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ABSTRACT

We give a short review on Bayesian techniques for neural
networks and demonstrate the advantages of the approach in
a number of industrial applications. Bayesian approach pro-
vides a principled way to handle the problem of overfitting,
by averaging over all model complexities weighted by their
posterior probability given the data sample. The approach
also facilitates estimation of the confidence intervals of the
results, and comparison to other model selection techniques
(such as the committee of early stopped networks) often re-
veals faulty assumptions in the models. In this contribution
we review the Bayesian techniques for neural networks and
present comparison results from several case studies that in-
clude regression, classification, and inverse problems.

1 INTRODUCTION

In non-linear function approximation and classification, neu-
ral networks have become popular tools in recent years. With
neural networks the main difficulty is in controlling the com-
plexity of the model. It is well known that the optimal num-
ber of degrees of freedom in the model depends on the num-
ber of training samples, amount of noise in the samples and
the complexity of the underlying function being estimated.
With standard neural networks techniques the means for both
determining the correct model complexity and setting up a
network with the desired complexity are rather crude and
often computationally very expensive. Another problem of
standard neural network methods is the lack of tools for ana-
lyzing the results (confidence intervals for the results, like 10
% and 90 % quantiles, etc.).

Recently, Bayesian methods have become a viable al-
ternative to the older error minimization based ML (Max-
imum Likelihood) or MAP (Maximum A Posteriori) ap-
proaches [11, 13, 2]. The main advantages of Bayesian mul-
tilayer percpetron models are:

• Automatic complexity control: the values of the reg-
ularization coefficients can be selected using only the
training data, without the need to use separate training
and validation data.

• Possibility to use prior information and hierarchical
models for the hyperparameters.

• Predictive distributions for outputs.

In this contribution we demonstrate the advantages of
Bayesian MLPs in three case problems. In sections 2 and
3 we give a review of the Bayesian methods for MLP net-
works. Then we report results on using Bayesian MLP mod-
els in regression problem (section 4), tomographic image
reconstruction problem (section 5) and classification prob-
lem (section 6), and compare the approach to standard neural
network and other statistical methods.

2 BAYESIAN APPROACH

The key principle of Bayesian approach is to construct the
posterior probability distributions for all the unknown enti-
ties in the models. To use the model, marginal distributions
are constructed for all those entities that we are interested
in, i.e., the end variables of the study. These can be the
parameters in parametric models, or the predictions in non-
parametric regression or classification tasks.

Use of the posterior probabilities requires explicit defini-
tion of the prior probabilities for the quantities, as the pos-
terior for a parameter θ given the data D is according to the
Bayes’ rule, p(θ|D) = p(D|θ)p(θ)/p(D), where p(D|θ) is
the likelihood of the parameters θ and p(θ) the prior proba-
bility of θ.

The use of the explicit prior information distinguishes the
Bayesian approach from the maximum likelihood methods.
It is worth noticing that every discrete choice in the model,
such as the Gaussian noise model, represents infinite amount
of prior information [10]. Any finite amount of information
would not correspond to probability one for, e.g, the Gaus-
sian noise model and probability zero for all the other alter-
natives. Thus there is large amount of prior information also
in the maximum likelihood models (actually it is what sepa-
rates "good" and "bad" ML models), even though the model
parameters are determined solely by the data, to maximize
the likelihood p(D|w). In the Bayesian approach there are
explicit prior distributions for the model parameters, but as



discussed above, large part of the prior information is still
implicit in the form of the choices made in the model.

The marginalization principle leads to complex integrals
that cannot be solved in closed form, and thus there are mul-
titude of approaches that differ in the degree of "Bayesian-
ism", that is, how thoroughly this principle is followed.

Closest to the ML approach is the Maximum A Posteriori
approach, where the posterior distribution is not considered,
but the parameters are sought to maximize the posterior prob-
ability p(w|D) ∝ p(D|w)p(w), or to minimize the negative
log-posterior cost function

E = − log p(D|w) − log p(w).

The weight decay regularization is an example of this tech-
nique. The main drawback of this approach is that it gives
no tools for setting the hyperparameters (smoothness coef-
ficients, or model complexity), due to lack of marginaliza-
tion over these "nuisance parameters". For example, with the
Gaussian prior on w, p(w) ∝ exp (−αw2), the variance term
α must be set with some external procedure, such as cross-
validation.

