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Abstract. We study the diffusive motion of a particle in a periodic adiabatic potential under the
influence of a time-periodic bias, concentrating on the case of high friction and small bias with
respect to the potential barriers. We find that the distribution of escape times shows a series of
peaks, whose amplitude varies with temperature, in analogy to stochastic resonance in standard
double-well systems. However, the hydrodynamic diffusion coefficient does not show a stochastic
resonance type of maximum.

1. Introduction

The concept of stochastic resonance (SR), introduced more than ten years ago [1, 2], has found
a broad range of applications in many physical two-well systems, such as Josephson junctions

or laser rings, as well as in more complex systems, such as neural networks, or extended

systems showing spatiotemporal chaos (see e.g. reference [2] for an extensive review). Some
attempts have also been made to apply these concepts to multi-state systems, focusing mostly
on diffusive particle dynamics in periodic potentials [3—6].

A stochastic system subject to a time-periodic perturbation often shows an enhancement
of its transport properties. The term SR then refers to the situation where this enhancement
becomes maximal for some value of the stochastic noise. For a simple two-well system,
stochastic resonance may be said to occur when there is optimal matching between the natural
timescale of the unperturbed system and the period of the oscillating perturbations [7], i.e.,

T, = Q71 (1)

where T} is the average escape time of the system (such]thétis the rate of transition
between the wells) ang is the frequency of the oscillating perturbation. At this point, the
noise-induced hopping occurs statistically in phase with the bias (see reference [8] for a more
detailed discussion about this point).

Mathematically, the SR problem can often be described by a stochastic differential
equation of the Langevin type, with a time-periodic perturbation term added [2]. Such Langevin
equations also describe the diffusive motion of atoms, the classical example of this being
Brownian motion. A particularly interesting special case of such diffusive processes is the
diffusion of adatoms on surfaces, where there is an underlying periodic potential [9]. Surface
diffusion plays an important role in many problems, such as catalysis or surface growth [10]. It
would thus be of great interest to apply the concept of SR to surface diffusion. It is well known
that when a DC electric field is applied to diffusing adatoatsctromigratior[11] takes place
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and strongly influences the morphology and time evolution of metallic and semiconductor
surfaces.

In fact, several studies of SR in periodic potentials have already been performed. For a
staticbias and low friction [3], it has been shown that the adatom mobility can show a maximum
as a function of noise intensity. For an oscillating bias, recent studies [4—6] have indicated that
the diffusion coefficient can be significantly enhanced, in a way similar to SR. These studies
were, however, mostly conducted in the limit where the energy associated with the amplitude
of the bias idarger than the height of the diffusion barrier, a regime that unfortunately may
be experimentally unrealistic for typical adatom diffusion on surfaces. Also, in this limit the
effect of the confining periodic potential is mostly lost, and in this sense the situation it is
not the same as in the true SR phenomenon that occurs for a double-well potential when the
perturbation amplitude is much smaller than the barrier.

Since in the high-friction limit of diffusion in a periodic potential the adatom motion
consists of activated transitions between the nearest potential minima [9], one would expect a
matching condition similar to equation (1) to hold even for small-amplitude perturbations. The
relevant question then concerns the existence of SR imtth@dynamidransport coefficients,
such as the (tracer) diffusion coefficiadt [9,12]. Thisis the question examined in the present
paper. We perform a detailed study of diffusive motion under an oscillating bias, allowing us
to identify which physical quantities show ‘SR-like’ features, and which do not. The present
study is concentrated on the high-friction regime.

The organization of this paper is as follows. In section 2, we describe our model and the
physical observables associated with it. In section 3, we present the results of our simulations
for the spatial correlation function, supplemented by a theoretical analysis based on a master
equation. The mainresultis that the diffusion coefficient is a monotonically increasing function
of temperature, showing no signs of SR. In section 4, we show that the most pronounced effects
ofthe oscillating bias are found in the distribution of escape times [8]. This distribution, divided
into a distribution for ‘parallel’ and ‘anti-parallel’ transitions, is strongly peaked at times related
to the period of the oscillating driving force, and the amplitude of a given peak goes through
a maximum when a matching condition betweemnd 7} is established. Nevertheless, this
has no discernible influence on the diffusive motion in the hydrodynamic limit, sindettle
escape time distribution remains a pure exponential. We conclude with possible applications
of these ideas in section 5.

