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Abstract. We study the diffusive motion of a particle in a periodic adiabatic potential under the
influence of a time-periodic bias, concentrating on the case of high friction and small bias with
respect to the potential barriers. We find that the distribution of escape times shows a series of
peaks, whose amplitude varies with temperature, in analogy to stochastic resonance in standard
double-well systems. However, the hydrodynamic diffusion coefficient does not show a stochastic
resonance type of maximum.

1. Introduction

The concept of stochastic resonance (SR), introduced more than ten years ago [1,2], has found
a broad range of applications in many physical two-well systems, such as Josephson junctions
or laser rings, as well as in more complex systems, such as neural networks, or extended
systems showing spatiotemporal chaos (see e.g. reference [2] for an extensive review). Some
attempts have also been made to apply these concepts to multi-state systems, focusing mostly
on diffusive particle dynamics in periodic potentials [3–6].

A stochastic system subject to a time-periodic perturbation often shows an enhancement
of its transport properties. The term SR then refers to the situation where this enhancement
becomes maximal for some value of the stochastic noise. For a simple two-well system,
stochastic resonance may be said to occur when there is optimal matching between the natural
timescale of the unperturbed system and the period of the oscillating perturbations [7], i.e.,

Tk = π�−1 (1)

whereTk is the average escape time of the system (such thatT −1
k is the rate of transition

between the wells) and� is the frequency of the oscillating perturbation. At this point, the
noise-induced hopping occurs statistically in phase with the bias (see reference [8] for a more
detailed discussion about this point).

Mathematically, the SR problem can often be described by a stochastic differential
equation of the Langevin type, with a time-periodic perturbation term added [2]. Such Langevin
equations also describe the diffusive motion of atoms, the classical example of this being
Brownian motion. A particularly interesting special case of such diffusive processes is the
diffusion of adatoms on surfaces, where there is an underlying periodic potential [9]. Surface
diffusion plays an important role in many problems, such as catalysis or surface growth [10]. It
would thus be of great interest to apply the concept of SR to surface diffusion. It is well known
that when a DC electric field is applied to diffusing adatoms,electromigration[11] takes place
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and strongly influences the morphology and time evolution of metallic and semiconductor
surfaces.

In fact, several studies of SR in periodic potentials have already been performed. For a
staticbias and low friction [3], it has been shown that the adatom mobility can show a maximum
as a function of noise intensity. For an oscillating bias, recent studies [4–6] have indicated that
the diffusion coefficient can be significantly enhanced, in a way similar to SR. These studies
were, however, mostly conducted in the limit where the energy associated with the amplitude
of the bias islarger than the height of the diffusion barrier, a regime that unfortunately may
be experimentally unrealistic for typical adatom diffusion on surfaces. Also, in this limit the
effect of the confining periodic potential is mostly lost, and in this sense the situation it is
not the same as in the true SR phenomenon that occurs for a double-well potential when the
perturbation amplitude is much smaller than the barrier.

Since in the high-friction limit of diffusion in a periodic potential the adatom motion
consists of activated transitions between the nearest potential minima [9], one would expect a
matching condition similar to equation (1) to hold even for small-amplitude perturbations. The
relevant question then concerns the existence of SR in thehydrodynamictransport coefficients,
such as the (tracer) diffusion coefficientDT [9,12]. This is the question examined in the present
paper. We perform a detailed study of diffusive motion under an oscillating bias, allowing us
to identify which physical quantities show ‘SR-like’ features, and which do not. The present
study is concentrated on the high-friction regime.

The organization of this paper is as follows. In section 2, we describe our model and the
physical observables associated with it. In section 3, we present the results of our simulations
for the spatial correlation function, supplemented by a theoretical analysis based on a master
equation. The main result is that the diffusion coefficient is a monotonically increasing function
of temperature, showing no signs of SR. In section 4, we show that the most pronounced effects
of the oscillating bias are found in the distribution of escape times [8]. This distribution, divided
into a distribution for ‘parallel’ and ‘anti-parallel’ transitions, is strongly peaked at times related
to the period of the oscillating driving force, and the amplitude of a given peak goes through
a maximum when a matching condition between� andTk is established. Nevertheless, this
has no discernible influence on the diffusive motion in the hydrodynamic limit, since thetotal
escape time distribution remains a pure exponential. We conclude with possible applications
of these ideas in section 5.

2. Diffusion in periodic potentials

The 1D motion of a Brownian particle in a periodic potential with a time-periodic bias is
modelled by the Langevin equation

M
d2x

d2t
+Mγ

dx

dt
+

2π

a
V0 sin

(
2πx

a

)
= Fa cos(ωt + φ) + 0(t) (2)

where0 is Gaussian white noise, with autocorrelations

〈0(t)0(t ′)〉 = 2kBTMγ δ(t − t ′). (3)

HereT is the temperature andγ , the friction coefficient, arises microscopically from the
interaction of the adatom with electrons or phonons [9]. The bias forceFa gives rise to an
energy changeEa = aFa across one lattice spacing.

