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ABSTRACT

This paper presents a novel approach for approximate inte-
gration over the uncertainty of noise and signal variances in
Gaussian process (GP) regression. Our efficient and straight-
forward approach can also be applied to integration over in-
put dependent noise variance (heteroscedasticity) and input
dependent signal variance (nonstationarity) by setting inde-
pendent GP priors for the noise and signal variances. We use
expectation propagation (EP) for inference and compare re-
sults to Markov chain Monte Carlo in two simulated data sets
and three empirical examples. The results show that EP pro-
duces comparable results with less computational burden.

1. INTRODUCTION

Gaussian processes (GP) are commonly used as flexible non-
parametric Bayesian priors for functions [15]. A typical as-
sumption is that the parameters of the GP model stay constant
over the input space. However, this is not reasonable when it
is clear from the data that the phenomenon changes over the
input space.

As an improvement to these cases, Goldberg [5] pro-
posed heteroscedastic noise inference for Gaussian processes
using a second GP to infer the log noise variance and do-
ing the inference by Markov chain Monte Carlo (MCMC).
More recent work on heteroscedastic noise models include
solving the problem by transformation of the mean and vari-
ance parameters to the natural parameters of a Gaussian
distribution [9], considering a two-component noise model
[11], and an expectation maximization like algorithm [7].
Adams [1] used expectation propagation (EP) [10] to model
the input-dependent signal variance (signal magnitude) in
GPs by factoring the output signal to a product of a strictly
positive modulating signal and a non-restricted signal, with
independent GP priors for both of them.

Non-stationarity can also be incorporated via input de-
pendent length-scale as proposed by Gibbs [4] and further de-
veloped by Paciorek [14] using MCMC for the approximative
inference. In general, the length-scale and the signal vari-
ance are underidentifiable and the proportion of them is more
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important to the predictions[3]. Therefore, we assume that
an input-dependent signal variance and an input-dependent
length-scale would produce similar predictions and here we
focus on the input-dependent signal variance.

We present a straightforward and fast approach to inte-
gration over the uncertainty of the noise and signal variance
in GP regression using EP. This approach can also be applied
to input-dependent noise and signal variance by giving them
independent GP priors. We extend the heteroscedastic noise
model by Goldberg [5] to EP inference, and extend the non-
stationary model by Adams [1] to analytical predictions. The
scope of this paper is not to compare GPs with other models
for non-stationarity, or to compare EP with other approximate
inference methods [7, 8]. Therefore, we focus on EP as an
experimentally proven and efficient approximate method and
use MCMC as the ground truth to form a proof-of-concept
for this novel GP modeling framework. We consider the joint
posterior of the modulating signal and the non-restricted sig-
nal and show that modeling the posterior correlations leads to
significant improvements in the convergence of the EP algo-
rithm compared to a factorized approximation. We also obtain
stable analytical gradients of the log marginal likelihood.

We still need to infer other covariance function parame-
ters such as the characteristic length-scale by maximizing the
marginal likelihood or posterior density, or using quadrature
or MCMC integration. The performance of the EP imple-
mentation is compared to full MCMC [12] which produces
the exact solution in the limit of an infinite sample size.

In Section 2 we briefly go through Gaussian process re-
gression. Section 3 is dedicated to the models and meth-
ods including the EP algorithm for posterior approximation,
marginal likelihood evaluation and predictions. The exper-
iments in Section 4 present the performance of our EP ap-
proach in two simulated data sets and three empirical prob-
lems. We conclude with discussion in Section 5.

2. GAUSSIAN PROCESS REGRESSION

In standard GP regression the output y is modeled as a func-
tion f plus some additive noise € such that y(x) = f(x) + €.
If € ~ N(0,02), y can be expressed as

y(x) ~ N(f(x),0%). (1)



The function f is given a Gaussian process prior,
f(x) ~ GP(m(x), k(x,x')), 2

defined by its mean and covariance functions. In this work
we use a zero-mean Gaussian processes for notational conve-
nience. As for the covariance function, we use the common
squared exponential

d
k(x,x) = o} exp ( — Z (x; — x2)25;2/2>, 3)
i=1

where x,x’ € RY, G'J% is the magnitude or signal variance
of the covariance function and ¢; is the characteristic length-
scale corresponding to the ith input dimension.