A further degree of Bayesian principle is utilized in the ev-
idence framework [11], or type II ML approach, where spe-
cific values are estimated for the hyperparameters, so that
the marginal probability for the hyperparameters, integrated
over the parameters, p(α|D) =

∫
p(α,w|D)dw, is maxi-

mized. Gaussian approximation is used for the posterior of
the parameters, to facilitate closed form marginalization, and
thus the resulting posterior is specified by the mean of the
Gaussian approximation.

In a full Bayesian approach no fixed values are estimated
for any parameters or hyperparameters. If the model is used
for prediction, the marginalization is done over the parame-
ters also, as shown in Eq. 4. The priors are then constructed
hierarchically, so that the hyperparameters have hyperpriors,
and the parameters of those distributions next level priors and
so on. See, e.g., [5] for good introduction to these methods.

Note again, that in such models there are large amounts
of fixed prior knowledge, that is based on uncertain assump-
tions. So, conceptually, in full hierarchical Bayesian model,
no guesses are made for any exact values of the parame-
ters or any smoothness coefficients or other hyperparameters,
but guesses are made for the exact forms of their distribu-
tions. The goodness of the model depends on these guesses,
which in practical applications necessitates using some sort
of model validation techniques. This also implies that in
practice the Bayesian approach may be more sensitive to the
prior assumptions than more classical methods. This is dis-
cussed in more detail in chapter 3.7.

3 BAYESIAN LEARNING FOR MLP NETWORKS

3.1 MLP and model selection

We concentrate here to one hidden layer MLPs with hy-
perbolic tangent (tanh) activation function. However, the

Bayesian methods can be used for other types of neural net-
works, like RBF networks, too. Basic MLP model with k
outputs is

fk(x,w) = wk0 +
m∑

j=1

wkj tanh

(
wj0 +

d∑
i=1

wjixi

)
, (1)

where x is a d-dimensional input vector, w denotes the
weights, and indices i and j correspond to input and hidden
units, respectively.

MLP is often considered as a generic semiparametric
model, in a sense that there is a large number of parameters
without any physical meaning, as in non-parametric models,
but the actual model may have very low effective complexity,
depending on the complexity of the data, resembling in this
respect parametric models with modest number of parame-
ters.

Traditionally the complexity of the MLP has been con-
trolled with early stopping or weight decay [2]. In early
stopping weights are initialized to small values, so that the
sigmoidal hidden units operate on the linear regions and the
initial mapping is smooth. Part of the training data is used to
train the MLP and the other part is used to monitor the vali-
dation error. In the iterative error minimization the training is
stopped when the validation error begins to increase, so that
the effective complexity may be much less than the number
of parameters in the network.

The basic early stopping is rather inefficient, as it is very
sensitive to the initial conditions of the weights and only
part of the available data is used to train the model. These
limitations can easily be alleviated by using a committee of
early stopping MLPs, with different partitioning of the data
to training and stopping sets for each MLP. When used with
caution early stopping committee is a good baseline method
for MLPs.

In weight decay the weights are encouraged to be small by
a penalty function, that corresponds to Gaussian prior on the
weights, leading to MAP estimate for the model. In practice
each layer in the MLP should have different regularization
parameter [2], giving the penalty term

α1

∑
j,i

w2
ji + α2

∑
j,k

w2
kj . (2)

Problem is how to select good values for αi. Traditionally
this has been done with cross validation (CV). Since CV
gives noisy estimate for error, it does not guarantee that good
values for αi can be found. Also it easily becomes compu-
tationally prohibitive as computational expenses grow expo-
nentially with number of parameters to be selected.

3.2 Bayesian learning

Consider a regression or classification problem involving the
prediction of a noisy vector y of target variables given the
value of a vector x of input variables.



The process of Bayesian learning is started by defining a
model, M, and prior distribution p(θ) for the model param-
eters θ. After observing new data D = {(x(1),y(1)), . . . ,
(x(n),y(n))}, prior distribution is updated to the posterior
distribution using Bayes’ rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ), (3)

where the likelihood function L(θ|D) gives the probability
of the observed data as function of the unknown model pa-
rameters.

To predict the new output y(n+1) for the new input x(n+1),
predictive distribution is obtained by integrating the predic-
tions of the model with respect to the posterior distribution
of the model parameters

p(y(n+1)|x(n+1),D) =∫
p(y(n+1)|x(n+1), θ)p(θ|D)dθ. (4)

This is the same as taking the average prediction of all the
models weighted by their posterior probability.