2. Diffusion in periodic potentials

The 1D motion of a Brownian particle in a periodic potential with a time-periodic bias is
modelled by the Langevin equation

d?x dx 2n [ 2nx
M— +My—+ —Vpsin| — | = F,coSwt +¢) + ['(¢) (2)
o2s d a a
wherel is Gaussian white noise, with autocorrelations
(COT(t)) = 2kgTMys(t —t'). (3)

Here T is the temperature ang, the friction coefficient, arises microscopically from the
interaction of the adatom with electrons or phonons [9]. The bias fBycgives rise to an
energy chang&, = a F, across one lattice spacing.

The relevant timescales of the problem are the dissipation tjmeé, the vibrational
timescalewy! = a(M/ Vo)~/2/2n and the period of the external forcify = 27w . The
phase of the driving force is denoteddyThe ratio2g = wo/y determines the highsly « 1)
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and low-friction €o > 1) regimes. In this study, we only consid@p <« 1, with the ratio
wo/w arbitrary.
A main quantity of interest in this case is the correlation function

C(t, t0; ¢o) = ((x(t +10) — x(10))?) 4)

which is not time-translationally invariant, due to the periodic bias, but depends on both
time arguments, fo, through the initial phaseg = Q19 + ¢. In realistic experimental
situations, this function must be averaged aggrusing an uniform distribution with limits

0 < ¢o < 27 [14]. Equation (4) then reduces to a time-translationally invariant f6xm:

. 1 & .
Ct)=— C(t, to; dep. 5
0 =5 [ €m0 d (5)
The tracer diffusion coefficient of the particle (adataby) is obtained in the limit — oo:
o1
Dr = [lLrE]O Z—tC(t). (6)

In the absence of periodic forcing{ = 0), the high-temperatur&£7T > V) limit of
the diffusion coefficient is that of a free Brownian partic; = kg7 /My, while at low
temperatures and in the high-friction limit, it may be approximatedhy= asz‘l [9].

Another quantity of interest is the escape time distribution), defined as the probability
density that a transition occurs at a timafter the initial arrival of the particle [8]. To account
for the periodic nature of the potential, two different types of transition are defined. A parallel
transition at time; + 1 occurs if the particle occupies the positiomt timez;, while it was
previously at positionr @, with the subsequent transition (at time,) taking the particle
to positionx 4+ a. The motion is thus continuous for at least two consecutive transitions and
the statistical properties of the time intertal= 1,4, — t; are determined by the distribution
o1 (7). On the other hand, if the transition at timetakes the particles to positionF a, such
that the motion is reversed, then the transition is termed anti-parallel and is described by the
distributionp, (7).

In the absence of any bias, batfjandp, are simple exponential, and the total escape
time distributionp (t) = p(t) + p.(7) is related to the mean escape tiffjeas

1
p(r) = —e /M, @)
Ty
In cases of high and intermediate friction, and in the low-temperature figdit < Vp, it is
sufficient to use Kramers’ result [13]

w2
Tt = (1) = s—2—e 2o/l ®)
T

2.1. Numerical methods

The 1D Brownian particle is numerically simulated by using the dimensionless space and time
variablesy = 27x/a andt = yt. The Langevin equation then becomes
d’¢q dg . ~
i Q3 sin(x) = EoQ3 cogQt + ¢o) + €(T) (9)
with the dimensionless biaBy = E,/2r Vp, driving frequency2 = w/y, Qo = wo/y and
the noise correlated as

L 2kgT
(e(v)e(T)) =

Q38(r — ). (10)
0
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The reduced equation (9) is then integrated by means of the standard Ermarck algorithm
[16]. The dimensionless correlation function@&t) = (27/a)?C(yt) and the diffusion
coefficientD = (27 /a)?Dy/y. In these units, the Kramers rate

Ry = (Q/2m) exp(—2Vo/ ks T).

3. The correlation function and tracer diffusion

In this section, we concentrate on the behaviour of the mean square displacement in the
presence of an oscillating bias. Our main conclusion is that, although the diffusion coefficient
is enhanced by the oscillating bias, it shows none of the features usually associated with
stochastic resonance. We emphasize again that we are only considering the high-friction
regime here.