Given a data matrix X = [x1,Xa,...,Xy], we can write
our GP prior for the latent function f(x) = f as

where the elements [K¢|; ; = k(x;,x;) are computed with
(3). The available data X and y are denoted with D.

We focus on models where either the noise variance in
(1), or both the noise and signal variances in (1) and (3) de-
pend on the input. These cases are handled analogously to
(2), by making the noise and signal variances functions of the
input, and the observation a combination of the three resulting
signals:

log(0%(x)) ~ GP (1 (%), kn(x, X))

b k )

loa(o? &)
g(gf(x)) ~ GP(mm(x), km(x,x")).
From now on @ = log(c?(x)) and ¢ = log(afp (x)). We set
the GP priors for the logarithms of the variances to handle the
positive restriction. We use the squared exponential also for
kn(x,x") and kp, (x,x’), although other covariance functions
could be used, too.

3. APPROXIMATE INFERENCE

3.1. Expectation Propagation

Expectation propagation is a general algorithm for forming an
approximating distribution (from the exponential family) by
matching the marginal moments of the approximating distri-
bution to the marginal moments of the true distribution [10].
The notation in this section follows mainly the notation of
Rasmussen & Williams [15].

EP forms a Gaussian approximation to the posterior dis-
tribution by approximating the independent non-Gaussian
likelihood terms with Gaussian site approximations #;. This
enables analytical computation of the posterior distribution
because both the likelihood approximation and the prior are
Gaussian:

p(yil fi) = Ziti(f;) = ZN(fil s, o), (6)

where Z;, f1; and 3, are the parameters of the site approxima-
tions, or site parameters. We use EP to approximate p(f|D),
such that

p(€1D) = S p(e1X) [T ploil )
=zt ILEw =aeo)

where Z is the normalization constant or marginal likelihood,
Zgp is the EP approximation to the marginal likelihood,
p(f]X) is the prior of the latent variables f, and ¢(f|D) is the
Gaussian approximation to the exact posterior distribution

p(f|D).

3.2. Noise Variance

To integrate over the uncertainty of the noise variance in GP
regression, we approximate the Gaussian likelihood as a prod-
uct of two independent Gaussian site approximations for the
mean f; and for the logarithm of the noise variance 6:

p(ilfi,0%) = N(yilfi, €?) = Zit; (f:)E:(0). ®)

The posterior approximation of the latent variables f and 6
can now be written in a factorized form, if we set independent
prior distributions for f and 6

p(£,0|D) ~ q(f|D) ¢(0]D). ©

3.3. Signal Variance

To use a similar approach for the signal variance, we move the
signal variance from the GP prior to the likelihood function.
Otherwise we would need to integrate over an n-by-n matrix
determinant, which is computationally expensive. We repa-
rameterize f as f = o ff , where o is the square root of the
signal variance. Now, if Cov|[f] = 07Kj, then Cov[f] = K;,
where Kj is a covariance matrix computed with identity sig-
nal variance in (3). Because f and e®/2 are multiplied together
when modeling the mean of p(y;|f;, 0, ¢), f and ¢ have strong
posterior dependency. Instead of doing a factorized approx-
imation as for the noise variance, we approximate the likeli-
hood with two site approximations: one for the noise variance
and a joint two-dimensional Gaussian for v; = (f;, ¢):
| f, — 1e®/2F Oy 71 (F £

p(ilfi, 0,0) = N(yile® " fi, ") = Ziti(fi, ¢) t:(0). (10)
Assuming independent priors for the latent variables f, ¢ and
6, the posterior approximation is also analogous to the noise
variance case

p(£,0,8|D) ~ q(f., | D) (6| D). (11)

We also tested the fully factorized approximation ti( fi, @) =
ti(fi)t:(¢), but it gave worse predictions, and the EP algo-
rithm needed more iterations to converge.



3.4. Input-Dependent Noise and Signal Variance

We can easily extend the presented likelihood approximations
to include also input-dependency on signal and noise vari-
ances (or either of them), by setting independent GP priors
for both the logarithm of the noise variance and logarithm of
the signal variance:

p(01X) =N(0,Ksp), p(v|X)=N(0,K,).  (12)
If we integrate over the input-dependent signal variance, we
have

_|Kz 0
K, = {O K¢], (13)

otherwise we have K,, = Ky. By using the GP priors, we
assume that the signal and noise variances are also some un-
known functions that depend on the input x.