3.3 Likelihood models

Statistical model is defined with its likelihood function. If we
assume that the n data points (x(i),y(i)) are exchangeable
we get

L(θ|D) =
n∏

i=1

p(y(i)|x(i), θ). (5)

The term p(y(i)|x(i), θ) in Eq. (5) depends on our prob-
lem. In regression problems, it is generally assumed that the
distribution of the target data can be described by a determin-
istic function of inputs, corrupted by additive Gaussian noise
of a constant variance. Probability density for a target yj is
then

p(yj |x,w, σ) =
1√

2πσj

exp(− (yj − fj(x,w))2

2σ2
j

), (6)

where σ2
j is the noise variance for the target. See [13] for

per-case normal noise variance model and [17] for full co-
variance model assuming correlating residuals. For a two
class classification (logistic regression) model, the probabil-
ity that a binary-valued target, yj , has the value 1 is

p(yj = 1|x,w) = [1 + exp(−fj(x,w))]−1 (7)

and for a many class classification (softmax) model, the prob-
ability that a class target, y, has value j is

p(y = j|x,w) =
exp(fj(x,w))∑
k exp(fk(x,w))

. (8)

In Eqs. (6), (7) and (8) the function f(x,w) is in this case
the MLP network.

Using classical estimation (error minimization) for the
MLP the number of free parameters (weights) in the model

need to be adjusted according to the size of the training set,
the complexity of the target function and the amount of noise.
In Bayesian approach there is no need to restrict the size of
the network, but in practice we use modest number of hid-
den units for computational reasons. In the limit of inifinite
number of hidden units the MLP converges to the Gaussian
process [13], which is, at least for small sample size, a very
viable alternative method.

3.4 Priors

Typical priors in Bayesian function approximation are
smoothing priors, that state, for example, that functions with
small second derivative values are more probable. With MLP
these lead to a rather complex treatise [8], [1]. As discussed
in section 3.1, complexity of the MLP can be controlled,
on coarse level, by controlling the size of the weights w.
This can be achieved by, e.g., Gaussian prior distribution for
weights w given hyperparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α

m∑
i=1

w2
i /2). (9)

The coarse level of complexity is determined by the hyper-
parameter α, and since we have no specific knowledge of
the right value, we set a vague hyperprior p(α), that merely
makes very high and very low values for α unprobable. A
convenient form for this hyperprior is vague Gamma distri-
bution with mean µ and shape parameter a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ). (10)

In order to have a prior for the weights which is invari-
ant under the linear transformations of data, separate pri-
ors (each having its own hyperparameters αi) for different
weight groups in each layer of a MLP are used [13].

Often very useful prior is called Automatic Relevance De-
termination (ARD) [12, 13, 14]. In the ARD the input-to-
hidden weights connected to the same input have common
prior variance, and all the variances have common prior dis-
tribution (hyperprior). This allows the posterior values for
the priors to adjust so that irrelevant inputs have tighter priors
and thus those weights are more efficiently driven towards
zero than with a common prior for all the inputs.

For regression models we need also prior for the noise
variance σ in Eq. (6), which is often specified in terms of
corresponding precision, τ = σ−2. As for α, our prior infor-
mation is usually quite vague, stating that noise variance σ
is not zero nor extremely large. This prior can be expressed
with vague Gamma-distribution with mean µ and shape pa-
rameter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ). (11)

3.5 Prediction

Predictive distribution for new data is obtained by marginal-
izing (integrating) over the posterior distribution of the pa-



rameters and hyperparameters

p(y(n+1)|x(n+1),D) =∫
p(y(n+1)|x(n+1),w, α, τ)p(w, α, τ |D)dwατ. (12)

We can also evaluate expectations of various functions
with respect to the posterior distribution for parameters. For
example in regression we may evaluate the expectation for a
component of y(n+1)

ŷ(n+1)
k =

∫
fk(x(n+1),w)p(w, α, τ |D)dwατ, (13)

which corresponds to the best guess with squared error loss.
The posterior distribution for the parameters p(w, α, τ |D)

is typically very complex, with many modes. Evaluating the
integral of Eq. (13) is therefore a difficult task. The inte-
gral can be approximated with parametric approximation as
in [11] or with numerical approximation as described in next
section.

3.6 Markov Chain Monte Carlo method

Neal has introduced an implementation of Bayesian learning
for MLPs in which the difficult integration of Eq. (13) is per-
formed using Markov Chain Monte Carlo (MCMC) methods
[13]. In [7] there is a good introduction to basic MCMC
methods and many applications in statistical data analysis.

