), so that prior
predictive approach may be used to aid model selection as discussed by Vehtari
(2001, chap. 4).

3.2 Posterior predictive densities

Posterior predictive densities are naturally used for new data (equation 1). When
used for the training data, the expected utilities computed with the marginal pos-
terior predictive densities would measure the goodness of the predictions as if the
future data samples would be exact replicates of the training data samples. This
is equal to evaluating the training error, which is well known to underestimate the
generalization error of flexible models (see also examples in section 4). Comparison
of the joint posterior predictive densities leads to the posterior Bayes factor (PoBF)
(Aitkin, 1991). The posterior predictive densities should generally not be used ei-
ther for assessing model performance, except as an estimate of the upper (or lower
if smaller value is better) limit for the expected utility, or in model comparison as
they favor overfitted models (see also discussion of paper (Aitkin, 1991)). Only if
the effective number of parameters is relatively small, that is peff � n, the poste-
rior predictive densities may be useful approximation to cross-validation predictive
densities (Vehtari, 2001, chap. 3.3.4), and thus may be used to save computational
resources.

The posterior predictive densities are also useful in Bayesian posterior analysis
advocated, for example, by Rubin (1984), Gelman and Meng (1996), Gelman et al.
(1995), and Gelman, Meng, and Stern (1996). In the Bayesian posterior analysis,
the goal is to compare posterior predictive replications to the data and examine the
aspects of the data that might not accurately be described by the model. Thus, the
Bayesian posterior analysis is complementary to the use of the expected utilities
in model assessment. To avoid using the data twice, we have also used the cross-
validation predictive densities for such analysis. This approach has also been used
in some form by Gelfand et al. (1992), Gelfand (1996), and Draper (1995, 1996).

4 Illustrative examples

As illustrative examples, we use MLP networks and Gaussian processes with Markov
Chain Monte Carlo sampling (Neal, 1996, 1997, 1999; Lampinen & Vehtari, 2001)
in one toy problem: MacKay’s robot arm, and two real world problems: concrete
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quality estimation and forest scene classification. See (Vehtari & Lampinen, 2001,
Appendix) for details of the models, priors and MCMC parameters. The MCMC
sampling was done with the FBM1 software and Matlab-code partly derived from
the FBM and Netlab2 toolbox. For convergence diagnostics, we used a visual in-
spection of trends, the potential scale reduction method (Gelman, 1996) and the
Kolmogorov-Smirnov test (Robert & Casella, 1999). Importance weights for MLP
and GP were computed as described in (Vehtari, 2001, Ch 3.2.2).

4.1 Toy problem: MacKay’s robot arm

In this section we illustrate some basic issues of the expected utilities computed
by using the cross-validation predictive densities. A very simple “robot arm” toy-
problem (first used by MacKay, 1992) was selected, so that the complexity of the
problem would not hide the main points that we want to illustrate. The task is to
learn the mapping from joint angles to position for an imaginary robot arm. Two
real input variables, x1 and x2, represent the joint angles and two real target val-
ues, y1 and y2, represent the resulting arm position in rectangular coordinates. The
relationship between inputs and targets is

y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + e1, y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + e2, (29)

where e1 and e2 are independent Gaussian noise variables of standard deviation
0.05. As training data sets, we used the same data sets that were used by MacKay
(1992) 3. There are three data sets each containing 200 input-target pairs which
were randomly generated by picking x1 uniformly from the ranges [-1.932,-0.453]
and [+0.453,+1.932], and x2 uniformly from the range [0.534,3.142]. To get more
accurate estimates of the “true future utility”, we generated additional 10000 input-
target pairs having the same distribution for x1 and x2 as above, but without noise
added to y1 and y2. The “true future utilities” were then estimated using this test
data set and integrating analytically over the noise in y1 and y2. We used an 8-
hidden-unit MLP and a GP with normal (N ) residual model.