3.1. Numerical results

Figure 1 shows the phase-averaged correlation funéian in the high-friction regime. As
expected, it is composed of a linear part upon which an oscillatory part in superimposed. The
diffusion coefficient, defined by the slope of the linear component, is shown in figure 2. Itis
a monotonically increasing function of temperature, showing no maxima. We note that the
range of temperatures used is such that it sweeps through the double-well matching condition
To = 2R,:1(T). The amplitude of the oscillations @i(z), shown on the inset of figure 2, also
increases monotonically as a function of temperature, and saturates to a constant value.
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Figure 1. The mean square displacement of the particle as a function of time for various
temperatures, witlf2g = 0.1, @ = 4 x 105y, Ey = 0.15 andkgT/Vy = 0.26, 035 and

0.46 (from bottom to top). In the inset, we show the amplitudef the oscillations inC(z) as a
function of temperature, up s 7/ Vo >~ 4.
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Figure 2. The diffusion coefficientD(T) as a function of temperature fér = 4 x 10~y and
Eo = 0.15. We show the numerical results (open circles), the theoretical results (full line), based
on equation (6), and the value D(T) if E, = O (dashed line).

We emphasize that these results occur in the liit« Vy. It is possible to observe
features similar to those of SR in the behavioubin the inverse limitE, > Vg, which is
not considered here for the reasons discussed in the introduction.

3.2. Analytical results

We now show that the qualitative behaviour of our results can be recovered by considering a
simple theoretical model. In the high-friction regime, the diffusion process can be analysed in
terms of the Master equation

dP,(r)
dt

whereP, (1) is the probability that the Brownian particle is in thi potential well at timer.
The time-dependent transition ratés.(t) are taken to be of the Kramers form [13]:
Wa(z; @) Qgex 2Vo | Ea
T; = — -
* 2 a kBT ZkBT
The formal solution of the master equation can be expressed in terms of the integral
a4 (7, T0; ¢) over the transition rates:

= —[We (D) + W_ (D] Pu(7) + Pust(DW_(7) + Ppoa (D) Wa(z)  (11)

sin(Qt + qb)). (12)

0a(t, 705 ) = / dr’ Wa(e's )
’ T+70 Ea
= Ru(T)Io(E, /2kT)(AT*) + Ri(T) dr’ exp(i sin(Qr’ +¢))
e 2%kpT

(13)
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wherely(u) is the modified Bessel function amdc* = 27 N/ 2, N being the total number of
periods between timeg andz. In the limit of larger, the value of

a(t, t0; Po) = TRy (T)Io(E,/2kpT)

for all values ofE, /2kgT.
The probabilityP, (¢), with initial condition P, (0) = §, ,,, has the solution

(n—no)/2
P,(t)= e_(a++a)< ) L, (2, /a+a,> (14)
and the correlation function, for fixed phase, is

C(t, 10, ) = [a+ - a,]z +orto_. (15)

A perturbative result can by obtained by expanding the last term of equation (13) in powers
of E,/2kpT followed by an averaging over the initial phase, which results in

o+

E, \°
C(t) = 2R (T)Ip(E,/2kpT)T + R,f(T)( ) (1 —co9Q1)). (16)
kgT 2
The diffusion coefficienD = D(T) is obtained from the definition of equation (6) as
D = R, (T)Io(E,/2kpT) a7

which is a result valid in the limit&, « Vo andkgT <« Vj, but for all values ofE,, /2kpT.

It clearly shows the monotonic increase®(T'), and compares quite well with our numerical

results. Deviations occur when T ~ Vg, outside the range of validity of Kramers’ results.
For E, <« 2kgT, the diffusion coefficient can be approximated by

E, \?
D(T) ~ D(E, = 0)<1 + (4kBT> ) (18)

which is different from what is found in reference [5]. We note that this simple limit predicts a
maximum in the enhancement of the diffusion coefficient at a tempergdre~ Vo, a limit

out of the range of validity of the analysis. In the lintif / kg T > 1, the diffusion coefficient
becomes

kT \*?
D(T) ~ Rk(T)< ) gfa/ksT (19)
2nE,
The result forD(T) can be intuitively understood by an averaging of the Kramers rate
over the period of the oscillating bid%,, yielding the effective transition rate

Q1 (T 2Vo | E. _. E,
=9 ——— + Qr) | dr = Ryl 20
2 To Jy exp( sin( r)) T kO(kBT) (20)

kgT kT
which is similar to equation (17), Sinde(T") ~ re.
In the limit E, < kpT, the amplitude of the oscillations ifi(r), found from equation

(16), shows a maximum at the temperatkpd” = 2V, a feature also associated with SR

but again far beyond the validity of the approximations. Such a resatitighysically valid.