The site approximations are of the same form indepen-
dent of the input-dependency of the parameters

ti(vi) = N(foy 1, B0,).  (14)

If we integrate over the (input-dependent) signal variance, we
have

£:(0;) = N(fig.i, 0.i),

?f?z‘ Zfab,i

s)
Vg g

. fif, .
c= | Tt and X,; =
i = [07] ,

otherwise fi, ; = ji; and 3, ; = ;. Here we have used
. for both the scalar variance of the univariate Gaussian and
the covariance matrix of the bivariate Gaussian, but it should
be clear from the context which one it represents.

The posterior distributions are given by

q(U‘D) = N(ll"uv Ev) X p(’U|X) Hgl(’ul)

3

o< N(v]0, Ky )N(0| iy, By ), (16)
q(0|D) = N(pg, Xg) x p(0].X) Hi}(@i)

O(N('U|O,K0)N(0|ﬂ97i]9), 17

where py = 202;1110’ Ty = (Kg' + 53971)71’ Koy =
zvi:;l,}v, and ¥, = (K;! + 2;1)‘1. The joint site co-
variance 29 is diagonal while ﬁv has a block form if we in-
tegrate over the input-dependent signal variance:

Xy X
E¢f DI

; (18)

where each block is diagonal. Cross-diagonal terms, ! fo =
> of collect the marginal covariances > P and the main-
diagonal terms, 3; and X, collect the marginal variances
27, and Xy ;. If we do not integrate over the signal variance,

we have X, = f}f.

3.5. EP Algorithm

The full EP algorithm is presented in Algorithm 1. The main
points in the algorithm are the same as in the standard EP
approach for Gaussian processes [15, pp. 52-60]. There are
some implementation details that should be noted:

1. The overall stability of the EP updates can be im-
proved by using the natural parameterization, 7 = Y ~!'fi and
7 = %~ 1. This way we can avoid inverting the site covariance
matrices at every iteration.

2. Even though the algorithm should be stable and robust,
there are some cases where the site updates exhibit oscilla-
tions, for example, due to weird hyperparameter values.Thus,
the updates should be damped after computing the new site
approximations in step 4,

Ary = 5(r1™ =729, Av; = §( — )

Thew — pold LA e = 0 L Ay
with some suitable damping factor §, for example § = 0.8.

3. In step 3 of the algorithm we minimize KL divergence
with respect to Gaussian distributions. This means that we
match the first and second moments of the one-dimensional
distributions and in addition to these the cross-moment if we
have a bivariate Gaussian fi(vi). The integrals over f; or f;
can be computed analytically in every case in steps 2 and 3.
If we don’t integrate over signal variance, this can be done
trivially as both the cavity and likelihood are Gaussian with
respect to f;. If we integrate over signal variance, we can
utilize the standard factorization of the multivariate Gaussian
q—i(fi,0i) = q—i([fil¢d:)q—i(pi). The integrals over  and
¢ must be computed numerically, but this can be done effec-
tively, for example, with Simpson’s method.

4. We use parallel EP updates for the site parameters.
This means that we compute the site updates for every site
approximation before we update the posterior distribution and
compute the marginal likelihood. This usually results in a few
more EP iterations than sequential EP, but the overall speed of
the algorithm is faster.

3.5.1. Marginal Likelihood

Marginal likelihood can be used for model selection under GP
framework as it has good calibration and the maximum of the
marginal likelihood usually corresponds to good predictions
[15, 13, 16]. Marginal likelihood in Gaussian processes is
defined as

Z = ply|X) = / p(EX)p(ylf)df.  (19)

For our noise and signal variance GPs, an EP approximation
to the marginal likelihood is



Algorithm 1 Parallel EP algorithm

Initialize fii o = jiiw = ;5 = X; ) =0fori=1,2,... n.
Set ¢(6]D) = p(6]X) and ¢(v|D) = p(v]X).
repeat
fori =1tondo
if input-dependent signal variance then

vi = (fi, ¢s)
else

Vi = fz
end if

1. Compute the cavity distributions:

q—i(vi) o gi(vi) /T;(v:)
q—i(0) o< qi(0)/t:(6)
with
> =3 -5
poie = Smi (57 e — 57 i, ),
when