Figure 1 shows the expected utilities where the utility is root mean square er-
ror. The IS-LOO-CV and the 10-fold-CV give quite similar error estimates. Fig-
ure 2 shows that the importance sampling works probably very well for the GP
but it might produce unreliable results for the MLP. Although importance sampling
weights for the MLP are not very good, the IS-LOO-CV results are not much differ-
ent from the 10-fold-CV results in this simple problem. Note that in this case, small
location errors and even a large underestimation of the variance in the IS-LOO-CV
predictive densities are swamped by the uncertainty from not knowing the noise
variance.

1http://www.cs.toronto.edu/~radford/fbm.software.html
2http://www.ncrg.aston.ac.uk/netlab/
3Available from http://www.inference.phy.cam.ac.uk/mackay/Bayes_FAQ.html

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/
http://www.inference.phy.cam.ac.uk/mackay/Bayes_FAQ.html
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Figure 1: Robot arm: The expected utilities (root mean square errors) for MLPs
and GPs. Results are shown for three different realizations of the data. The IS-
LOO-CV and the 10-fold-CV give quite similar error estimates. Realized noise and
estimated noise in each data set is also shown. Dotted vertical line shows the level
of the theoretical noise.
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Figure 2: Robot arm: Top plots show the total cumulative mass assigned to the k
largest importance weights versus k (one line for each data point i). The MLP has
more mass attached to fewer weights. Bottom plots show the effective sample size
of the importance sampling mi

eff for each data point i (sorted in increasing order).
The MLP has less effective samples. These two plots show that in this problem, the
IS-LOO-CV may be unstable for the MLP, but probably stable for the GP.

In Figure 1 also the realized, estimated, and theoretical noise in each data set
is shown. Note that the estimated error is lower if the realized noise is lower and
the uncertainty in estimated errors is about the same size as the uncertainty in the
noise estimates. This demonstrates that most of the uncertainty in the estimate of
the expected utility comes from not knowing the true noise variance. Figure 3 ver-
ifies this, as it shows the different components that contribute to the uncertainty in
the estimate of the expected utility. The variability due to having slightly different
training sets in the 10-fold-CV and the variability due to the Monte Carlo approxi-
mation are negligible compared to the variability due to not knowing the true noise
variance. The estimate of the variability due to having slightly different training
sets in the 10-fold-CV was computed by using the knowledge of the true function.
In real world cases where the true function is unknown, this variability could be
approximated using the CV terms calculated for the bias correction, although this
estimate might be slightly optimistic. The estimate of the variability due to Monte
Carlo approximation was computed directly from the Monte Carlo samples using
the Bayesian bootstrap. Figure 3 also shows that bias in the 10-fold-CV is quite
small. As the true function was known, we also computed estimates for the biases
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Figure 3: Robot arm: The different components that contribute to the uncertainty,
and bias correction for the expected utility (root mean square errors) for MLP and
GP. Results are shown for the data set 1. The variability due to having slightly
different training sets in 10-fold-CV and the variability due to the Monte Carlo
approximation are negligible compared to the variability due to not knowing the
true noise variance. The bias correction is quite small, as it is about 0.6% of the
mean error and about 6% of the 90% credible interval of error.

using the test data. For all the GPs, the bias corrections and the “true” biases were
the same with about 2% accuracy. For the MLPs, there was much more variation,
but still the “true” biases were inside the 90% credible interval of the bias correc-
tion estimate. Although in this example there would be no practical difference in
reporting the expected utility estimates without the bias correction, bias may be sig-
nificant in other problems. For example, in the examples of sections 4.2 and 4.3 the
bias correction had notable effect.

Figures 4 and 5 demonstrate the comparison of models using paired comparison
of the expected utilities. Figure 4 shows the expected difference of root mean square
errors and Figure 5 shows the expected ratio of mean predictive likelihoods (nth
root of the pseudo-Bayes factors). The IS-LOO-CV and the 10-fold-CV give
quite similar estimates, but disagreement shows slightly more clearly here when
comparing models than when estimating expected utilities (compare to Figure 1).
The disagreement between the IS-LOO-CV and the 10-fold-CV might be caused by
bad importance weights of the IS-LOO-CV for the MLPs (see Figure 2).