Instead, the amplitude saturates at a plateau value, which may be obtained from the high-

temperature limitkgT > Vy, of equation (9). Neglecting the spatial potentialy), it is

straightforward to obtain the phase-averaged correlation function as

E2Q3
o7 9[1 — cogQ1)] (21)

yielding the plateau value, and the diffusion coefficignt7) = 2kBTSZ§/ Vo, such that
Dr = kgT/(My), valid for a free Brownian particle.

Teff

kyT
C(t)=2"2"Q%r +
Vo



Stochastic resonance and diffusion in periodic potentials 9847
4. Escape time distributions

The escape time distributions may be used to study the synchronization between jumps, in a
way similar to the two-well case [2]. Both quantities can also be measured experimentally,
through STM measurements [15]. The escape time distributions for paggliie)) and anti-
parallel ((o. (7)) transitions, shown in figure 3, present some interesting characteristics arising
from the driving of periodl, = 27 Q1. In both cases, the distributions show pronounced
peaks at timesrﬁ]ax,n = nTgq for parallel transitions, and aﬁaxn = (n + )Tgy/2 for anti-
parallel ones. Although both; andp, are peaked functions of time, the total escape time
distribution

p(r) = py(v) + pr(7)
still shows purely exponential behaviour as
1
— _— gk 22
p(1) o7 © (22)

as also shown in figure 3.
The peaks inp; andp, are obviously related to the enhanced transition opportunities
for parallel transitions after an integer multiple of the driving period. Likewise, anti-parallel
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Figure 3. Escape time distributions with parameter= 4 x 10°°. (a) The distribution for
parallel transitions, at temperatutg7/ Vo = 0.35, showing the peaks at integer values of the
driving period. In the inset, we show the same quantity, but at tempergdf¢Vy = 0.29.

(b) The distribution for parallel transitions with identical parameters, showing the peak at half-
integer values of the driving period. (c) The total escape time distribytien at temperature
kpT/ Vo = 0.35, showing pure exponential behaviour. (d) The amplitude of the first peakaa

a function of temperature.
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transitions are favoured after a half-integer number of periods. To further investigate this
behaviour, the amplitudg(T) of the first peak in the anti-parallel distributipn (), is defined
following [7] as

3Tp/4
F = / pa (1) dr. (23)
Ta/4
This function shows a clear maximum as a function of temperature, a feature of SR
also seen in bistable systems [2,7]. As in this case, the maximum corresponds to an optimal
synchronization between the driving period and the average escapg tifhe The maximum
occurs at the matching condition

2T(T) = To. (24)

Using our data, we estimatg, = 8 x 10% which corresponds nicely to the value
Te = 1.57 x 10° chosen in the simulations. If the Kramers rates can be used, the maximum
in the distribution then occurs at a temperatkg@max/2Vo = 1/ In(w3/y w). We emphasize,
however, that this maximurdoes notresult in a peak structure for the diffusion coefficient
D(T), and is even less likely to result in some form of either ‘ballistic’ or ‘localized’ motion.
Although p; and p, may have peaks at different temperatures, their sum is always of pure
exponential form, with mean escape tifig implying purely diffusive behaviour. Making
the distinction betweep; andp, is the only experimentally relevant way to study stochastic
resonance in periodic systems. These concepts might also be useful for surfaces with broken
symmetry (due to, e.g., steps and terraces [17]) and for interacting systems [9].

5. Conclusions and discussion

The results presented above show that no peaks in the temperature behaviour of the diffusion
coefficient result from the application of an oscillating small bias. Features associated with SR
are seen in the escape time distributions, but not in the hydrodynamic transport coefficients.
The main effect of the oscillating bias in the linfit, <« Vy is an enhancement of the diffusion
coefficient. This enhancement is the of orderR)f/ Vy if Eg < kgT, or exgE,/kgT) if

E, > kpT, always assuming, andkgT to be much smaller than the barrier heidft

Several problems, however, remain to be solved. Electromigration [11] is usually an
extremely small effect, causing changes in the potential bafyigv, of less than 1% (although
values as high ag,/Vp ~ 0.1 have been quoted in reference [17]). These very small values
mean that no discernible effects on the diffusion coefficient will occur, at least in the high-
friction limit, unless temperature is very low.

Nevertheless, two other options deserve further study. The low-friction limit, characterized
by long jumps between the wells, may well present a greater sensibility to the oscillating field,
as already hinted in reference [3]. Furthermore, the effect of an oscillating bias on diffusion
on stepped terraces [17] has been studied in the fimit- 0. Since the DC limit is difficult
to obtain experimentally, it is imperative that these studies be extended to the high-frequency
case. Work in this direction is already in progress.
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