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Abstract

Bayesian MLP neural networks are a flexible tool in complex nonlinear problems. The approach is complicated
by need to evaluate integrals over high-dimensional probability distributions. The integrals are generally approx-
imated with Markov Chain Monte Carlo (MCMC) methods. There are several practical issues which arise when
implementing MCMC. This article discusses the choice of starting values and the number of chains in Bayesian MLP
models. We propose a new method for choosing the starting values based on early stopping and we demonstrate the
benefits of using several independent chains.

1 Introduction

Multi Layer Perceptron neural networks (MLP) [1] are widely used flexible models suitable in complex nonlinear
problems. The main question in MLP models is the estimation of the model parameters. Recently Bayesian methods
have become a viable alternative to the older error minimization based (ML or MAP) approaches. Bayesian methods
use probability to quantify uncertainty in inferences and the result of Bayesian learning is a probability distribution
expressing our beliefs regarding how likely the different predictions are. Predictions are made by integrating over the
posterior distribution. See [5] for excellent introduction to Bayesian methods.

In case of MLP the posterior distribution is typically very complex. The integrations required by Bayesian approach
can be approximated using Markov Chain Monte Carlo (MCMC) methods [10, 3, 23]. An integral

µ =
∫

g(x)p(x)dx (1)

can be approximated by MCMC, using a sample of values x(t) drawn from the distribution p(x)

µ̂n ≈ 1

N

N∑
t=1

g(x(t)). (2)

In the MCMC, samples are generated using a Markov chain that has the desired posterior distribution as its stationary
distribution. Due to complex posterior distributions, elaborate MCMC schemes, such as proposed in [15, 16] or [13],
are required for efficient sampling in Bayesian MLPs.

MCMC is a general strategy, not an algorithm. There are several practical issues which arise when implementing
MCMC. For “standard statistical models” many of these issues are discussed in [10, 11] and some of the issues
specific for MLPs are discussed in [16] and [13]. Purpose of this paper is to discuss the choice of starting values
(Section 2) and the number of chains (Section 3) in Bayesian MLPs. We propose a new method for choosing starting
values based on early stopping and we demonstrate the benefits of using several independent chains. We concentrate
on Bayesian MLP framework and MCMC schemes described in [16], though most of our discussion is relevant for
other MCMC schemes and complex statistical models. We illustrate discussion with demonstration in Section 4.



2 Starting values

In theory, if the chain is irreducible, the choice of starting values x(0) will not affect the stationary distribution. In
practice, if the chain is slow-mixing, bad starting value may require lengthy burn-in (i.e. we have to run chain longer
to get usable samples). Sampling in Bayesian MLP is slow-mixing because of high number of parameters which
correlate in posterior distribution.

With bad starting values (e.g. values which have very low posterior probability) it might take long time for the chain
to traverse to more probable areas. For simple models, with nicely behaving posterior distribution (e.g. low posterior
correlations of the parameters), it is usually unnecessary to expend much effort in choosing starting values, though it is
recommended that if good starting values are available they are used [6, 9, 10]. Sometimes good starting values can be
chosen by using a simpler model (e.g., linear model or fixing hyperparameters), or simpler method (e.g., regularized
maximum likelihood). The extra benefit of the approximations is that the final results can be compared to them [5].

Neal [16] has used the hybrid Monte Carlo (HMC) algorithm [2] for the weights and Gibbs sampling [8, 4, 10] for the
hyperparameters (the parameters of weight priors and noise model). HMC is an elaborate Metropolis-Hastings Monte
Carlo method, which makes efficient use of gradient information to reduce random walk behavior. The gradient
indicates in which direction one should go to find states with high probability. Gibbs sampling is perhaps the simplest
MCMC method. In a single iteration, Gibbs sampling involves sampling one parameter at time from full conditional
distribution given all the other parameters.

Gibbs sampling of the hyperparameters given the weights is efficient but HMC sampling of the weights given the
hyperparameters is slow-mixing and so good starting values for weights are more important. This is why in following
we consider starting values only for the weights of MLP and assume that after we have chosen some values for weights,
hyperparameter values are immediately sampled with Gibbs sampling.

Usual methods for choosing starting values are

Set all parameter values to zero This is reasonable if the parameters have been centered or if the prior belief is that
parameter values can be positive or negative with equal probability. This is most commonly used method and
this is also used in [16].

Set parameters to prior means This is reasonable if the priors are informative. If the priors are vague the prior mean
might be insensible (e.g. if primary reason for the specific prior is its local uniformity in the area where most of
the posterior probability is believed to be). In [16] the prior mean for the weights is zero.

Sample parameters from prior This is reasonable if the priors are informative. If the priors are vague, sampling
from the prior may produce very bad starting values. Weights from vague prior for MLP are very likely to
produce very low likelihood (see, e.g., example in [16, pp. 17-19]).