Figure 6 shows different components that contribute to the uncertainty in paired
comparison of the expected utilities. The variability due to having slightly different
training sets in the 10-fold-CV and the variability due to the Monte Carlo approx-
imation have larger effect in pairwise comparison, but they are almost negligible
compared to the variability due to not knowing the true noise variance. Figure 6
also shows that in this case, the bias in the 10-fold-CV is negligible.
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Figure 4: Robot arm: The expected difference of root mean square errors for MLP
vs. GP. Results are shown for three different realizations of the data. The dis-
agreement between the IS-LOO-CV and the 10-fold-CV shows slightly more clearly
when comparing models than when estimating expected utilities (compare to Fig-
ure 1).
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Expected utility with 10−fold−CV (90% CI)

Figure 5: Robot arm: The expected ratio of mean predictive likelihoods (nth root
of the pseudo-Bayes factors) for MLP vs. GP. Results are shown for three different
realizations of the data. The disagreement between the IS-LOO-CV and the 10-
fold-CV shows slightly more clearly when comparing models than when estimating
expected utilities (compare to Figure 1).
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Figure 6: Robot arm: The different components that contribute to the uncertainty,
and bias correction for the expected difference of the expected root mean square
errors for MLP vs. GP. Results are shown for the data set 1. The variability due
to having slightly different training sets in the 10-fold-CV and the variability due
to the Monte Carlo approximation are almost negligible compared to the variability
from not knowing the true noise variance. In this case, the biases effectively cancel
out and the combined bias correction is negligible.

4.2 Case I: Concrete quality estimation

In this section we present results from a real world problem of predicting the quality
properties of concrete. The goal of the project was to develop a model for predict-
ing the quality properties of concrete, as a part of a large quality control program
of the industrial partner of the project. The quality variables included, for example,
compressive strengths and densities for 1, 28 and 91 days after casting, and bleed-
ing (water extraction), spread, slump and air-%, that measure the properties of fresh
concrete. These quality measurements depend on the properties of the stone ma-
terial (natural or crushed, size and shape distributions of the grains, mineralogical
composition), additives, and the amount of cement and water. In the study, we had
27 explanatory variables and 215 samples designed to cover the practical range of
the variables, collected by the concrete manufacturing company. See the details of
problem and the conclusions made by the concrete expert in (Järvenpää, 2001). In
the following we report the results for the volume percentage of air in the concrete,
air-%. Similar results were obtained for the other variables.

We tested 10-hidden-unit MLP networks and GP models with Normal (N ), Stu-
dent’s tν , input dependent Normal (in.dep.-N ) and input dependent tν residual mod-
els. The Normal model was used as standard reference model and Student’s tν , with
an unknown degrees of freedom ν, was used as longer tailed robust residual model
that allows a small portion of samples to have large errors. When analyzing results
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Figure 7: Concrete quality estimation: The expected utilities for MLP and GP
with the Normal (N ) residual model. The top plot shows the expected normalized
root mean square errors and the bottom plot shows the expected 90%-quantiles of
absolute errors.

from these two first residual models, it was noticed that the size of the residual vari-
ance varied considerably depending on three inputs, which were zero/one variables
indicating the use of additives. In the input dependent residual models, the parame-
ters of the Normal or Student’s tν were made dependent on these three inputs with
common hyperprior.

Figure 7 shows the expected normalized root mean square errors and the ex-
pected 90%-quantiles of absolute errors for MLP and GP with Normal (N ) residual
model. The root mean square error was selected as general discrepancy utility and
the 90%-quantile of absolute error was chosen after discussion with the concrete
expert, who preferred this utility as it is easily understandable. The IS-LOO-CV
gives much lower estimates for the MLP and somewhat lower estimates for the GP
than the 10-fold-CV. Figure 8 shows that the IS-LOO-CV for both MLP and GP has
many data points with small (or very small) effective sample size, which indicates
that the IS-LOO-CV cannot be used in this problem.