2. Compute the normalization Z;:

Zi = //p(yi|vi79)Q—i(Ui)q—

3. Find the best marginal posterior approximation for
gi(v:) and gi(0;) by

qur(lgll)KL(Z p(yilvi, 0)q—i(vi)q—i(0)[|qi(vi))
g(l;ﬂ)KL(Zflp(yilvi,ﬁ) i(vi)g-i(0)|q:(0)).

4. Update the site approximations ¢; by

ti(vi) o< qi(vi)/q-i(vs)
t:(0) o< qi(0)/q-(0)

analogously to step 1.
end for
5. Update the posterior distributions with (16)—(17).
6. compute the marginal likelihood with (22).
until Convergence

where v = (f, ¢) or v = f. Following Cseke & Heskes [2],
we define the normalization term (log-partition function) of
N(p, X) as

1 _ 1 n
log Z(pu, %) = §NT2 u+ §log|2| + 51og(27r). 1)

Now the EP marginal likelihood approximation can be com-
puted as

logZEP - 10gZ(N9720) +10gZ(HU, ) IOgZ(O KG)

+ Z (log Z(p—ip,5—i0) +108 Z(pii, Xi ) +log Z;

i) — 108 Z(tio, zm)) “log Z(0,Ky),
(22)

IOg Z(/”'z 9;

where p and X are the parameters of the posterior distribution
approximation ¢(-| D), p; and X; are the ith marginal terms of
pand 3, i ; and ¥ _; are the ith marginal mean and variance
parameters of the cavity distributions g_;(-), and K; are the
GP prior covariances.

Note that for 6 the marginal parameters are one-dimensional,

but for v they are two-dimensional if we integrate over the
signal variance like for the site approximations in (15).

3.5.2. Predictions

For predicting a future observation y* for input x*, we need
to compute the predictive distribution

p(y*|x*, D) = //p(y*,v*,9*|x*,D) dv* do*

://me%wmw

Note that if we assume a stationary signal or noise vari-
ance, the respective posterior approximations reduce to one-
dimensional Gaussian distributions. This means that ¢(v|D)
becomes n + 1 dimensional, and the posterior predictive
distribution equals the posterior distribution. Because we
approximate the posterior predictive distribution of the latent
variables and the predictive distribution of y* by a Gaussian
distribution, we can always compute the predictions analyti-
cally, regardless whether we have input-dependent signal or
noise variance. For a GP with EP marginalized noise vari-
ance, the expected value is given by E[y*] = E[f*] and the
variance by

“|x*, D)q(0*|x*, D) dv* d8*. (23)

VI = VIf] e (B V), @4

where we have omitted dependence on {x*, D}. For a GP
with EP marginalized noise and signal variance the results
are quite lengthy and are omitted here to save space (see Ap-
pendix A).

3.5.3. Factorized Approximation and Converge

Next we discuss certain key properties of the posterior ap-
proximations introduced in Sections 3.2-3.4. More precisely,
we illustrate the importance of the utilized factorization as-
sumptions in terms of both accuracy and convergence of the
resulting EP algorithm.
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(a) EP posterior approximations (contours) and the MCMC
samples from the latent posterior.
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(b) Convergence of EP with factorized (red) and joint (blue)
approximations.

Fig. 1. Example comparisons of EP posterior approximations
with MCMC samples from the latent posterior and the con-
vergence of the EP algorithm. Red contours correspond to
the factorized approximation ¢(f| D)¢(@| D) and the blue con-
tours correspond to the full joint approximation ¢(f, ¢| D).