The integral of Eq. (13) is the expectation of function
fk(x(n+1),w) with respect to the posterior distribution of
the parameters. This and other expectations can be approxi-
mated by Monte Carlo method, using a sample of values w(t)

drawn from the posterior distribution of parameters

ŷ(n+1)
k ≈ 1

N

N∑
t=1

fk(x(n+1),w(t)). (14)

Note that samples from the posterior distribution are
drawn during the “learning phase” and predictions for new
data can be calculated quickly using the same samples and
Eq. (14).

In the MCMC, samples are generated using a Markov
chain that has the desired posterior distribution as its sta-
tionary distribution. Difficult part is to create Markov chain
which converges rapidly and in which states visited after con-
vergence are not highly dependent.

Neal has used the hybrid Monte Carlo (HMC) algorithm
[4] for parameters and Gibbs sampling [6] for hyperparam-
eters. HMC is an elaborate Monte Carlo method, which
makes efficient use of gradient information to reduce random
walk behavior. The gradient indicates in which direction one
should go to find states with high probability. Use of Gibbs
sampling for hyperparameters helps to minimize the amount
of tuning that is needed to obtain good performance in HMC.

When the amount of data increases, the evidence from the
data causes the probability mass to concentrate to the smaller
area and we need less samples from the posterior distribution.

Also less samples are needed to evaluate the mean of the
predictive distribution than the tail-quantiles like, 10% and
90% quantiles. So depending on the problem 10–200 sam-
ples may be enough for practical purposes. Note that due to
autocorrelations in the Markov chain, getting some 100 inde-
pendent samples from a converged chain may require tens of
thousands of samples in the chain, which may require several
hours of CPU-time on standard workstation.

In our examples (sections 5, 6) we have used Flexible
Bayesian Modeling (FBM) software1, which implements the
methods described in [13].

3.7 Some modelling issues

As explained above, the Bayesian approach is based on av-
eraging probable models, where the probability is computed
from the chosen distributions for the noise models, param-
eters etc. Thus the approach may be more sensitive to bad
guesses for these distributions than more classical methods,
where the model selection is carried out as an external pro-
cedure, such as cross-validation that is based on fewer as-
sumptions. In this respect, the Bayesian models can also
be overfitted in terms of classical model fitting, to produce
too complex models and too small posterior estimates for the
noise variance. To check the assumptions of the Bayesian
models, we always carry out the modelling with simple clas-
sical methods (like linear models, early-stopped committees
of MLPs, etc.). If the Bayesian model gives inferior results
(measured from test set or cross-validated), some of the as-
sumptions are questionable.

The following computer simulation elucidates the sensitiv-
ity of the Bayesian approach to the correctness of the noise
model, compared to the early-stopped committee (ESC). The
target function and data are shown in Fig. 1. The mod-
elling test was repeated 100 times with different realizations
of Gaussian or Laplacian (double exponential) noise. The
model was 1 − 10 − 1 MLP with Gaussian noise model. The
figure shows one sample of noise and resulting predictions.
The 90% error bars, or confidence intervals, are for the pre-
dicted conditional mean of the output given the input, thus
the measurement noise is not included in the limits. For the
ESC the intervals are simply computed separately for each x-
value from 100 networks. Computing the confidence limits
for early-stopped committees is not straightforward, but this
very simple ad hoc method often gives similar results as the
Bayesian MLP treatment. The summary of the experiment is
shown in Table 1. Using classical t-test, the ESC is signifi-
cantly better than the Bayesian model when the noise model
is wrong. The Wilcoxon signed rank test also indicated that
ESC is better than Bayesian MLP (comparing medians) for
Laplacian noise with P-value 0.04. In this simple problem,
the both methods are equal for the correct noise model.

The implication of this phenomenon in practical applica-
tions is, that Bayesian approach usually requires more expert

1<URL:http://www.cs.toronto.edu/˜radford/fbm.
software.html>
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Figure 1: Test function in demonstrating the sensitivity of Bayesian MLP and Early-stopped committee to the wrong noise model.
The figure shows one sample of noise realization and the resulting predictions, with Bayesian MLP in left and ESC in right figure.
See text for explanation for the error bars.

Table 1: Demonstration of the sensitivity of Bayesian MLP
and ESC to wrong noise model. For both models the noise
model was Gaussian, and the actual noise Gaussian or Lapla-
cian (double explonential). The statistical significance of the
difference is tested by pairwise t-test, and the shown P-value
is the probability of observing equal or larger error in the
means if the two methods are equal. The errors are RMS
errors of the prediction from the true target function.