Figure 9 shows the expected normalized root mean square errors, the expected
90%-quantiles of absolute errors and the expected mean predictive likelihoods for
GP models with Normal (N ), Student’s tν , input dependent Normal (in.dep.-N ) and
input dependent tν residual models. There is not much difference in expected utili-
ties if root mean square error is used (it is easy to guess the mean of prediction), but
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Figure 8: Concrete quality estimation: The effective sample sizes of the importance
sampling m(i)

eff for each data point i (sorted in increasing order) for MLP and GP
with the Normal (N ) noise model. Both models have many data points with a small
effective sample size, which implies that the IS-LOO-CV fails.

there are larger differences if mean predictive likelihood is used instead (it is harder
to guess the whole predictive distribution). The bias corrections are not shown but
they were about 3-5% of the median values, that is, they have notable effect in
model assessment. The biases were similar in different models, so they more or less
effectively cancel out in model comparison.

Tables 2(a), 2(b), and 2(c) show the results for the pairwise comparisons of the
residual models. In this case, the uncertainties in the comparison of the normalized
root mean square errors and the 90%-quantiles of absolute errors are so big that no
clear difference can be made between the models. As we get similar performance
with all models (measured with these utilities), we could choose anyone of them
without the fear of choosing a bad model. With the mean predictive likelihood
utility, there is more difference as it also measures the goodness of the tails. If in
addition to point estimates, the predictive distributions (or, e.g., credible intervals
for predictions) are wanted, input dependent tν model would be probably the best
choice.

Knowing that the additives have strong influence on the quality of concrete it
was useful to report also the expected utilities separately for samples with different
additives, that is assuming that in all future casts no additives or just one of the
additives will be used (Figure 10).

4.3 Case II: Forest scene classification

In this section, we illustrate that if, due to dependencies in the data, several data
points should be left out at a time, k-fold-CV has to be used to get more accurate
results. The case problem is the classification of forest scenes with MLP (Vehtari,
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Figure 9: Concrete quality estimation: The expected utilities for GP models with
Normal (N ), Student’s tν , input dependent Normal (in.dep.-N ) and input dependent
tν residual models. The top plot shows the expected normalized root mean square
errors (smaller value is better), the middle plot shows the expected 90%-quantiles
of absolute errors (smaller value is better) and the bottom plot shows the expected
mean predictive likelihoods (larger value is better).
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Table 1: Concrete quality estimation: Pairwise comparison of expected utilities of
GP models with different residual models (see also Figure 9). The values in the
matrices are probabilities that the model in the row is better than the model in the
column.

Comparison
residual model 1. 2. 3. 4.
1. N 0.40 0.22 0.33
2. tν 0.60 0.18 0.31
3. input dependent N 0.78 0.82 0.85
4. input dependent tν 0.67 0.69 0.15

(a) Normalized root mean square error

Comparison
residual model 1. 2. 3. 4.
1. N 0.17 0.53 0.21
2. tν 0.83 0.87 0.67
3. input dependent N 0.47 0.13 0.23
4. input dependent tν 0.79 0.33 0.77

(b) 90%-quantile of absolute error

Comparison
Residual model 1. 2. 3. 4.
1. N 0.02 0.01 0.00
2. tν 0.98 0.22 0.06
3. input dependent N 0.99 0.78 0.32
4. input dependent tν 1.00 0.94 0.68

(c) Mean predictive likelihood
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Figure 10: Concrete quality estimation: The expected utilities for the GP with the
input dependent tν residual model. The plot shows the expected 90%-quantiles of
absolute errors for samples with no additives, with additive A or B, and all samples.

Heikkonen, Lampinen, & Juujärvi, 1998). The final objective of the project was to
assess the accuracy of estimating the volumes of growing trees from digital images.
To locate the tree trunks and to initialize the fitting of the trunk contour model, a
classification of the image pixels to tree and non-tree classes was necessary. We
extracted a total of 84 potentially useful features: 48 Gabor filters (with different
orientations and frequencies) that are generic features related to shape and texture,
and 36 common statistical features (mean, variance and skewness with different
window sizes). Fortyeight images were collected by using an ordinary digital cam-
era in varying weather conditions. The labeling of the image data was done by
hand via identifying many types of tree and background image blocks with different
textures and lighting conditions. In this study, only pines were considered.