The relevant timescales of the problem are the dissipation time,γ−1, the vibrational
timescale,ω−1

0 = a(M/V0)
1/2/2π and the period of the external forcingTω = 2πω−1. The

phase of the driving force is denoted byφ. The ratio�0 = ω0/γ determines the high- (�0� 1)
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and low-friction (�0 � 1) regimes. In this study, we only consider�0 � 1, with the ratio
ω0/ω arbitrary.

A main quantity of interest in this case is the correlation function

C̃(t, t0;φ0) = 〈(x(t + t0)− x(t0))2〉 (4)

which is not time-translationally invariant, due to the periodic bias, but depends on both
time argumentst , t0, through the initial phaseφ0 = �τ0 + φ. In realistic experimental
situations, this function must be averaged overφ0, using an uniform distribution with limits
06 φ0 6 2π [14]. Equation (4) then reduces to a time-translationally invariant formC̃(t):

C̃(t) = 1

2π

∫ 2π

0
C̃(t, t0;φ0) dφ0. (5)

The tracer diffusion coefficient of the particle (adatom)DT is obtained in the limitt →∞:

DT = lim
t→∞

1

2t
C̃(t). (6)

In the absence of periodic forcing (Ea = 0), the high-temperature (kBT � V0) limit of
the diffusion coefficient is that of a free Brownian particle,DT = kBT /Mγ , while at low
temperatures and in the high-friction limit, it may be approximated byDT = a2T −1

k [9].
Another quantity of interest is the escape time distributionρ(τ), defined as the probability

density that a transition occurs at a timeτ after the initial arrival of the particle [8]. To account
for the periodic nature of the potential, two different types of transition are defined. A parallel
transition at timeti + 1 occurs if the particle occupies the positionx at timeti , while it was
previously at positionx ∓ a, with the subsequent transition (at timeti+1) taking the particle
to positionx ± a. The motion is thus continuous for at least two consecutive transitions and
the statistical properties of the time intervalτ = t1+1− ti are determined by the distribution
ρ‖(τ ). On the other hand, if the transition at timeti+ takes the particles to positionx∓ a, such
that the motion is reversed, then the transition is termed anti-parallel and is described by the
distributionρ⊥(τ ).

In the absence of any bias, bothρ‖ andρ⊥ are simple exponential, and the total escape
time distributionρ(τ) = ρ‖(τ ) + ρ⊥(τ ) is related to the mean escape timeTk as

ρ(τ) = 1

Tk
e−τ/Tk . (7)

In cases of high and intermediate friction, and in the low-temperature limitkBT � V0, it is
sufficient to use Kramers’ result [13]

T −1
k = rk(T ) =

ω2
0

2πMγ
e−2V0/kBT . (8)

2.1. Numerical methods

The 1D Brownian particle is numerically simulated by using the dimensionless space and time
variablesq = 2πx/a andτ = γ t . The Langevin equation then becomes

d2q

d2τ
+

dq

dτ
+�2

0 sin(x) = E0�
2
0 cos(�̃τ + φ0) + ε(τ ) (9)

with the dimensionless biasE0 = Ea/2πV0, driving frequency� = ω/γ , �0 = ω0/γ and
the noise correlated as

〈ε(τ )ε(τ ′)〉 = 2kBT

V0
�2

0δ(τ − τ ′). (10)
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The reduced equation (9) is then integrated by means of the standard Ermarck algorithm
[16]. The dimensionless correlation function isC(τ) = (2π/a)2C̃(γ t) and the diffusion
coefficientD = (2π/a)2DT /γ . In these units, the Kramers rate

Rk = (�2
0/2π) exp(−2V0/kBT ).

3. The correlation function and tracer diffusion

In this section, we concentrate on the behaviour of the mean square displacement in the
presence of an oscillating bias. Our main conclusion is that, although the diffusion coefficient
is enhanced by the oscillating bias, it shows none of the features usually associated with
stochastic resonance. We emphasize again that we are only considering the high-friction
regime here.