Significance
Noise Bayesian MLP ESC of the difference
Gaussian 0.278 0.278 0.43
Laplacian 0.283 0.277 0.006

work than the standard approach, to device the reasonable
assumptions for the distributions, but that done, the results
are in our experience consistently better than with other ap-
proaches.

4 CASE I: REGRESSION TASK IN QUALITY ES-
TIMATION

In this section we report results of using Bayesian MLPs for
regression in concrete quality estimation problem. The goal
of the project was to develop a model for predicting the qual-
ity properties of concrete. The quality variables included,
e.g., compression strengths and densities for 1, 28 and 91
days after casting, bleeding (water extraction) and spread and
slump that measure properties of the fresh concrete. These
quality measurements depend on the properties of the stone
material (natural or crushed, size and shape distributions of
the grains, mineralogical composition), additives, and the
amount of cement and water. In the study we had 7 target
variables and 19 explanatory variables.

Collecting the samples for statistical modeling is rather ex-
pensive in this application, as each sample requires prepara-
tion of the sand mixture, casting the test pieces and waiting
for 91 days for the final tests. Thus available samples must be
used as efficiently as possible, which makes Bayesian tech-
niques a tempting alternative, as they allow fine balance of
prior assumptions and evidence from samples. In the study
we had 149 samples designed to cover the practical range
of the variables, collected by a concrete manufacturing com-
pany.

MLP networks containing 6 hidden units were used. Dif-
ferent MLP models tested were:

MLP ESC : Early stopping committee of 20 MLP net-
works, with different division of data to training and
stopping sets for each member. The networks were ini-
tialized to near zero weights to guarantee that the map-
ping is smooth in the beginning.

Bayes MLP : Bayesian MLP with FBM-software, using
t-distribution with 4 degrees of freedom as the noise
model, vague priors and MCMC-run specifications sim-
ilar as used in [13, 14]. 20 networks from the posterior
distribution of the network parameters were used.

Bayes MLP +ARD: Similar Bayesian MLP to the previous,
but using also the ARD prior.

Error estimates for predicting the slump are collected in Ta-
ble 2. Results were insensitive to the exact values of the
higher level hyperparameter specifications as long as the pri-
ors were vague, but the use of the structural ARD prior im-
proved the results significantly.



Figure 2: Example of the EIT measurement. The simulated
bubble formation is bounded by the circles. The current is
injected from the electrode with the lightest color and the op-
posite electrode is grounded. The gray level and the contour
curves show the resulting potential field.

5

10

15
2

4

6

8

0
50

100

Injection

Electrode

R
el

at
iv

e 
ch

an
ge

 in
 U

Figure 3: Relative changes in potentials compared to homoge-
neous background. The eight curves correspond to injections
from eight different electrodes.

5 CASE II: INVERSE PROBLEM IN ELECTRICAL
IMPEDANCE TOMOGRAPHY

In this section we report results on using Bayesian MLPs for
solving the ill-posed inverse problem in electrical impedance
tomography (EIT). The full report of the proposed approach
is presented in [9].

The aim in EIT is to recover the internal structure of an
object from surface measurements. Number of electrodes are
attached to the surface of the object and current patterns are
injected from through the electrodes and the resulting po-
tentials are measured. The inverse problem in EIT, estimat-
ing the conductivity distribution from the surface potentials,
is known to be severely ill-posed, thus some regularization
methods must be used to obtain feasible results [15].

Fig. 2 shows a simulated example of the EIT problem.
The volume bounded by the circles in the image represent
gas bubble floating in liquid. The conductance of the gas is
much lower than that of the liquid, producing the equipoten-
tial curves shown in the figure. Fig. 3 shows the resulting
potential signals, from which the image is to be recovered.

In [9] we proposed a novel feedforward solution for the re-
construction problem. The approach is based on computing
the principal component decomposition for the potential sig-
nals and the eigenimages of the bubble distribution from the

Table 2: Ten fold cross-validation error estimates for predict-
ing the slump of concrete.

Method Root mean square error
MLP ESC 37
Bayes MLP 34
Bayes MLP +ARD 27

Figure 4: Example of image reconstructions with MLP ESC
(upper row) and the Bayesian MLP (lower row)

autocorrelation model of the bubbles. The input to the MLP
is the projection of the potential signals to the first principal
components, and the MLP gives the coefficients for recon-
structing the image as weighted sum of the eigenimages. The
projection of the potentials and the images to the eigenspace
reduces correlations from the input and the output data of the
network and detaches the actual inverse problem from the
representation of the potential signals and image data.