Textures and lighting conditions are more similar in different parts of one image
than in different images. If the LOO-CV is used or data points are divided randomly
in the k-fold-CV, training and test sets may have data points from the same image,
which would lead to over-optimistic estimates of the expected utility. This is caused
by the fact that instead of having 4800 independent data points, we have 48 sam-
ple images which each have 100 highly dependent data points. This increases our
uncertainty about the future data. To get a more accurate estimate of the expected
utility for new unseen images, training data set has to be divided by images.

We tested two 20-hidden-unit MLPs with logistic likelihood model. The first
MLP used all 84 inputs and the second MLP used a reduced set of 18 inputs selected
using the reversible jump MCMC (RJMCMC) method (see Vehtari, 2001, chap. 4).
As discussed in section 2.1 and demonstrated in section 4.2, leaving one point out
can change posterior so much that importance sampling does not work. Leaving
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Figure 11: Forest scene classification: The effective sample sizes of the importance
sampling m(i)

eff for each data point i (sorted in increasing order) for the 84-input
logistic MLP. The effective sample sizes are calculated both for the leave-one-point-
out (IS-LOO-CV) and the leave-one-image-out (IS-LOIO-CV) methods. In both
cases there are many data points with a small effective sample size, which implies
that importance sampling is unstable in this problem.

one image (100 data points) out will change posterior even more. Figure 11 shows
the effective sample sizes of the importance sampling for the 84-input MLP for the
IS-LOO-CV and the IS-LOIO-CV (leave-one-image-out). For the 18-input MLP
the result was similar. In this case, neither the IS-LOO-CV nor the IS-LOIO-CV
can be used.

The expected classification errors for the 84 and 18-input MLPs are shown in
Figure 12. The expected utilities computed by using the posterior predictive den-
sities (training error) give too low estimates. The IS-LOO-CV and the 8-fold-CV
with random data division give too low estimates because the data points from one
image are highly dependent. The IS-LOO-CV also suffers from somewhat bad im-
portance weights and the IS-LOIO-CV suffers from very bad importance weights
(see Figure 11). In the group 8-fold-CV, the data division was made by handling
all the data points from one image as one indivisible group. The bias corrections
are not shown but they were for the 84 and 18 input MLPs about 9% and 3% of
the median values, respectively. Note that the more complex model had naturally
a steeper learning curve and correspondingly a larger bias correction. In this case,
biases did not cancel out in model comparison.

The pairwise comparison computed by using the group 8-fold-CV predictive
densities gave a probability of 0.86 that the 84-input model has lower expected
classification error than the 18-input model. We still might use the smaller model
for classification, as it would be not much worse, but slightly faster.
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MLP − 84 inputs
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Expected utility from posterior / Train error
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Expected utility with group 8−fold−CV (90% CI)

Figure 12: Forest scene classification: The expected utilities (classification errors)
for the 84 and 18-input logistic MLPs.

5 Conclusions

The main goal of the paper was to give unified and formal presentation from Bayesian
viewpoint how to compute the distribution of the expected utility estimate which can
be used to describe, in terms of application field, how good the predictive ability
of a Bayesian model is and how large is uncertainty in our estimate. The impor-
tance sampling leave-one-out predictive densities are a quick way to estimate the
expected utilities and the approach is useful also in some cases with flexible non-
linear models such as MLP and GP. If diagnostics hint that importance weights are
not good, we can instead use the k-fold cross-validation predictive densities with
the bias correction. Using k-fold-CV takes k times more time, but it is more reli-
able. In addition, if data points have certain dependencies, k-fold-CV has to be used
to get reasonable results. We proposed a quick and generic approach based on the
Bayesian bootstrap for obtaining samples from the distributions of the expected util-
ity estimates. With the proposed method, it is also easy to compute the probability
that one model has better expected utility than another one.
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