3.1. Numerical results

Figure 1 shows the phase-averaged correlation functionC(τ) in the high-friction regime. As
expected, it is composed of a linear part upon which an oscillatory part in superimposed. The
diffusion coefficient, defined by the slope of the linear component, is shown in figure 2. It is
a monotonically increasing function of temperature, showing no maxima. We note that the
range of temperatures used is such that it sweeps through the double-well matching condition
T� = 2R−1

k (T ). The amplitude of the oscillations inC(τ), shown on the inset of figure 2, also
increases monotonically as a function of temperature, and saturates to a constant value.
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Figure 1. The mean square displacement of the particle as a function of time for various
temperatures, with�0 = 0.1, � = 4 × 10−5γ , E0 = 0.15 andkBT /V0 = 0.26, 0.35 and
0.46 (from bottom to top). In the inset, we show the amplitudeA of the oscillations inC(τ) as a
function of temperature, up tokBT /V0 ' 4.
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Figure 2. The diffusion coefficientD(T ) as a function of temperature for� = 4× 10−5γ and
E0 = 0.15. We show the numerical results (open circles), the theoretical results (full line), based
on equation (6), and the value ofD(T ) if Ea = 0 (dashed line).

We emphasize that these results occur in the limitEa � V0. It is possible to observe
features similar to those of SR in the behaviour ofD in the inverse limitEa � V0, which is
not considered here for the reasons discussed in the introduction.

3.2. Analytical results

We now show that the qualitative behaviour of our results can be recovered by considering a
simple theoretical model. In the high-friction regime, the diffusion process can be analysed in
terms of the Master equation

dPn(τ)

dτ
= −[W+(τ ) +W−(τ )]Pn(τ) + Pn+1(τ )W−(τ ) + Pn−1(τ )W+(τ ) (11)

wherePn(τ) is the probability that the Brownian particle is in thenth potential well at timeτ .
The time-dependent transition ratesW±(τ ) are taken to be of the Kramers form [13]:

W±(τ ;φ) = �2
0

2π
exp

(
− 2V0

kBT
± Ea

2kBT
sin(�τ + φ)

)
. (12)

The formal solution of the master equation can be expressed in terms of the integral
α±(τ, τ0;φ) over the transition rates:

α±(τ, τ0;φ) =
∫ τ+τ0

τ0

dτ ′ W±(τ ′;φ)

= Rk(T )I0(Ea/2kBT )(1τ ∗) +Rk(T )
∫ τ+τ0

1τ ∗
dτ ′ exp

(
± Ea

2kBT
sin(�τ ′ + φ)

)
(13)
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whereI0(u) is the modified Bessel function and1τ ∗ = 2πN/�,N being the total number of
periods between timesτ0 andτ . In the limit of largeτ , the value of

α(τ, τ0;φ0) = τRk(T )I0(Ea/2kBT )
for all values ofEa/2kBT .

The probabilityPn(t), with initial conditionPn(0) = δn,n0, has the solution

Pn(τ) = e−(α++α−)
(
α+

α−

)(n−n0)/2

In−n0

(
2
√
α+α−

)
(14)

and the correlation function, for fixed phase, is

C(τ, τ0;φ) =
[
α+ − α−

]2
+ α+ + α−. (15)

A perturbative result can by obtained by expanding the last term of equation (13) in powers
of Ea/2kBT followed by an averaging over the initial phase, which results in

C(τ) = 2Rk(T )I0(Ea/2kBT )τ +R2
k (T )

(
Ea

kBT�

)2

(1− cos(�τ)). (16)

The diffusion coefficientD = D(T ) is obtained from the definition of equation (6) as

D = Rk(T )I0(Ea/2kBT ) (17)

which is a result valid in the limitsEa � V0 andkBT � V0, but for all values ofEa/2kBT .
It clearly shows the monotonic increase ofD(T ), and compares quite well with our numerical
results. Deviations occur whenkBT ∼ V0, outside the range of validity of Kramers’ results.

ForEa � 2kBT , the diffusion coefficient can be approximated by

D(T ) ≈ D(Ea = 0)

(
1 +

(
Ea

4kBT

)2)
(18)

which is different from what is found in reference [5]. We note that this simple limit predicts a
maximum in the enhancement of the diffusion coefficient at a temperaturekBT ∼ V0, a limit
out of the range of validity of the analysis. In the limitEa/kBT � 1, the diffusion coefficient
becomes

D(T ) ≈ Rk(T )
(
kBT

2πEa

)1/2

eEa/kBT . (19)

The result forD(T ) can be intuitively understood by an averaging of the Kramers rate
over the period of the oscillating biasT�, yielding the effective transition rate

reff = �2
0

2π

1

T�

∫ T�

0
exp

(
− 2V0

kBT
± Ea

kBT
sin(�τ)

)
dτ = RkI0

(
Ea

kBT

)
(20)

which is similar to equation (17), sinceD(T ) ∼ reff .
In the limit Ea � kBT , the amplitude of the oscillations inC(τ), found from equation

(16), shows a maximum at the temperaturekBT = 2V0, a feature also associated with SR
but again far beyond the validity of the approximations. Such a result isnot physically valid.
Instead, the amplitude saturates at a plateau value, which may be obtained from the high-
temperature limit,kBT � V0, of equation (9). Neglecting the spatial potentialV (x), it is
straightforward to obtain the phase-averaged correlation function as