Figure la visualizes the marginal posterior distributions
of the latent values related to both the unscaled function val-
ues f; (x-axis) and the magnitude process ¢; (y-axis). Each
of the four subplot shows the latent values associated with
four different observations (likelihood terms) resulting from
a non-trivial simulated data set (see Section 4). MCMC sam-
ples from the true posterior distribution are plotted with black
dots together with two different EP approximations: the par-
tially coupled approximation ¢(f, ¢)q(8) introduced in Sec-
tion 3.4 (blue contours) and a fully factorized approximation
of the form ¢(f)q(¢)q(8) (red contours). Subplots on the left
show strong posterior dependencies between the latent values
resulting from the combined effect of the within-observation
couplings fi = f; exp(¢;/2) and the between-observation
correlations controlled by the GP priors. On the other hand,
subplots on the right show much weaker couplings indicating
that the the within-observation coupling does not necessar-
ily introduce strong posterior dependencies. Comparison of

the joint posterior approximations of ; with either ¢;, f;, or
fi = f; exp(¢;/2) did not show strong dependencies, which
is why we used a factorized approximation for € to facilitate
computations.

According to our experiments, the full factorization does
not significantly affect the predictive performance compared
to the partially coupled approximation. However, represent-
ing these couplings has a significant effect on the conver-
gence properties of the EP algorithm. Figure 1b shows the
EP marginal likelihood approximation as a function of EP
iterations in both settings. The fully factorized approxima-
tion (red line) converges very slowly compared to the par-
tially coupled approximation (blue line); the former requires
often hundreds of iterations whereas the partially-coupled ap-
proach converges usually in less than 50 iterations. In our ex-
periments the convergence properties of the fully factorized
algorithm could not be improved by adjusting damping.

This behavior can be explained by slow propagation of
information between the latent values from different likeli-
hood terms with the fully factorized approximation. Because
each likelihood term is updated separately from the others,
information on the posterior dependencies in other site terms
is not available during the update. These findings are fully
congruent with the convergence differences in multi-class GP
classification when between-class dependencies are omitted
[16].

4. EXPERIMENTS

In this section we go through the different data sets we use
for experiments, different methods and the assessment criteria
for the results. All the experiments were done with modified
GPstuff toolbox [18].

Simulated data 1. The first simulated data was generated
with:

f(z) = sin(x),
os(x) =N(z| —2.5,1) + N(z|2.5, 1), ’s
o(z) = 0.08+ N(z| - 8,3) + N([8,3), &
y(z) = op(x) f(x) +e,
where € ~ N(0,c0(x)). The training data was generated for

200 random inputs from U(—8,8). For the test set we used
uniform grid of 1000 points in the interval (—8, 8) and com-
puted the function values analogously to training set, without
adding noise. The experiment was repeated 100 times for dif-
ferent realizations of the training data set to assess the varia-
tion in the final predictions of the test set.

Simulated data 2. The second simulated dataset was gener-
ated with

f(z) = sin(z),
of(z) = exp(2sin(0.22)), (26)
o(xz) = exp(0.75sin(0.52z + 1)) + 0.1.

The training and test data were generated analogously to the
first experiment. We used 150 training points and the differ-
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Fig. 2. One-dimensional data sets and the EP predictions with uncertainty intervals. Thin black lines correspond to the true
signal in the simulated data sets, and the thick gray lines are the GP predictions with EP. The grey area is the 95% credible
interval of the prediction. Red lines correspond to the standard GP prediction with MAP values for the signal and noise variance

(credible intervals only shown for SP500).

ent generating signals for the observations. The second exper-
iment was also repeated 100 times as in the first experiment.
Motorcycle. The motorcycle data [17] consists of 133 ac-
celerometer readings in a simulated motorcycle crash.
Concrete. The second empirical experiment uses concrete
quality data [19, 6], where the output is volume percentage of
air in concrete, air-%, with 27 different input variables. The
input variables depend on the properties of the stone materi-
als, additives and the amount of cement and water.

SP500. The last empirical experiment is concerned with pre-
dicting the SP500 index. The data set consists of monthly
averages of the index between years 2001-2014, with a to-
tal of 169 observations. We demonstrate on this data how a
GP with input-dependent noise variance works as a stochastic
volatility model.

We compare 8 different methods: GP (Standard GP
regression), EP(n) and MCMC(n) (integration over input-
dependent noise variance with EP and MCMC), EP(n+m)
and MCMC(m+n) (integration over input-dependent signal
and noise variance with EP and MCMC), EP-MC(n) and
EP-MC(m+n) (EP optimized hyperparameters for covari-
ance functions and sampling of the posterior of the latent
variables).