Set parameters to MAP estimate This is commonly used in simple statistical models with one or only few not badly
skewed modes. MAP estimate can also be used as approximation to which the final result can be compared. In
case of MLPs the modes are often badly skewed and the joint MAP for parameters and weights may have almost
degenerate solutions in modes.

Sample parameters from approximate posterior This is recommended by [7, 6] but it works well only for simple
models (or if we have lot of data) when we can easily make reasonable approximations (like Gaussian or t-
distribution centered on mode).

From these, zero weights are probably the safest starting values for Bayesian MLP. MLP with small weights is almost
linear and linear model is usually quite safe initial choice. Very small weights are also usual starting values for gradient
based optimization methods in MAP and early stopping solutions.

In order to speed up convergence (and so to reduce burn-in time) Neal uses different MCMC algorithm parameters
in initial sampling phase(s) and in actual sampling phase [16, 11]. Additionally, in the initial sampling phase hyper-
parameters are fixed at some value and only the weights are updated. This prevents hyperparameters from taking on
strange values in the period before the weights have adopted reasonable values. This is generally a working strategy,
but it requires selecting some MCMC parameter values which may differ from the values suitable in the actual sam-
pling. Also it is unclear how long initial sampling phase should be run. In Section 4 we describe a difficult problem
where this strategy had problems.



Next we describe a simple, quick and robust method for choosing the starting values based on early stopping. These
starting values have high likelihood and no initial sampling phase such as described in [16] is required.

2.1 Starting values with early stopping

Early stopping is commonly used regularization method for MLPs [14]. In early stopping weights are initialized to
very small values. Part of the training data is used to train the MLP and the other part is used to monitor the validation
error. Iterative optimization algorithm is used for minimizing the training error. MLP with small weights is almost
linear and non-linearity increases during optimization. Training is stopped when the validation error begins to increase
and the weights with minimum validation error are selected. See [20] for discussion about different stopping criteria.

The basic early stopping is rather inefficient, as it is very sensitive to the initial conditions of the network and only part
of the available data is used to train the model. These limitations can easily be alleviated by using a committee [1]
of early stopping MLPs, with different partitioning of the data to training and stopping sets for each network. Early
stopping is ad hoc method but it is fast and it has proved to be quite robust method when used as committee of early
stopping MLPs. Performance of the (committees of) early stopping MLPs has been compared to Bayesian MLPs, e.g.,
in [21, 19, 24, 25].

In [22] Rögnvaldsson demonstrated that early stop weights can be successfully used to estimate the weight decay
parameter. Weight decay parameter corresponds to Gaussian prior on weights. This supports the idea that early stop
weights are reasonable starting values for MCMC sampling in Bayesian MLP.

We have used committees of early stopping MLPs as quick preliminary approximations in our case problems [12, 24,
25]. We get quickly some results giving insight to the problem. Then we can use more time to make full Bayesian
solution using the early stopping weights as initial guess for MCMC. Finally we can check that our Bayesian solution
gives at least as good results as the early stopping approximation. In Section 4 we demonstrate that early stopping
starting values worked well in a difficult problem.

3 Number of chains

Usually only one chain has been used in MCMC schemes for Bayesian MLPs [16, 21, 13, 19]. In theory one chain
is enough in any MCMC simulation, but in practice there is not yet agreement between using one very long chain or
several long runs. One-very-long-run school says that one very long run has the best chance of finding new modes and
that comparison between chains can never prove convergence. Several-long-runs school says that comparing several
seemingly converged chains might reveal differences if the chains have not yet approached stationarity. See detailed
discussion in [6, 9].

In simple unimodal problems and problems where one mode is dominant one chain is often adequate. Bayesian
MLP usually has multimodal posterior density (see discussion in [13]). In complex multimodal distributions, MCMC
algorithms can experience difficulties when high probability areas of the state space are separated by regions of very
low probability. Typical schemes have low probability of changing modes and so it may require very long time to visit
more than one mode (see also [17, 18] for methods improving sampling of multimodal distributions).

If the chain has low probability of visiting several modes, we have found it useful to use several chains. Using
dispersed starting values (see Section 2), different chains may end to different modes. Using multiple chains does
not give us much information about relative masses of different modes but more elaborate methods are required (see,
e.g., [17, 18]).

In the next section we describe a difficult problem where we got better results by using more than one chain.

4 Experiment

In this section we demonstrate benefits of early stopping starting values and the use of several independent chains in
the problem of electrical impedance tomography (EIT). The aim in EIT is to recover the internal structure of an object
from surface measurements. Number of electrodes are attached to the surface of the object and current patterns are
injected from through the electrodes and the resulting potentials are measured. The inverse problem in EIT, estimating
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(a) Zero weight starting values
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(b) Early stop starting values

Figure 1: Typical trends for one of the hyperparameters (variance of the first layer weights) during MCMC sam-
pling of Bayesian MLP in electrical impedance tomography (EIT) problem. Note that in practice, after approximate
convergence, we used next 100 samples for inference. These chains were run longer for demonstration purposes.

the conductivity distribution from the surface potentials, is known to be severely ill-posed.