C(τ) = 2
kBT

V0
�2

0τ +
E2
a�

4
0

�2
[1− cos(�τ)] (21)

yielding the plateau value, and the diffusion coefficientD(T ) = 2kBT�2
0/V0, such that

DT = kBT /(Mγ ), valid for a free Brownian particle.
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4. Escape time distributions

The escape time distributions may be used to study the synchronization between jumps, in a
way similar to the two-well case [2]. Both quantities can also be measured experimentally,
through STM measurements [15]. The escape time distributions for parallel (ρ‖(τ )) and anti-
parallel ((ρ⊥(τ )) transitions, shown in figure 3, present some interesting characteristics arising
from the driving of periodT� = 2π�−1. In both cases, the distributions show pronounced
peaks at timesτ ‖max,n = nT� for parallel transitions, and atτ⊥max,n = (n + 1)T�/2 for anti-
parallel ones. Although bothρ‖ andρ⊥ are peaked functions of time, the total escape time
distribution

ρ(τ) = ρ‖(τ ) + ρ⊥(τ )

still shows purely exponential behaviour as

ρ(τ) = 1

2Tk
e−τ/Tk (22)

as also shown in figure 3.
The peaks inρ‖ andρ⊥ are obviously related to the enhanced transition opportunities

for parallel transitions after an integer multiple of the driving period. Likewise, anti-parallel
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Figure 3. Escape time distributions with parameter� = 4 × 10−5. (a) The distribution for
parallel transitions, at temperaturekBT /V0 = 0.35, showing the peaks at integer values of the
driving period. In the inset, we show the same quantity, but at temperaturekBT /V0 = 0.29.
(b) The distribution for parallel transitions with identical parameters, showing the peak at half-
integer values of the driving period. (c) The total escape time distributionρ(τ) at temperature
kBT /V0 = 0.35, showing pure exponential behaviour. (d) The amplitude of the first peak inρ‖ as
a function of temperature.



9848 J Kallunki et al

transitions are favoured after a half-integer number of periods. To further investigate this
behaviour, the amplitudeF(T ) of the first peak in the anti-parallel distributionρ⊥(t), is defined
following [7] as

F =
∫ 3T�/4

T�/4
ρa(t) dt. (23)

This function shows a clear maximum as a function of temperature, a feature of SR
also seen in bistable systems [2, 7]. As in this case, the maximum corresponds to an optimal
synchronization between the driving period and the average escape timeTk(T ). The maximum
occurs at the matching condition

2Tk(T ) = T�. (24)

Using our data, we estimateTk = 8 × 104, which corresponds nicely to the value
T� = 1.57× 105 chosen in the simulations. If the Kramers rates can be used, the maximum
in the distribution then occurs at a temperaturekBTmax/2V0 = 1/ ln(ω2

0/γω). We emphasize,
however, that this maximumdoes notresult in a peak structure for the diffusion coefficient
D(T ), and is even less likely to result in some form of either ‘ballistic’ or ‘localized’ motion.
Althoughρ‖ andρ⊥ may have peaks at different temperatures, their sum is always of pure
exponential form, with mean escape timeTk, implying purely diffusive behaviour. Making
the distinction betweenρ‖ andρ⊥ is the only experimentally relevant way to study stochastic
resonance in periodic systems. These concepts might also be useful for surfaces with broken
symmetry (due to, e.g., steps and terraces [17]) and for interacting systems [9].

5. Conclusions and discussion

The results presented above show that no peaks in the temperature behaviour of the diffusion
coefficient result from the application of an oscillating small bias. Features associated with SR
are seen in the escape time distributions, but not in the hydrodynamic transport coefficients.
The main effect of the oscillating bias in the limitEa � V0 is an enhancement of the diffusion
coefficient. This enhancement is the of order ofEa/V0 if E0 � kBT , or exp(Ea/kBT ) if
Ea � kBT , always assumingEa andkBT to be much smaller than the barrier heightV0.

Several problems, however, remain to be solved. Electromigration [11] is usually an
extremely small effect, causing changes in the potential barrierEa/V0 of less than 1% (although
values as high asEa/V0 ≈ 0.1 have been quoted in reference [17]). These very small values
mean that no discernible effects on the diffusion coefficient will occur, at least in the high-
friction limit, unless temperature is very low.

Nevertheless, two other options deserve further study. The low-friction limit, characterized
by long jumps between the wells, may well present a greater sensibility to the oscillating field,
as already hinted in reference [3]. Furthermore, the effect of an oscillating bias on diffusion
on stepped terraces [17] has been studied in the limit�→ 0. Since the DC limit is difficult
to obtain experimentally, it is imperative that these studies be extended to the high-frequency
case. Work in this direction is already in progress.
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