In standard GP regression we use maximum a posteriori
(MAP) values for all the model parameters (signal variance,
noise variance, length-scales). In the EP methods, when in-
tegrating over input-dependent noise variance, we use MAP
values for signal variance and length-scales, and when inte-
grating over input-dependent signal and noise variance, we
use MAP values for the length-scales.

We also ran the experiments by integrating over station-
ary (not input-dependent) signal and noise variances. How-
ever, results coincided with standard GP regression, and thus

they are not reported here to save space.

The performance of the different methods was assessed
by computing the mean log-predictive density (MLPD) for N
test data points. For the three empirical datasets, we com-
puted the approximate MLPD of the n training data points
with 10-fold cross-validation.

Figure 2 presents the behaviour of the EP (m+n) for the
one-dimensional experiments. MLPD values from the experi-
ments are shown in Table 1. We can conclude from the results
that integrating over the input-dependent noise variance in-
creases predictive capability greatly in our experiments com-
pared to standard GP regression. Furthermore, integrating
over the input-dependent signal variance tends to enhance the
predictions even more. In some cases integration over the
signal variance is not needed prediction wise, but our results
show that even in these cases, it does not harm the predic-
tive quality. The results show that our EP implementation is
comparable to the MCMC methods.

The predictive distribution with the SP500 data in Fig-
ure 2d illustrates the practical benefits of the input-dependent
noise: The period of steady growth between samples 40-
80 has clearly lower signal variance compared to the more
volatile periods related to financial crisis of 2008 (samples
90-110) and the subsequent shaky growth characterized by
debt crises and monetary interventions (samples 110-140).

With our implementation, MCMC was roughly two or-
ders of magnitude slower than EP. This depends highly on
the implementation and number of MCMC draws required for
convergence. For example, with the SP500 and Concrete data
using ARD lengthscales for f, the state-of-the-art MCMC
methods based on elliptical slice sampling had convergence
issues even after thousands of samples, as the results indicate.



Table 1. The table shows MLPD values for different methods, where higher values correspond to better predictions. For the
concrete data /SO means that we have an isotropic covariance functions for all the latent variables, and ARD denotes automatic
relevance determination for f and f, and an isotropic covariance function for the rest of the latent variables.

Method Simulated 1 Simulated 2 Motorcycle Concrete (ISO) Concrete (ARD)  SP500
GP 0.954+0.026 —1.70+0.034 —0.71 0.06 0.11 0.27
EP (n) 1.22+£0.025 —1.49+0.032 —-0.41 0.13 0.21 0.42
EP (m+n) 1.23 +£0.028 —1.47+0.029 —0.42 0.22 0.26 0.41
EP-MC (n) 1.22 £0.025 —1.49+0.032 —0.40 0.11 0.23 0.43
EP-MC (m+n) | 1.24 +0.023 —1.47 +0.029 —-0.41 0.21 0.28 0.42
MCMC 0.954+0.020 —1.70+0.025 —-0.71 0.07 0.13 0.28
MCMC (n) 1.22 £ 0.021 —1.55+0.150 —0.39 0.10 0.22 0.19
MCMC (m+n) | 1.24 +£0.019 —1.49 +0.030 —0.40 0.20 0.19 0.26

5. DISCUSSION

In this work we have introduced a straightforward but an eas-
ily implementable and computationally efficient way to inte-
grate over the uncertainty of the noise and signal variance in
Gaussian process regression. Our implementation is easy to
apply also for input-dependent noise and signal variance, and
it further extends the well-known nonstationary GP models.
We have tested our EP implementation on several different
data sets and showed that the EP results are on par with state-
of-the-art MCMC methods. Furthermore, our results show
that EP can be used in complex problems where even the
state-of-the-art MCMC methods have convergence problems.
A reference Matlab/Octave implementation of the method
is available at http://becs.aalto.fi/en/research/bayes/gpstuft/.
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A. DERIVATION OF PREDICTIVE DISTRIBUTION

Here we denote D = (X,y) and v* = (f* ¢*). Now
ply* | f*,¢*,0%) = N(y* | e2%" f* ") and the Gaus-
sian predictive distribution of y* can be computed analytically
with
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