In [12] we proposed a novel feedforward solution for the reconstruction problem. The approach is based on trans-
formation of both input and output data by principal component projection and application of the MLP in this lower
dimensional eigenspace. The reconstruction was based on 20 principal components of the 128 dimensional potential
signal and 60 eigenimages with resolution 41 × 41 pixels. Five independent training and test data sets each consisted
of 100 simulated bubble formations.

MLP networks containing 30 hidden units (2490 weights) were used. Early stop MLPs were made with MATLAB
using scaled conjugate gradient optimization and 10-fold split of data. MCMC simulations1 were run with FBM
software2, which implements the methods described in [16]. The length and the number of the chains and the burn-in
length were decided using visual inspection of trends and potential scale reduction method [7, 6].

Fig. 1 shows typical trends for one of the hyperparameters (variance of the first layer weights). Chain starting with
zero weights is shown at left and chain starting from early stop weights is shown at right. Initial sampling phases used
with zero weight starting values helped sometimes, but more often after initial sampling phase the chain was still far
away from more reasonable values. Starting values chosen with early stopping were always good. They were near the
final samples and no initial sampling phase before actual sampling was needed.

Tables 1 and 2 illustrate the benefit of using several chains. Table 1 shows the mean test errors (and standard deviations
of means) for different methods calculated with five independent train and test sets. For each five set we run one long
chain (2000 iterations) and 10 shorter runs (each 200 iterations) and discarded first 100 iterations from each chain
as burn-in. All chains were started with early stop weights. The combined chains method gives lower error than the
single long chain method. Note that about same amount of CPU time was used for one long chain and 10 shorter
chains. The early stopping MLPs were also used as preliminary estimates and the test errors are included in Table 1.
Table 2 shows p-values for pairwise comparisons, obtained from paired t-tests (see [21] or [19] for more details). The
combined chains method is significantly better than the other methods (p-value less than 0.01).

Fig. 2(a) shows sample distributions of one hyperparameter (variance of the first layer weights) from 10 independent
chains. Visual inspection of trends and potential scale reduction method hinted that chains had converged but this
figure shows that they are sampling different areas. Fig. 2(b) shows a sample distribution for same hyperparameter
from 10 combined chains.

1The MCMC sampling specification we used was repeat 20 sample-sigmas heatbath 0.9 hybrid 100:10 0.04 negate
2<URL:http://www.cs.toronto.edu/~radford/fbm.software.html>



Table 1: Performance comparison of various MCMC and reference methods. The task was to approximate the inverse
mapping in a tomographic image reconstruction application (EIT, electrical impedance tomography), in order to re-
construct a gas bubble in a liquid flow. The shown errors give the mean percentage of pixels in the test images that
were erroneously classified as bubble or background. The values are averaged over 5 independent training and test
sets with 100 samples each. See Table 2 for pairwise comparisons

Method Mean test error % ± std of mean

Early stop MLPs
Single early stop MLP 11.8 ± 0.5
Committee of early stop MLPs 9.5 ± 0.6

Bayesian MLPs
Single chain (200 iterations) 9.3 ± 0.5
Single long chain (2000 iterations) 9.2 ± 0.4
10 combined chains (10×200 iterations) 8.6 ± 0.5

Table 2: Pairwise comparisons of various MCMC and reference methods (see Table 1 first). The values in the matrix
are p-values, obtained from paired t-tests. The column order of the methods is the same as the row order of the
methods. The p-values have been rounded to nearest whole number in percent (so the value 1 indicates a p-value
less than 0.01). If the value is larger than 9% it is not considered significant and it is not reported (a dot is shown
instead). The p-values are reported in the column of the winning method. Looking row-wise, you see which methods
significantly out-performed the method of that row.

Method
Early stop MLPs

Single early stop MLP 1 1 1 1
Committee of early stop MLPs · · · · 1

Bayesian MLPs
Single chain (200 iterations) · · · 1
Single long chain (2000 iterations) · · · 1
10 combined chains (10×200 iterations) · · · ·

5 Conclusions

MCMC methods allow ease use of flexible MLP models in Bayesian framework. We have discussed the choice of the
starting values of chains and proposed a new method based on early stopping. Early stopping starting values are quick
and easy to generate, they can be used for preliminary estimation and in difficult problems they speed up MCMC
sampling. We also showed that the use of several independent MCMC chains may improve the result of Bayesian
MLP in a difficult case problem. Using the early stopping starting values and comparing different chains gives us
more confidence in the results.
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