The reconstruction was based on 20 principal components
of the 128 dimensional potential signal and 30 eigenimages
with resolution 41×41 pixels. The training data consisted of
500 simulated bubble formations with one to ten overlapping
circular bubbles in each image. To compute the reconstruc-
tions MLPs containing 30 hidden units were used. Models
tested were MLP ESC and Bayes MLP (see section 4). Be-
cause of the input projection, ARD prior should not make
much difference in results (this was verified in preliminary
tests), and so model with ARD prior was not used in full
tests. We also compared results to TV-inverse method, which
is a state-of-the-art inverse method based on iterative inver-
sion of the forward model with total variation regularization.

Fig. 4 shows examples of the image reconstruction results.
Table 3 shows the quality of the image reconstructions with



Table 3: Errors in reconstructing the bubble shape and esti-
mating the void fraction from the reconstructed images. See
text for explanation of the models.

Method Classifica-
tion error

%

Relative
error in VF

%

Rel. error in
direct VF %

TV-inverse 9.7 22.8 -
MLP ESC 6.7 8.7 3.8
Bayes MLP 5.9 8.1 3.4
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Figure 5: Scatterplot of the void fraction estimate with 10%
and 90% quantiles.

models, measured by error in the void fraction and percent-
age of erroneous pixels in the segmentation, over the test set.
An important goal in this process tomography application
was to estimate the void fraction, which is the proportion of
gas and liquid in the image. With the proposed approach such
goal variables can be estimated directly without explicit re-
construction of the image. The last column in Table 3 shows
the relative absolute error in estimating the void fraction di-
rectly from the projections of the potential signals.

With Bayesian methods we can easily calculate confidence
intervals for outputs. Fig. 5 shows the scatter plot of the void
fraction versus the estimate by the Bayesian MLP. The 10%
and 90% quantiles are computed directly from the posterior
distribution of the model output. See [9] for results for effect
of additive Gaussian noise to the performance of the method.

6 CASE III: CLASSIFICATION TASK IN FOREST
SCENE ANALYSIS

In this section we report results of using Bayesian MLP for
classification of forest scenes, to accurately recognize and
locate the trees from any background.

Table 4: CV error estimates for forest scene classification.
See text for explanation of the different models.

Error%
KNN LOOCV 20
CART 30
MLP ESC 13
Bayes MLP 12
Bayes MLP +ARD 11

Forest scene classification task is demanding due to the
texture richness of the trees, occlusions of the objects and
diverse lighting conditions under operation. This makes it
difficult to determine which are optimal image features for
the classification. One way to proceed is to extract many
different types of potentially suitable features.

In [16] we extracted total of 84 statistical and Gabor-filter
based features over different size windows at each spectral
channel. Due to the large number of features, many classi-
fier methods would suffer from the curse of dimensionality,
but the Bayesian MLP managed well in the high dimensional
problem.

Total of 48 images were collected by using an ordinary
digital camera in varying weather conditions. The labeling of
the image data was done by hand via identifying many types
of tree and background image blocks with different textures
and lighting conditions. In this study only pines were con-
sidered.

To estimate classification errors of different methods we
used eight-fold cross-validation error estimate, i.e., 42 of 48
pictures were used for training and the six left out for error
evaluation, and this scheme was repeated eight times. In ad-
dition to 20 hidden unit MLP models MLP ESC and Bayesian
MLP (see section 5) the models tested were:

KNN LOOCV : K-nearest-neighbor, where K is chosen by
leave-one-out cross-validation.

CART : Classification And Regression Tree [3].

Bayesian MLP +ARD : Same as Bayesian MLP plus using
Automatic Relevance Determination prior.

CV error estimates are collected in Table 4. Fig. 6 shows
example image classified with different methods.

7 SUMMARY

The reviewed case problems in real applications illustrate the
advantages of Bayesian MLPs. The approach contains auto-
matic complexity control, as in the Bayesian inference all
the results are conditioned on the individual training sam-
ple available. Thus the complexity is matched to the support
that the training data carries for the models. In addition, the
Bayesian approach gives the predictive distributions for the
outputs, which can be used to estimate the reliability of the



KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARDForest scene

Figure 6: Examples of classified forest scene. See text for explanation of the different models.

predictions. The major problems in the Bayesian MLPs are
related to the large amount of computing time needed in the
sampling, and in some cases to the need for more accurate
assumptions in the likelihood model than in the more tradi-
tional methods.
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